用户名: 密码: 验证码:
基于物联网感知的煤矿安全监控信息处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对煤矿安全监测监控系统存在的技术落后、功能单一、存在监控盲区以及不能联动联控等问题,把智能化的物联网感知技术应用于煤矿安全监测监控领域,以“感知”为突破口,重点研究了感知矿山物联网关键技术:感知煤矿安全状况的分布式信息融合感知算法和感知传感器节点健康状态的故障诊断感知算法。论文取得了以下研究成果:
     (1)定义了煤矿井下物联网感知域的概念,从感知层的拓扑结构、路由汇聚机制以及中间件等方面进行了设计:在物联网感知域内构建了开放的基于分簇的分布式感知架构——分布式星状无线传感器网络(DSWSN);在LEACH和PEGASIS协议的基础上进行了改进,形成了高效的路由汇聚机制,提高了服务质量(QoS),满足了通信的可靠性和实时性要求;建立了基于分簇的协作型多功能中间件体系结构,把簇层和资源管理层通过移动Agent技术有机结合起来,能够充分支持应用程序的开发,利用应用程序表示形式转换实现多种类型的应用形式的协作统一;给出了用于数据存储和传输的云数据服务平台(PaaS服务)部署方式,建立了高效的煤矿物联网安全监控感知平台。
     (2)在分析煤矿井下复杂环境的基础上建立了感知煤矿安全状况的信息融合策略。在数据预处理模块中采用置信距离测度与采集数据的时间戳相结合的动态限幅滤波算法对数据进行预处理以消除疏失误差。运用最优加权估计算法进行数据级融合,依据传感器方差的自相关和互相关估计,在总均方误差最小和满足无偏性的最优条件下,根据各个传感器得到的测量值以自适应的方式找到其对应的权数,使融合后的值达到最优,获得更加准确的现场监测信息。在决策级融合算法中建立了基于模糊粗糙-灰色关联分析(FR-GC)的算法模型。在该模型中,不需要预先给定额外信息,而是通过数据的不可分辨关系来提取隐藏在数据中的潜在信息,保证了分析的客观性;同时利用煤矿环境特征向量与标准特征向量的灰色关联度进行系统特征优势分析,从整体上考虑煤矿环境的安全性,最终根据关联度的大小给出系统的安全判决。实验表明本算法具有权值分布合理,绝对误差波动平稳,动态响应特性好,收敛速度快,能有效滤除干扰数据等特征;利用模糊粗糙模型与灰色关联分析之间较强的互补性关系,改善了待决策样本与识别模式的亲和度,突出了定量程度,具有较高的感知区分度,减少了主观因素的影响,提高了决策的客观性。
     (3)分析了煤矿安全监控系统传感器存在的4种故障模式,在此基础上建立了传感器的故障诊断策略。以瓦斯传感器节点为例,针对常见的常值型、漂移型、偏置型和周期型4种隐性软故障,以小波分析和FRBF神经网络为基础,提出了由加Hamming窗的Shannon为母小波的小波包分解提取特征能量谱与扩展Kalman滤波算法(EKF)优化的FRBF神经网络进行模式分类辨识的传感器节点故障诊断方法。对传感器的输出信号进行小波包分解,运用基于代价函数的局域判别基(LDB)算法进行裁剪,获取最优的特征能量谱,经处理后作为特征向量训练EKF-FRBF神经网络,采用参数增广和统计动力学方法,通过带有整定因子的EKF参数估计,用来辨识传感器节点的故障类型。实验表明,该方法的辨识正确率在95%以上,误报率和漏报率都明显优于其他算法,能够有效用于物联网系统中传感器节点的在线故障诊断。
     (4)分析了在DSWSN系统中,智能移动Sink节点的功能与特点,分别从仿真设计、硬件设计和软件设计三个方面逐步推进,完成了Sink节点的设计开发。通过实验证明,该Sink节点可以很好地完成对监控数据的处理和传输,实现了对煤矿安全状况和节点健康状态的正确感知,具有电路简单、功能完善和技术性能高的特点,是一种比较可取的物联网汇聚节点的设计方案,从而打造出一张更加密集、更加有效的煤矿安全生产物联网。
     通过信息融合与故障诊断两种感知算法的密切配合,实现了信息互补与协同感知,大大降低了监控系统的不确定性和不可靠性,减少了由于单一传感器受信息量局限引起的误报错报和冲突,提升了对煤矿安全的快速监测和预警预报能力,为煤矿安全生产提供了强有力的保障。论文的研究能够充分发挥物联网感知技术在煤矿井下应用的优势,为提升煤矿生产效率和加大安全管理提供了一个全新的综合信息化平台。
By targeting at issues such as backward technologies, low functionality, monitoring gaps and inability in joint actions and controls which are existing in coal mine's safety monitoring systems, the paper focuses on research of key technologies for perception of internet of things at coal mines by applying intelligentized perception technology of internet of things into such monitoring systems, with "perception" as the breakthrough point. The key technologies are distributed information fusion perception algorithm for perception of safety conditions at coal mines and fault diagnosis perception algorithm for perception of health status of sensor nodes. The paper has accomplished the following achievements:
     (1) It has defined concept of perception domain of internet of things and completed designs from many aspects, topology structure of perception layer, routing and aggregation mechanism and intermediate components and so on:An open and cluster-based distributed perception architecture, distributed star wireless sensor network (DSWSN) was built; Improvements based on LEACH and PEGASIS protocols to develop an efficient routing and aggregation mechanism were made, which can improve quality of services (QoS) and satisfy reliability and real-time requirements of communications; A cluster-based coordinating multifunctional structure of intermediate component systems aiming at integrating cluster layers and resource management layer with mobile Agent technology was built, which can sufficiently support development of application programs and utilize application programs to represent formal transformations for realization of coordination and unification of many types of application forms; and a deployment way of cloud data service platform (PaaS service) for data storage and transmission was developed, and an efficient safety monitoring and perception platform of internet of things for coal mines was constructed.
     (2) The paper has developed an information fusion strategy for perception of safety conditions at coal mines based on analyses of complicated underground mine environmental conditions and has adopted dynamic amplitude limiting filtering algorithm which integrates confidence distance measure and timestamp of data collection in data pre-processing module, to eliminate negligence and errors. Optimal weighting algorithm is used to make data level fusion to optimize post-fusion values and obtain more accurate site monitoring information by relying on estimates of self-related or mutually related sensor variances and finding out corresponding weight number of each sensor in a self-adapting way by utilizing measured values of each sensor under the optimal conditions of minimal total mean square error and satisfying unbiasedness. A fuzzy rough-gray correlation (FR-GC) based algorithmic model has been established in decision level fusion algorithm, in which no additional information needs to be provided in advance and data's indiscernibility relation is used to extract potential information hidden inside data, which guarantees objectivity of analyses. At the same time, analyses of system features have been made by using gray correlation of coal mine's environmental feature vectors and standard feature vectors, and coal mine's environmental safety has been considered in an all-round way, and in the end, judgment about system safety was made according to the correlation. Tests indicate this algorithm is characterized with rationality in weight distribution, stability in absolute errors, soundness in dynamic response characteristics, high speed in convergence speed and ability to effectively remove disturbing data. It can improve affinity between samples to be decided and identification mode with the stronger complementary relation between fuzzy rough model and gray correlation analyses, which highlights quantitative degrees, has higher perception distinction degrees, reduces affect from objective factors and increases decision-making objectivities.
     (3) Four fault modes of sensors in the monitoring system have been analyzed, based on which, a sensor fault diagnosis strategy has been established. For example, by targeting at the four common latent soft faults of constant value faults, drifting type faults, biased faults and periodic faults from which gas sensor node suffers, the paper proposes a sensor fault diagnosis method, which adopts wavelet analysis and FRBF neural network as the basis and makes mode pattern classification and identification with wavelet packet adopting Hamming window added Shannon as mother wavelet to decompose and extract characteristic energy spectrum, and with FRBF neural network optimized by expanded Kalman filtering algorithm (EKF). Sensor output signals can be decomposed with wavelet packets, and cut with cost function based local discriminant bases (LDB) algorithm to obtain optimum characteristic energy spectrum, which will be used as characteristic vector after processed to train EKF-FRBF neutral network. Then parameter augmentation and statistical dynamics method, and EKF parameter estimation with regulated factors can be used to identify fault type of sensor node. Tests indicate the identification accuracy of this method is over95%, and both its false alarm rate and missing alarm rate are apparently lower than others. So this method can be adopted effectively in on-line fault diagnoses of sensor nodes in the system of things of internet.
     (4) It analyzed functions and features of intelligent mobile Sink nodes in DSWSN system and completed design and development of Sink nodes by making gradual progress in the three aspects of simulation design, hardware design and software design. Tests demonstrate this Sink node can well perform processing and transmission of monitoring data and achieve correct perception of safety status and node health state at coal mines. With its advantages in simple circuits, complete functions and advanced technical performances, this is satisfactory design for aggregation nodes of things of internet, and can be used to build a more densely-distributed and more efficient things of internet for safe production at coal mines.
     Close cooperation between information fusion and fault diagnosis perception algorithms has achieved information complementation and coordinated perception, which can significantly reduce uncertainty and unreliability of monitoring systems, and false alarms and conflicts caused by information limits of single sensor, and promote real-time safety monitoring and early safety warning ability of coal mines. So it can provide a strong guarantee for safe production at coal mines. The research done by the author can give full play to advantages in applying perception technology of things of internet in underground sections of coal mines and can provide a brand-new comprehensive informationalized platform for boosting production efficiency and safety management performances at coal mines.
引文
[1]吕然.我国煤矿安全监察体制存在的问题及对策探析[D].长春:东北师范大学,2010.
    [2]国家煤炭安全监察总局网站[EB/OL].http://www.chinacoal-safety.gov.cn.
    [3]尹洪胜.煤矿瓦斯时间序列分析方法与预警应用研究[D].徐州:中国矿业大学,2010.
    [4]孙继平.煤矿安全监控技术与系统[J].煤炭科学技术,2010,38(10):1-4.
    [5]国家安全生产监督管理总局.煤矿安全规程[S].2010.
    [6]李泉溪,孙君顶.基于无线传感器网络的煤矿报警系统节点的设计及实现[J].微计算机信息,2008,24(2):265-267.
    [7]张申,丁恩杰,徐钊,等.物联网与感知矿山专题讲座之二——感知矿山与数字矿山、矿山综合自动化[J].工矿自动化,2010,11:129-132.
    [8]刘建,朱华,郑之增,等.煤矿救援机器人的通信系统设计[J].煤炭科学技术,2009,37(8):87-90.
    [9]付华,李根.基于聚类SVM瓦斯传感器故障预测研究[J].微计算机信息,2010,(9):33-34.
    [10]国家安全生产监督管理总局.煤矿安全监控系统通用技术要求(AQ6201-2006)[S].2006.
    [11]朱小明.淮北矿业集团煤矿安全监管系统研究与设计[D].西安:西安电子科技大学,2007.
    [12]卢建军,赵安新,王晓路.煤矿安全综合监测平台的设计与实现[J].西安科技大学学报,2008,29(1):619-622.
    [13]孙继平.煤矿井下安全避险“六大系统”的作用和配置方案[J].工矿自动化,2010(10):1-4.
    [14]白雪松.远程煤矿安全预警监察系统应用研究[D].北京:北京邮电大学,2007.
    [15]李苏旺.时间序列数据建模及其在瓦斯预测中的应用研究[D].山西:太原理工大学,2007.
    [16]曾祥鸿,黄强.KJ90型煤矿安全生产综合监控系统[J].矿业安全与环保,2000,27(1):18-20.
    [17]孙彦景,钱建生,裴立瑞,等.基于工业以太网的KJ82矿井综合监控系统[J].计算机工程,2008,34(5):237-239.
    [18]邹金圣.现代煤矿“一通三防”体系构建与事故防治新技术实务全书[M].北京:当代中国出版社,2005.
    [19]钱建生,马姗姗,孙彦景.基于物联网的煤矿综合自动化系统设计[J].煤炭科学技术,2011,39(2):73-76.
    [20]孙彦景,钱建生,李世银,等.煤矿物联网络系统理论与关键技术[J].煤炭科学技术,2011,39(2):69-73.
    [21]宋金玲.采煤工作面无线传感器网络物理层的研究[J].工矿自动化,2010,(3):45-48.
    [22]谢东亮,王羽.物联网与泛在智能[J].中兴通讯技术,2010,16(4):52-56.
    [23]刘强,崔莉.物联网关键技术与应用[J].计算机科学,2010,37(6):1-5.
    [24]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.
    [25]张申,丁恩杰,徐钊,等.物联网与感知矿山专题讲座之三——感知矿山物联网的特征与关键技术[J].工矿自动化,2010,(11):129-132.
    [26]张申,程婷婷.感知矿山物联网应用平台的作用与意义[C].第3届中国煤矿信息化与自动化高层论坛论文集,2011:227-232.
    [27]孙继平.基于物联网的煤矿瓦斯爆炸事故防范措施及典型事故分析[J].煤炭学报,2011,36(7):1172-1176.
    [28]张申,丁恩杰,徐钊,等.物联网与感知矿山专题讲座之二——感知矿山与数字矿山、矿山综合自动化[J].工矿自动化,2010,(12):117-121.
    [29]赵安新,卢建军,崔曼.利用物联网构建矿山机电设备的监测平台[J].西安邮电学院学报,2010,15(6):85-87.
    [30]物联网技术[EB/OL]. http://baike.baidu.com/view/1136308.htm.
    [31]张申,丁恩杰,徐钊,等.物联网与感知矿山专题讲座之一——物联网基本概念及典型应用[J].工矿自动化,2010,(10):104-108.
    [32]The Internet of Things, ITU Internet Reports 2005 executive summary [EB/OL]. http://www.itu.int/internetofthings/,2005-11.
    [33]中国首届物联网大会讲话稿[EB/OL].http://tech.163.com/special/00094D22/201 Owulianwang.htm,2010-06-09.
    [34]上海推进物联网产业发展十大应用示范工程[EB/OL].http://www.cio360.net/h/2177/348122-14699.html,2010-04-27.
    [35]解析物联网技术框架与标准体系[EB/OL]. http://www.xici.net/u18456841/d115113209.htm, 2010-03-30.
    [36]李世银,钱建生,孙彦景.煤矿工业以太网网络模型研究及应用[J].华中科技大学学报,2007,35(S):213-216.
    [37]孙继平.煤矿物联网特点与关键技术研究[J].煤炭学报,2011,36(1):167-170.
    [38]孙继平.煤矿安全生产监控与通信技术[J].煤炭学报,2010,35(11):1925-1929.
    [39]张申,丁恩杰,赵小虎,等.数字矿山及其两大基础平台建设[J].煤炭学报,2007,(9):997-1001.
    [40]Akyildiz I F, Stuntebeck E P. Wireless Underground Sensor Networks:Research Challenges [J]. AdHoc Networks (Elsevier),2006 (6):669-686.
    [41]Akyildiz I F, Sun Z, Vuran M C. Signal Propagation Techniques for Wireless Underground Communication Networks[J]. Physical Communication (Elsevier) Journal,2009 (3):167-183.
    [42]INGE G, ANDR Z. Machine to Machine Communication [B/OL]. http://www.eurescom.eu/Public/Projects,2010-11-10.
    [43]赵小虎,张申,谭得健.基于矿山综合自动化的网络结构分析[J].煤炭科学技术,2004(8):15-18.
    [44]张申,丁恩杰,徐钊,等.物联网与感知矿山专题讲座之四——感知矿山物联网与煤炭行业物联网规划建设[J].工矿自动化,2011,(1):105-108.
    [45]ZigBee技术[EB/OL]. http:/baike.baidu.com/view/3085090.htm.
    [46]孟欠欠.基于ZigBee技术的医疗监护网络的设计与研究[D].镇江:江苏大学,2009.
    [47]张治斌,王玉芬,李长江.ZigBee无线传感器网络在瓦斯监测系统中的应用[J].矿山机械,2007,35(11):32-34.
    [48]王东.无线传感器网络系统设计与应用[D].重庆:重庆大学,2006.
    [49]吕治安.ZigBee网络原理与应用开发[M].北京:北京航空航天大学出版社,2007.
    [50]吴立新,汪云甲,丁恩杰,等.三论数字矿山——借力物联网保障矿山安全与智能采矿[J].煤炭学报,2012,37(3):357-365.
    [51]杨维,冯锡生,孙继平.新一代全矿井无线信息系统理论与关键技术[J].煤炭学报,2004,29(4):506-611.
    [52]王军号,孟祥瑞.物联网感知技术在煤矿瓦斯监测系统中的应用[J].煤炭科学技术,2011,39(7):64-69.
    [53]刘亚静,毛善君,姚纪明,等.基于层次分析法的煤矿安全综合评价[J].矿业研究与开发,2007,27(2):82-84.
    [54]杨维,王彬.矿井巷道层次型无线监测无线传感器网络的实现[J].煤炭学报,2008,33(1):94-98.
    [55]孙彦景,钱建生.基于WSN地下无人采煤安全监测技术的研究[J].传感技术学报,2007,20(11):2517-2521.
    [56]Guan Guan, Chao Hu, Bin Shen Xiao, et al. Remote life monitoring system base on internet of things [C]. Proceedings of the World Congress on Intelligent Control and Automation,2010,7: 1605-1610.
    [57]王泉夫,赵端,邹翔羽,等.矿井无线传感器网络MAC协议的设计与仿真[J].煤炭科学技术,2009,37(11):84-87.
    [58]Chakib Baouche, Antonio Freitas, Michel Misson. Radio Proximity Detection in a WSN to Localize Mobile Entities Within a Confined Area[J]. Journal of Communications,2009 (4) 232-240.
    [59]Yan Wu, Min Lin, Ian J Wassell. Modified 2D Finite-Difference Time-Domain Based Tunnel Path Loss Prediction for Wireless Sensor Network Applications[J]. Journal of Communications,2009 (4):214-223.
    [60]程丽娟.无线传感器网络时间同步算法研究[D].兰州:西北工业大学,2007.
    [61]黄晓光,张华忠.一种采用分簇的无线传感器网络中间件[J].小型微型计算机系统,2008,29(4):611-614.
    [62]Habin L, Patrik M, John S. Realizing Team work in the Field:An Agent□Based Approach[J]. IEEE Pervasive Computing,2007,6 (2):85-92.
    [63]黄海平,王汝传,孙力娟,等.基于Agent和无线传感器网络的普适计算情景感知模型[J].南京邮电大学学报(自然科学版),2008,28(2):75-79.
    [64]王汝传,孙力娟,沙超,等.无线传感器网络中间件技术[J].南京邮电大学学报(自然科学版),2010,30(4):36-40.
    [65]Wendi B H. Amy L M, Hervaldo S C, Mark A P. Middleware to suport sensor Network applications[J]. IEEE Network,2004:6-14.
    [66]陈国良,孙广中,徐云,等.并行计算的一体化研究现状与发展趋势[J].科学通报,2009,54(8):1043-1049.
    [67]吴吉义,平玲娣,潘雪增,等.云计算:从概念到平台[J].电信科学,2009(12):23-30.
    [68]朱近之.智慧的云计算:物联网发展的基石[M].北京:电子工业出版社,2010.
    [69]孙健,贾晓箐.Google云计算平台的技术架构及对其成本的影响研究[J].电信科学,2010(1):110-114.
    [70]Neal Leavitt. Is cloud computing really ready for prime time[J].IEEE Computer,2009(1):15-20.
    [71]Michael A, Armando F, Rean G, et al. Above the clouds:a berkeley view of cloud computing [EB/OL]. http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html,2011-01-15.
    [72]Buyya R, Chee Shin Yeo, Srikumar V. Market-oriented cloud computing:vision, hype, and reality for delivering IT services as computing utilities[C]. Proc. of the 10th IEEE International Conference on High Performance Computing and Communications,2008:5-13.
    [73]Fred Chong. Multi-tenancy and virtualization [EB/OL]. http://blogs.msdn.com/b/fred chong/archive/2006/10/23/multi-tenancy-and-virtualization.aspx.
    [74]康瑛石,吴吉义,王海宁.基于云计算的一体化煤矿安全监管信息系统[J].煤炭学报,2011,36(5):873-877.
    [75]左子阳.信息融合技术在风力发电齿轮箱故障诊断中的应用[D].上海:华东理工大学,2009.
    [76]徐瑜.智能空气清新器控制软件算法研究[D].长沙:中南大学,2007.
    [77]杨真荣.基于云模型的舰队作战数据融合研究[D].镇江:江苏科技大学,2008.
    [78]O'Keefe Christian V., Maron, Robertl, Rothman Paul. Solving flow and flotation monitoring problems in coal preparation using new, non-invasive passive array flowmeter technology[J]. International Coal Preparation Congress 2010, Conference Proceedings,2010:724-733.
    [79]Yilmaz Nihat, Ozdeniz A. Hadi. Internet-based monitoring and prediction system of coal stockpile behaviors under atmospheric conditions[J]. Environmental Monitoring and Assessment,2010,162 (1-4):103-112.
    [80]程珍珍.多传感器数据融合技术在煤矿水害预防中的应用[D].太原:太原理工大学,2009.
    [81]高丽丽,徐克宝,栾兆学.基于GPRS和Zigbee无线传感器网络的矿井综合监控系统的设计[J].煤炭工程,2008(11):120-122.
    [82]马国胜.基于多传感器融合技术的瓦斯监控系统实现[D].武汉:武汉理工大学,2010.
    [83]马丕梁.煤矿瓦斯灾害防治技术手[M].北京:化学工业出版社,2000.
    [84]黄为勇.基于支持向量机数据融合的矿井瓦斯预警技术研究[D].徐州:中国矿业大学,2009.
    [85]付华.煤矿瓦斯灾害特征提取与信息融合技术研究[D].阜新:辽宁工程技术大学,2006.
    [86]LI Leijun, PENG Hong. Gas Disaster Decision-level Information Fusion Method Based on Fuzzy Logic [C].2010 International Conference On Computer Design And Appliations,2010,3:51-54.
    [87]王华,王连华.煤自然发火实验温度监测系统[J].煤炭学报,2006,31(1):67-71.
    [88]张春杰,司锡才,薛伟.基于算术均值与递推估计的被动雷达导引头数据融合处理[J].应用科技,2003,30(3):18-20.
    [89]Matviykiv Mykhaylo, Teslyuk Vasyl, Matviykiv Taras. Prospects of using carbon film sensors for gas contamination monitoring in coal mines and drilling rigs[C]. Modern Problems of Radio Engineering, Telecommunications and Computer Science-Proceedings of the 10th International Conference, TCSEr2010, p 371.
    [90]卓君.分布图法在疏失误差处理中的应用[J].实用测量技术,2002,3(2):33-35.
    [91]FU Hua, LIU Yin-ping, XIAO Jian. Applications of state estimation in multi-sensor information fusion for the monitoring of open pit mine slope deformation [J]. Journal of Coal Science & Engineering (China),2008,14(2):317-320.
    [92]刘叶玲,朱艳伟.加权数据融合算法及其应用举例[J].西安科技大学学报,2005,25(2):253-255.
    [93]冉金和,张玉.基于航迹隶属度的分布式系统数据融合算法[J].信号处理,2011,27(2): 226-229.
    [94]邵良杉,付贵祥.基于数据融合理论的煤矿瓦斯动态预测技术[J].煤炭学报,2008,33(5):551-555.
    [95]何友,王国宏,陆大金,等.多传感器信息融合及应用[M].北京:电子工业出版社,2007.
    [96]王炯琦,周海银,吴翊.基于最优估计的数据融合理论[J].应用数学,2007,20(2):392-399.
    [97]SONG Kaichen, NIE Xili. Adaptive fusion aigorithms based on weighted least square method [J]. Chinese Journal of Mechanical Engineering,2006,19(3):451-454.
    [98]Pehlivanoglu Y. Volkan, Baysal O. Vibrational genetic algorithm enhanced with fuzzy logic and neural networks [J]. Aerospace Science and Technology,2010,14(1):56-64.
    [99]Du Wenli, Guan Zhenqiang, Qian Feng. Dynamic soft sensor modeling based on time series error compensation[J]. Huagong Xuebao/CIESC Journal,2010,61(2):439-443.
    [100]姚红霞.模糊粗糙集理论介绍和研究综述[J].重庆工学院学报,2006,20(8):132-135.
    [101]张文修.粗糙集理论与方法[M].北京:科学出版社,2001.
    [102]Samarasooriya V N S,Varshney P K.A fuzzy modeling approach to decision fusion under uncertainty [J]. Fuzzy Sets and Systems,2000(11):59-69.
    [103]邓聚龙.灰色控制系统[M].武昌:华中理工大学出版社,1993.
    [104]王传英,付华.模糊数据融合算法在煤矿安全系统中的应用[J].传感器技术,2005,24(6):72-73.
    [105]谢开贵,胡博,欧阳稳,等.基于灰色关联的应力盘驱动力耦合度分析[J].重庆大学学报,2010,33(6):20-24.
    [106]付华,王雨虹.基于数据挖掘的瓦斯灾害信息融合模型的研究[J].传感器与微系统,2008,27(1):52-54.
    [107]Gao Shesheng, Zhong Yongmin, Li Wei. Random weighting method for multisensor data fusion[J]. IEEE Sensors Journal,2011,11 (9):1955-1961.
    [108]王致杰.大型电力变压器故障机理与智能诊断技术研究[D].徐州:中国矿业大学,2007.
    [109]蒋浩天,E.L.拉塞尔,R.D.布拉茨.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003.
    [110]徐立中.井下监控系统运行可靠性的一种监测方法研究[J].太原理工大学学报,1998,29(2):200-203.
    [111]王红尧,华钢,张瀚超.煤矿安全监控分站的研究[J].电子设计应用,2005,(12):102-104.
    [112]倪绍徐,张裕芳,易宏,等.基于故障树的智能故障诊断方法[J].上海交通大学学报,2008,42(8):1372-1375.
    [113]高惠玲,商传杰.煤矿安全监控系统的应用及常见故障分析[J].矿业快报,2004,20(11):43-45.
    [114]刘超.免疫前馈神经网络在传感器故障诊断中的应用[D].苏州:苏州大学,2008.
    [115]赵树延.试车台传感器故障诊断及数据重构方法的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [116]王其军,程久龙.瓦斯传感器的故障模式与诊断方法研究[J].煤炭科学技术,2006,34(11):34-36.
    [117]周公博,朱真才,陈光柱.基于传感器网络的瓦斯传感器故障诊断[J].振动、测试与诊断,2010,30(1):23-27.
    [118]王其军.瓦斯监测系统故障智能诊断技术研究[J].济南:山东科技大学,2007:32-33.
    [119]Ni.Kevin, Ramanathan, Nithya, et al. Sensor network data fault types [J]. ACM Transactions on Sensor Networks,2009,5(3):1-29.
    [120]王军号,孟祥瑞,吴宏伟.基于小波包与EKF-RBF神经网络辨识的瓦斯传感器故障诊断[J].煤炭学报,2011,36(5):867-872.
    [121]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2003.
    [122]MALLAT S. A wavelet tour of signal processing[M]. New York,USA:Academic Press,1999:67-126.
    [123]王雯升.遗传小波神经网络及在导航传感器故障诊断中的应用[D].哈尔滨:哈尔滨工程大学,2009.
    [124]周伟.MATLAB小波分析高级技术[M].西安:西安电子科技大学出版社,2005.
    [125]冉启文.小波变换与分数傅里叶变换理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [126]C. E. SHANNON. A Mathematical Theory of Communication [J]. The Bell System Technical Journal,1948,27:379-423,623-656.
    [127]王建赜,纪延超,冉启文.新小波的构造及其在电力系统中的应用[J].电力系统及其自动化学报,1999,11(3):74-79.
    [128]罗静,钟佑明.小波包时频分析方法的研究及应用[J].重庆邮电大学学报,2009,21(3):381-387.
    [129]邸继征.小波分析原理[M].北京:科学出版社,2010.
    [130]LI Wenjun, ZHANG Hongkun. Abrupt fault diagnosis of sensors based on wavelet and neural networks [J]. Advances in Modelling and Analysis B,2004,47(3-4):71-84.
    [131]XU Tao, WANG Qi. Sensor fault diagnosis based on wavelet package and LVQ network [J]. Journal of Harbin Institute of Technology,2007,39 (1):8-10.
    [132]雷亚国,何正嘉,訾艳阳,等.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(6):558-562.
    [133]A.Okatan,C. Hajiyev,U. Hajiyeva. Fault Detection in Sensor Information Fusion Kalman Filter[J]. International Journal of Electronics and Communications,2009,63(9):762-768.
    [134]SIMON D. Training radial basis neural networks with the extended Kalman filter [J]. Neurocomputing,2002,48:455-475.
    [135]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [136]何新贵.模糊知识处理的理论与技术[M].北京:国防工业出版社,1999.
    [137]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
    [138]Budapest Polytechnic. Kalman-Filter based control and performance monitoring systems [J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2004,8 (5): 535-543.
    [139]张爱平.Labview入门与虚拟仪器[M].北京:电子工业出版社,2004.
    [140]杨乐平,李海涛,杨磊Labview程序设计与应用2版[M].北京:电子工业出版社,2006.
    [141]王汝传,孙力娟.无线传感器网络技术及其应用[M].北京:人民邮电出版社,2011.
    [142]孙继平.矿井通信技术与系统[J].煤炭科学技术,2010,38(12):1-3.
    [143]王军号,孟祥瑞.基于物联网用于煤矿瓦斯监测的智能移动Sink节点及其系统[P].专利号:ZL201120067876.X.
    [144]基于GPRS-CDMAIX煤矿安全数据采集通讯系统[EB/OL]. http://www.gongkong.com/ Common/WebModule/Technic/,2011-01-13.
    [145]江海峰,甄阳清,傅毅.矿井无线传感器网络的网关设计[J].计算机工程,2009,35(3):112-114.
    [146]田裕鹏.传感器原理[M].北京:科学出版社,2007.
    [147]Chatterjee M, Das S, Turgut D. WCA:A Weighted ClusteringAlgorithm for Mobile AdHoc Networks[J]. Cluster Computing,2002 (5):193-204.
    [148]Lin C R, Gerla M. Adaptive Clustering for Mobile Wireless Networks[J]. IEEE J on Selected Areas in Communications,1997(7):1265-1275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700