用户名: 密码: 验证码:
湘潭锰矿区废弃地土地质量评价与生态恢复效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前人类有组织的所有活动中,矿物开采对自然生态系统的影响最为深远。采矿后形成的矿区废弃地,生态系统结构解体,功能严重退化,生态风险与环境威胁突出,需要进行土地复垦和生态系统修复。目前,发达国家矿区生态恢复和土地复垦率平均达到了55%~65%,美、英、澳等矿产大国更达85%。据国土资源部统计,我国矿区土地复垦率已从1988年的2%上升到了2012年的15%左右。但是,矿区复垦速度仍远落后于损毁速度,矿业废弃地以每年3.3万~4.7万hm2的速度递增。我国现有1500个各类矿区占用和损坏的土地估计达200万hm2。
     加强矿区土地复垦和生态恢复研究与技术推广应用,是生态学研究人员面向社会生产实际的重点工作。本研究以已有近100年开采历史、形成时间已达40余年的湘潭锰矿区废弃地为对象,以森林生态学、景观生态学和恢复生态学为理论依据,通过对矿区废弃地的土壤理化性质、现有定居植物生态特性等进行分析,盆栽试验筛选出能够适应矿区废弃地恶劣条件的地带性乡土树种,在矿区废弃地进行示范造林,通过分析示范基地的林分特征、水土特性和矿物元素生物循环状况,确定了矿区生态恢复的基本技术措施。研究结果表明:
     (1)湘潭锰矿区废弃地土壤质地以石质粗砂土或砂粉土为主,物理性砂粒(1~0.01mm)在85%以上,物理性粘粒(<0.01mm)在15%以下,土壤调节水、肥、气、热的能力差,可耕性差。限制矿区废弃地土壤肥力的主要因子有:砾石含量、水分状况、有机质含量以及全N含量、全P含量。矿区地下水除pH值和溶解氧低于对照外,主要重金属污染元素和NH4+、NO3-、PO4-3、SiO3-2等离子的含量都超过了对照,有机污染和重金属污染严重。土壤中Mn、Zn、Cu、Fe、Pb、 Ni、Cd和Co的平均含量高,分别是湖南省土壤背景值的179、7、3、6、2、3、3、71倍,以对照区、湖南省土壤背景值、全国土壤重金属元素平均值为标准,矿区废弃地的土壤综合污染指数分别为13.82、75.72和98.05,为重污染等级。矿区废弃地中Cd、Mn潜在生态危害指数分别为2419.75、373.83,矿区重金属综合潜在生态危害指数高达2949.16,都于极强生态风险等级。说明矿区废弃地土壤质量严重下降,重金属Mn、Cd污染严重,是植被恢复的主要限制因子。
     (2)矿区废弃地经过40余年的自然演替,共有28科53种定居植物,其中草本植物36种,乔木和灌木17种。矿区整个生态系统现正处于向亚热带常绿阔叶林演替的草灌丛初阶段。经盆栽实验,筛选出栾树和杜英两个乡土树种在重金属元素含量高、未改良或仅简单改良的矿区废弃地基质土壤中正常生长,成活率高、长势旺盛,可作为矿区废弃地生态恢复的首选植物。
     (3)在矿区基质土壤不同处理中(①W1:25%矿区废弃地土壤+75%自然土;②W2:50%矿区废弃地土壤+50%自然土;③W3:75%矿区废弃地土壤+25%自然土;④W4:100%矿区废弃地土壤;⑤对照(CK)为100%自然土),栾树和杜英都生长较好。从夏秋两季各处理中树种的平均地径生长量来说,栾树平均地径增长量大小顺序是W3>W4>CK>W2>W1,可见重金属浓度低时对栾树生长有一定的抑制作用,当浓度增高时则抑制作用可能减弱;杜英平均地径的增长量大小顺序则是CK>W2>W1>W3>W4,可见不同重金属土壤掺和浓度下对杜英生长都有一定的抑制作用,并且随着浓度的增加抑制作用越明显。
     (4)矿区废弃地生态恢复树种的净光合速率随着土壤对比试验方案(W4、 W3、W2、W1)的不同,表现出不同的差异性。对于栾树而言,各处理的夏季净光合速率(Pn)平均值随矿区废弃地重金属污染土壤掺合量的增加而增加,W3最大,W1最小;秋季各处理的净光合速率(Pn)变化趋势有所改变,随着污染土壤掺和量的增加,只平均值呈先增加再减少再增加趋势,W2最大,W3最小;夏秋两季的只均高于对照。对杜英而言,在夏季,随着矿区废弃地重金属污染土壤掺合量的增加,各处理净光合速率(Pn)平均值先增加后降低,W2最大,W4最小;在秋季,各处理的Pn平均值为W1最大,W4最小;在两个生长季,所有处理的只都低于对照(CK)。试验结果还表明矿区废弃地的重金属元素对栾树的光合作用有一定的促进作用,对杜英的光合作用则有一定的抑制作用。
     (5)栾树净光合速率(只)与Mg、Fe、Mn、Zn等重金属元素都呈正相关关系,与叶片N、P、K(全量)、叶绿素含量则呈负相关关系,其中N、Mn、Zn元素含量及叶绿素含量和净光合速率(Pn)的相关性达到了显著水平。杜英的净光合速率(Pn)与P、K、Zn含量都呈正相关关系,与N、Mg、Fe、Mn、叶绿素含量则呈现负相关关系,净光合速率与所有矿质元素的相关关系都没达显著水平。
     (6)在矿区废弃地选取0.67hm2的示范基地,按2行栾树、1行杜英进行生态恢复营林试验,共种植栾树1440株,杜英720株。在矿区废弃地极端的生境条件下,栾树、杜英混交林幼龄阶段一年内生物量可增加1192.48kg/hm2,表现出适应性强,生产潜力大的特征,可作为矿区废弃地生态修复的适宜方案。并且,重金属元素主要积累在树枝、树叶和根部(仅树叶积累量就占70.7%),生物量大、主要被利用的树干积累重金属元素最少(仅占4.45%),可以避免重金属元素因木材利用而再次大量地向环境中扩散,有利于生态恢复区域的林业生产。
     (7)对林分生长的环境状况、林分的矿质元素含量分布及生物循环特征进行分析,结果表明,林分自身对元素的利用率高,归还量多,周转期短,有利于林地生产力维持。植被恢复5年后,矿区废弃地土壤有机质和营养元素含量增加,含水量增加,土壤碱性减弱。示范基地中杜英根际土、栾树根际土、林内非根际土的有机质含量分别为106.793g/kg、45.50g/kg、37.875g/kg,都要高于林外对照土壤的18.86g/kg,主要重污染元素Mn、Ni、Cd、Zn等的下降幅度达到70%以上,Cu的下降幅度也有40%,说明生态恢复对土壤的化学性质及重金属元素有着明显的改善作用。经过植物修复后的矿区废弃地,土壤营养条件和生态环境得到了改善,基本实现了对矿区废弃地进行生态恢复的研究与示范目的。
Mining is the most profound human activities impacted on the natural ecological system now. There are large of lands been wasted by the mining. In these mining wasted land, ecological risks and environmental stresses are very prominent while the structure of ecosystem dissolved and the function degenerated. Land reclamation and ecosystem restoration of the wasteland educed by the mining have become an important and interest issue because the wasteland not only occupied the vast tillable lands but also caused serious environment pollution. After nearly a century of research and technology applications, the proportion of mining land reclamation has reached an average of55%to65%; meanwhile, it has reached85%in the United States, Britain, Australia and other mining giants. According to the ministry of land and resources statistics, the proportion of the mining area land reclamation in China has increased from2%in1988to around15%in2012. But now the mine land increases at an annual rate of33000to47000hm2for the mine reclamation speed far behind the damage in China. At a conservative estimate, there are1500mining areas have occupied or damaged land of2million hm2.
     The object of this study was the wasteland educed for more than40years in Xiangtan manganese mine which had mined for100years. The basic technical measures had determined for the mining area ecological restoration based on the forest ecology, landscape ecology and restoration ecology. Two native tree species was selected by pot experiment after analyzing the soil physical and chemical properties, the characteristics of settle existing plants, which photosynthetic characteristics had been analyzed. The forest conditions, soil characteristics and mineral biological cycle of the demonstration forest base in the mining wasteland had been analyzed. The result showed that:
     1. The soil texture of the wasteland is mainly coarse sandy or silt. The proportion of physical sand (1-0.01mm) in the soil is over85%, and physical clay (<0.01mm) is below15%. The total soil fertility index is lower in the wasteland than in the Chinese fir forestland. It is found that the main factors limiting soil fertility in the wasteland were percentage of sandy grain(1~0.01mm), soil organic matter content, soil concentrations of N and P. The groundwater in mining area is polluted seriously which high levels of in heavy metal and NH4+, NO3-, PO4-3, SiO2, addition to the pH value and dissolved oxygen is lower than the contrast. The concentration of Mn(52924.0mg/kg), Zn(396.70mg/kg), Cu(42.30mg/kg), Fe(29782.0mg/kg), Pb(354.10mg/kg), Cd(4.37mg/kg) and Ni(40.30mg/kg) in the wasteland are179,7,3,6,2,3,3and71times of those in the Hu'nan province land, respectively. In comparison with the mean values of soil heavy metal elements recorded in the control site, Hu'nan province and national level, the syntheses pollution indexes of the six6heavy metal elements(Mn, Cu, Pb, Zn, Cd and Ni) in the wasteland are13.82,75.72and98.05, respectively, which all exceeded the heave pollution standard. The potential ecological risk index of Mn, and Cd are2419.75and373.83respectively that indicate the environmental risk are at the highest level, as so as the heavy metal potential ecological comprehensive risk. On the individual element basis, the elements on Mn and Cd exceeded heave pollution standard. It is indicated that mining of Manganese result in serious environment pollution and tillable land degradation.
     2. There are53species settled in the mining area after40years of natural succession. They are belonging to28families with herbs36species,17kinds of trees and shrubs. It is indicated that the current local communities are dominated by perennial shrub and grass, which are at the primary stage of succession towards subtropical evergreen broadleaved forest. It is a must that ecological restoration needs to give preference to these native tree species which have certain resistance, fast growth, and high economic value and ecological benefits, through the analysis of the characteristics of settle existing plants. The plotted plant test results show that Koelreuteria paniculata Laxm is the preferred plant for the ecological restoration in the slag wasteland, which grows and adapts strongly in the slag wasteland.
     3. By using the slag wasteland soil in Xiangtan Manganese Mine, five different mixed soil treatments by which potted plant tests are conducted, five treatments are as follows:CK:100%untreated soil; W1:25%slag wasteland soil+75%untreated soil; W2:50%slag wasteland soil+50%untreated soil; W3:75%slag wasteland soil+25%untreated soil; W4:100%slag wasteland soil. Survival rate and height growth rate of Koelreuteria paniculata Laxm are lower than those of Elaeocarpus decipens. height growth rate of Koelreuteria paniculata Laxm each treatment (exceptW3) is higher than that in fall; the average diameter growth in order is W3>W4>CK>W2> W1,W1and W2are less than the contrast, while W3and W4are larger than the contrast. It means that low concentration inhibits diameter growth, while high concentration promotes it. Elaeocarpus decipens grow fast and well, height growth rate in summer is far higher than that in autumn. The average diameter growth in order is CK> W2> W1> W3> W4, all are lower than the contrast, heavy metal treatments in the soil inhibits diameter growth, and with the increase in the concentration of heavy metal, the inhibitory effect gets more obvious.
     4. Focused on net photo synthetic rate (Pn) of the two species in Summer and Autumn, the results showed that the average net photosynthetic rate (Pn) of both two species in summer are higher than in fall, and the relationship among all treatments (W1、W2、W3、W4) of the average net photosynthetic rate (Pn) has changed in autumn. For Koelreuteria paniculata Laxm, the average value of (Pn) of W3is the largest, W1is the minimum, While in autumn, the average value of (Pn) of W2is the largest, W3is the minimum. For Elaeocarpus decipens, the average value of (Pn) of W2is the maximum, while W4is the minimum in Summer; the average value of (Pn) of W1is the largest,while W4is the minimum in Autumn.
     5. For Koelreuteria paniculata Laxm Relevances among Pn and heavy metals Mn、Cu、Zn、Pb、Ni、Co、Cd contents in soil all fail to meet the significant level, while Relevances among Pn and Pb、Cd contents in soil reach negative significant level of Elaeocarpus decipens. Relevances among Pn and N、Chlorophyll content in leaves reach significant negative level,while Pn among Zn and Mn contents in leaves of Koelreuteria paniculata Laxm reach positive significant level; For Elaeocarpus decipens, among Pn and N、P、K、Mg、Ca、Fe、Mn、Zn and Chlorophyll in leaves all fail to meet the significant level.
     6. In the selection of0.67ha demonstration base in the mining wasteland, there are planted by1440Koelreuteria paniculata Laxm and720Elaeocarpus decipens while press2line Koelreuteria paniculata Laxm,1line Elaeocarpus decipens for the ecological restoration experiment. The stand biomass increased by1192.48kg/hm2in a year. Under the extreme habitat condition of mufu, Koelreuteria paniculata Laxm and Elaeocarpus decipens have preliminarily showed strong adaptability, high patience, and great production potential. It is indicated the mixed forest is appropriate, that can be used as a restoration mean in mining area to improve ecological environment. Main heavy metals are accumulated in the branches, leaves (the accumulation of leaves alone accounts for70.7%), and roots, the accumulation of heavy metals (only4.45%) in the mainly used trunk is very lower. It is very outstanding to avoid heavy metal spread in the environment for using timber and conducive to forestry production in the ecological restoration area.
     7. Of stand growth environmental conditions, the mineral elements content of forest distribution and biological cycle characteristics are analyzed, and the results show that the forest has high utilization of elements, the return amount is much, cycle time is short. It is conducive to maintaining forest productivity. Five years after ecological restoration, soil organic matter, nutrient element content and moisture content are increases, with soil alkaline weakening. The organic matter in rhizosphere soil of Koelreuteria paniculata Laxm and Elaeocarpus decipens reach106.793g/kg and45.50g/kg, respectively. Those of non-rhizosphere soil in the stand reach37.875g/kg. They are more than18.86g/kg of controlled soil out of the stand. Contents of main polluting element as Mn, Ni, Cd, decline of70%or more, and those of Cu decreased40%. It is concluded that ecological restoration has obviously improved the soil chemical properties and decline heavy metal contents. In the restoration area, soil nutrient condition and ecological environment has improved, basically achieved the mining wasteland ecological restoration research and demonstration purposes.
引文
[1]刘国华,舒洪岚.矿区废弃地生态恢复研究进展[J].江西林业科技,2003(2):21-25.
    [2]Bradshaw A D. The reeonstruetion of ecosystem[J]. Journal of Ecology, 1983, (20):1-7.
    [3]Caims J. Jr. The status of the theoretieal and applied seience of retoration ecology[J]. The Environmental Professional,1991, (13):186-194.
    [4]Bradshaw, A,程志勤译.西欧废弃地的管理和恢复[J].生态学报,1990,10(1):24-26.
    [5]彭少麟.恢复生态学及植被重建[J].生态科学,1996,15(2):26-31.[6]Dudka S, Adriano D C. Environmental impacts of mental oer mining and processing:a review[J]. Jounral of Environmental Quality,2007(4),590-602.
    [7]李明顺,唐绍清,张杏辉,等.金属矿山废弃地的生态恢复实践与对策[J].矿业安全与环保,2005,32(4):16-18.
    [8]李凌浩,刘庆,任海.恢复生态学[M].北京:科学出版社,2008.1.
    [9]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [10]吴欢,凋兴.矿山废弃地生态恢复研究[J].广西师范学院学报,2003,20(增刊):32-35.
    [11]郑正.环境工程学[M].北京:科学出版社,2004:458-460.
    [12]方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断[J].生态学报,2006(5).
    [13]Doran J W, Parkin T B. Defining and assessing soil quality[M]. Defining Soilquality for a Sustainable Enviroment Madison, Soil Science Society of America,1994:3-21.
    [14]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001:598-599.
    [15]Wienhold B J, Andrews S S, Karlen D L. Soil quality:a review of the science and experiences in the USA[J]. Environmental Geochenistry and health,2004,26:89-95.
    [16]Karlen D L, Ditzler C A, Andrews S S. Soil quality:why and how?[J]. Geoderma,2003,114:145-156.
    [17]孙波,赵其国,张桃林,等.土壤质量与持续环境Ⅲ——土壤质量评价的生物学指标[J].土壤,1999(5):225-234.
    [18]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296.
    [19]Doran J W, Jones A J. Methods for assessing soil quality[M]. Special Publication, Soil Science Society of America, Madison, WI,1996,49:410.
    [20]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003(2):161-169.
    [21]王远,康雅丽,陈英义.废弃矿山土地复垦监管现状与对策[J].环境保护,2010(10):63-65.
    [22]肖颖.矿区复垦,何时能“跑”得更快?[N].中国国土资源报,2012-12-25.
    [23]徐篙龄.采矿地的生态重建和恢复生态学[J],科技导报,1994.3:1-12.
    [24]蔡美芳,党志,文震,等.矿区周围土壤中重金属危害性评估研究[J].生态环境,2004,13(1):6-8.
    [25]谢荣秀,田大伦,方晰.湘潭锰矿废弃地土壤重金属污染及其评价[J].中南林学院学报,2005,25(2):38-41.
    [26]孙健,铁柏清,钱湛.湖南省有色金属矿区重金属污染土壤的植物修复[J]。中南林学院学报,2006,26(1):126-127.
    [27]Cherry D S, Crrrie RJ, Soncek D. J, et al. An integrative assessment of a watershed impacted by abandoned mined land discharges [J]. Environ Poll, 2001,11:377-388.
    [28]宜昊,腾彦国,王金生.土壤污染对人体的健康影响[J].国土资源科技管理,2005(5):92-97
    [29]龚平,孙铁珩,李培军.重金属对土壤微生物的生态效应[J].应用生态学报,1997,8(2):59-64.
    [30]Toomik A, Liblik V. Oil shale mining and processing impact on land-scapes in north-east Estonia[J]. Landscape Urban Planning,1998,41:285-292.
    [31]周启星,宋玉芳.污染土壤修复的原理与方法[M].北京:科学出版社,2004.
    [32]闫文德,向建林,田大伦.湖南湘潭矿业废弃地土壤特性研究[J].林业科学,2006(42)4:12-18.
    [33]孙景波,王笑峰,刘春河,赵雨森.石墨尾矿废弃地植被恢复过程中重金属和养分变化特征及相关性[J].水土保持学报,2009(23)3:102-106.
    [34]闫文德,田大伦.湘潭锰矿废弃的土壤酶活性与重金属含量的关系.中南林学院学报,2006(3)
    [35]N. Milenkovic, M. Damjanovic, M. Ristiic. Study of heavy metal pollution in sediments from the iron gate (Danube River), Serbia and Montenegro[J]. Polish Journal of Environmental Studies,2005,14(6): 781-787.
    [36]K. Augustine, Donkor J, Jean-Claude, et al. Heavy metals in sediments of the gold mining impacted PraRiver Basin, Ghana, West Africa [J]. Soil & Sediment Contamination,2005,14:479-503.
    [37]S. L. SHA, Ahmet. Alterations in the immunological parameters of tench after acuteand chronic exposure to lethal and sublethal treatments with Mercury, Cadmium and Lead [J]. Turk J Vet Anim Sci,2005,29:1163-1168.
    [38]江行玉,赵可夫.植物重金属伤害及其抗性激励[J].应用与环境生态学报,2001,7(1):92-97.
    [39]王焕校.污染生态学基础[M].昆明:云南大学出版社,1990,91-108.
    [40]Neale P J, Davis R F, Cullen J J. Interactive effects of zone deleption and vertical mixing on photosynthesis of Antarctic Phytoplankton[J]. Nature,1998,392:585-588.
    [41]林文杰,肖唐付,敖子强,等.黔西北土法炼锌废弃地植被重建的限制因子[J].应用生态学报,2007,18(3):631-635.
    [42]Li M S. Ecological restoration of mineland with particular reference to the metal liferous mine wasteland in China:A review of research and practice [J]. Science of the Total Environment,2006,357:38-53.
    [43]陈芳清,卢斌,王祥荣.村坪磷矿废弃地植物群落的形成与演替[J].生态学报,2001,21(8):1347-1354.
    [44]束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究[J].生态科 学.2002,19(2):24-30.
    [45]谢永,张仁陟,周书灵,等.洛坝铅锌矿废弃不同时间渣地植被恢复演替动态[J].环境科学研究,2009,22(11):1312-1316.
    [46]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报,2001,21(11):186-189.
    [47]储玲,王友保,刘登义.安徽铜陵五公里铜尾矿废弃地的植被调查[J].生物学杂志,2003(1):15-18.
    [48]Bradshaw A D. Restoration of mined lands:Using natural proeesses[J]. Eeological Engineering,1997(8):255-269.
    [49]任海,李志安,申卫军,等.中国南方热带森林恢复过程生物多样性与生态系统功能的变化[J].中国科学C辑,2006,36(6):563-569.
    [50]王晓春,蔡体久,谷金锋.鸡西煤矿矸石山植被自然恢复规律及其环境解释[J].生态学报,2007,27(9):35-37.
    [51]白中科,赵景逵.工矿土地复垦与生态重建[M],北京:中国农业科学出版社,2000:45-49.
    [52]Prach K, Walker L R. Four opportunities for studies of ecological succession[J]. Trends in Ecology & Evolution,2011,26(3):119-123.
    [53]Bradshaw A D. Wasteland management and restoration in weatern Europe[J]. Journal of Ecology,1989,26:775-786.
    [54]任继凯,陈清明,陈灵芝,等.土壤中镉、铅、锌及其相互作用对作物的影响[J].植物生态学报与地植物学丛刊,1982,6(4):320-328.
    [55]闫文德,田大伦.湘潭锰矿废弃地土壤特性与植物生长关系研究[J].中国水土保持,2006(7):16-20.
    [56]Martinez-Ruiz C, Femandez-Santos B. Effeet of substrate coarseness and exposure on plant succession in Uranium-mining wastes[J].Plant Ecology,2001,155(1):79-89.
    [57]唐世荣,黄昌勇,朱祖祥.利用植物修复重金属污染土壤[J].环境科学进展,1996,4(12):10-15.
    [58]李海英,顾尚义,吴志强.矿山废弃地土地复垦技术研究进展[J].矿业工程,2007,5(2):43-45.
    [59]Mulligan C N, Yong R N, Gibbs B F. Surfactant enhanced remediation of contaminated soil:A review[J]. Engineering Geology,2001,60(14): 371-380.
    [60]蓝崇钰,束文圣.矿业废弃地植被恢复中基质改良[J].生态学杂志,1996,15(2):55-59.
    [61]束文圣,张志权,蓝崇钰.广东乐昌铅锌尾矿的酸化潜力[M].环境科学,2001,22(3):113-117.
    [62]吴攀,刘丛强,杨元根,等.炼锌固体废渣中重金属(Pb、Zn)的存在状态及环境影响[M].地球化学,2003,32(2):139-145.
    [63]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002.259-266.
    [64]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.56-78.
    [65]Sheoran V, Sheoran A S, Poonia. Phytomining:A review[J]. Minerals Engineering,2009,22(12):1007-1019.
    [66]Sheoran A S, Sheoran V. Heavy metal removal mechanism of acid mine drainage in Wetlands:A critical review[J]. Minerals Engineering,2006, 19(2):105-116.
    [67]赵芳莹,孙保平.矿山生态植被恢复技术[M].北京:中国林业出版社,2009.
    [68]白中科,吴梅秀.矿区废弃地复垦中的土壤学与植物营养学问题[J].煤矿环境保护,1996,10(5):39-42.
    [69]古锦汉,冯光钦,梁亦肖,等.矿山迹地恢复树种选择技术研究[J].湖南林业科技,2006,33(5):18-20.
    [70]陈芳清,张丽萍,谢宗强.三峡地区废弃地植被生态恢复与重建的生态学研究[J].长江流域资源与环境,2004,13(3):284-289.
    [71]Virendra S. Utilization of medicinal plants for wasteland[J]. Journal of Economic and Taxonomic Botany,2000,24(1):99-103.
    [72]孟猛,宗美娟.矿山生态恢复原理与技术[J].中国矿业,2010,19(9):60-62.
    [73]Greipsson S. Seed coating improves establishment of surface seeded poapratensis used in revegetation[J]. Seed Science and Technology,1999, 27(3):1029-1032.
    [74]樊金栓.中国北方煤矸石堆积地生态环境特征与植被建设研究[D].北京:北 京林业大学,2006.
    [75]Rout G R, Samantaray S D. Effects of chromium and nickelon germination and growth in tolerantand non-tolerant populations of Echinochloa colona link[J]. Chemosphere,2000,40(8):855-859.
    [76]宗浩,苏光麒,张翔,陈施羽.四川龙门山铜尾矿库植被调查及植被恢复的物种选择探讨[J].四川师范大学学报(自然科学版),2009,32(6):796-802.
    [77]Kuznetsova T, Rosenvald K, Ostonen I. Survival of black alder (Alnus glutinosa L.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) seedlings in a reclaimed oil shale mining area[J]. Ecological Engineering,2010,36(4):495-502.
    [78]李影,王友保,刘登义.安徽铜陵狮子山铜尾矿场植被调查[J].应用生态学报,2003(11):1981-1984.
    [79]Chapman R, Younger A. The establishment and maintenance of species rich on relaimed opencastcoal site[J]. Restoration Ecology,1995,3:39-50.
    [80]Chauhan S, Ganguly A. Standardizing rehabilitation protocol using vegetation cover for bauxite waste (red mud) in eastern India[J]. Ecological Engineering,2011,37(3):504-510.
    [81]夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报,2002,13(11):1471-1477.
    [82]Reid N B, Naeth M A. Establishment of a vegetation cover on tundra kimberlit mine tailings:A field study[J]. Restoration Ecology,2005, 13(4):602-608.
    [83]Harris J A, Birch P, Palmer P. Land restoration and reclamation: Principles and practice[M]. Singapore. Prentice Hall, Longman,1996.
    [84]Singh A N, Raghubanshi A S, Singh J S. Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region, India[J]. Ecological Engineering,2004,22(2): 123-140.
    [85]Singh A N, Raghubanshi A S, Singh J S. Impact of native tree plantations on mine spoil in a dry tropical environment [J]. Forest Ecology and Management,2004,187(1):49-60.
    [86]侯晓龙,庄凯,刘爱琴,蔡丽平.不同植被配置模式对福建紫金山金铜矿废弃地土壤质量的恢复效果[J].农业环境科学学报,2012,31(8):1505-1511.
    [87]Boyer S, Wratten S D. The potential of earthworms to restore ecosystem services after opencast mining:A Review[J]. Basic and Applied Ecology, 2010,11 (3):196-203.
    [88]Sculliona J, Malik A. Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal[J]. Soil biology & Biochemistry,2000(32):119-126.
    [89]赵默涵.矿山废弃地土壤基质改良研究[J].中国农学通报,2008,24(12):128-131.
    [90]赵永红,张涛,成先雄.矿山废弃地植物修复中微生物的协同作用[J].中国矿业,2008(10):46-48.
    [91]龙健,黄昌勇,滕应,姚槐应.矿区废弃地土壤微生物及其生化活性[J].生态学报,2003,23(3):496-503.
    [92]骆永明.金属污染土壤的植物修复[J].土壤,1999(5):261-266
    [93]王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2000,17(6):504-510.
    [94]唐莲,刘振中,蒋任飞.重金属污染土壤植物修复法[M].环境保护科学,2002,29(6):33-36.
    [95]Brooks R R, Lee J, Reeves R D, etal. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J]. Geochem Explor, 1977,7:49-57.
    [96]王英辉,陈学军,祁士华.铅污染土壤的植物修复治理技术[J].土壤通报,2007,38(4):790-794.
    [97]Sims J T, Kline J S. Chemieal Fraetionation and Plant Uptake of Heavy Metals in Soils Amended with Co-composted Sewage Sludge[J]. Journal of Environment Quality,1991,20:387-396.
    [98]张东为,崔建国.金属矿山尾矿废弃地植物修复措施探讨[J].中国水土保持,2006(3):40-41.
    [99]Chaney R L, Minnie M, LI Y M, et al. Phytoremediation of soilsmetals[J]. Current Opinion in Biotechnology,1997,8:279-284.
    [100]阳承胜,蓝崇钰,束文圣.矿业废弃地生态恢复的土壤生物肥力[J].生态科学,2000,19(3):73-79.
    [101]宋玉芳,周启星.污染土壤的修复原理与方法[M].北京:科学出版社,2004,134-206.
    [102]Meagher R B. Phytoremediation of toxic elemental and organic pollutants[J].Current Opin Plant Biol,2000,3:153-162.
    [103]徐枫,李建洲,雷继雨.重金属污染的环境生物修复技术研究进展[J].环境科技,2012,25(2):58-61.
    [104]鲍桐,廉梅花,孙丽娜,等.重金属污染土壤植物修复研究进展[J].生态环境,2008,17(2):858-865..
    [105]Cairns, L, J. Rehabilitating Damaged Ecosystems (Second Edition) [M]. Lewis Publishers,1995.
    [106]Jordan A D, Gilpin M E and J D. Restoration Ecology:A synthetic Approach to Ecological Research[M]. Cambridge University Press,1987.
    [107]袁少麟,陆宏芳.恢复生态学焦点问题[J].生态学报,2003,23(7:)1249-1257.
    [108]Truman P. Young. Restoration ecology and conservarion biology[J]. Biological Conservation,2000,92:73-83.
    [109]李海波,李克顺,李亚东.我国矿业废弃地复垦现状及对策分析[J].环境科学与技术.2005,28(增):59-60,101.
    [110]蒋高明,Putwain P. D., Bradshaw A. D.,等.煤矿废弃地植被恢复实验研究[J].植物学报,1993,35(12):951-962.
    [111]肖颖.矿区复垦,何时能“跑”得更快?[N].中国国土资源报,2012-12-25.
    [112]李娟,赵竞英,陈伟强.矿区废弃地复垦与生态环境重建[J].国土与自然资源研究,2004,(1):27-28.
    [113]舒俭民,王家骥,刘晓春.矿山废弃地的生态恢复[J].中国人口资源与环境,1998,8(3):72-75.
    [113]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [114]何书金,苏光全.矿区废弃土地复垦潜力评价方法与应用实例[J].地理研究,2000,19(2):165-172.
    [116]白中科,吴梅秀.矿区废弃地复垦中的土壤学与植物营养学问题[J].煤矿环 境保护,1996,10(5):39-42.
    [117]白中科,李晋川,王文英.中国山西平朔安太堡大型露天煤矿退化土地生态重建研究[J].中国土地科学,2000,14(4):1-4.
    [118]孙泰森,白中科.大型露天煤矿废弃地生态重建的理论与方法[J].水土保持学报,2001,15(5):56-60.
    [119]束文圣,杨开颜,杨兵,等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-13.
    [120]束文圣,叶志鸿,张志权,等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1629-1639.
    [121]方晰,田大伦,康文星.湘潭锰矿废弃地植被修复盆栽试验[J].中南林学院学报,2007(]):14-19.
    [122]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版).2004(1):72-75.
    [123]谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理[J].植物生态学报,2006,30(4):703-71.
    [124]钟闱桢.锰矿区尾矿坝及锰镉复合污染对植物的生态毒理学研究[D].广西师范大学,2008.1-20.
    [125]代全林.重金属对植物毒害机理的研究进展[J].亚热带农业研究,2006.(2):129-134.
    [126]邬飞波,张国平.植物螯合肽及其在重金属耐性中的作用[J].应用生态学报,2003,14(4):632-636.
    [127]Holl K D, Long-term vegetation recovery on reclaimed coal surface mines in the eastem USA[J]. Journal of Applied Ecology,2002,39(6): 960-970.
    [128]陈怀满,郑春荣,周东美,等.德兴铜矿尾矿库植被重建后的土壤肥力状况和重金属污染初探[J].土壤学报,2005,42(1):29-36.
    [129]Burton C M, Burton P J, Hebda R, et al. Determining the optimal sowing density for mixture of native plant sused torevegetate degraded ecosystems[J]. Restoration Ecology,2006,14(3):379-390.
    [130]Darina Hodaeova, Karel Prach. Spoil heaps from brown coal mining: technical reclamation versus spontaneous re-vegetation[J].Restorarion Eeology,2003,11(3):385-391.
    [131]夏既胜,刘晓芳,谭树成,等.露天矿区生态问题及生态重建方法探讨[J].金属矿山,2009(6):163-165.
    [132]Damigos D, Kaliam Pakos D. Assessing the benefits of reclaiming urban quarries:a CVM analysis[J]. Landscape and Urban Planning,2003,64:249-258.
    [133]Pensa M, Sellin A, Luud A, etal. Ananalysis of vegetation restoration on opencast oil shale mines in Estonia[J]. Restoration Ecology,2004, 12(2):200-206.
    [134]李道亮,王莹.煤矿废弃地植物恢复品种选择模型研究[J].系统工程理论与实践,2005(8):140-144.
    [135]Acosta J, Faz A, Martinez M S, et al. Multivariate statistical and GIS-based approach to evaluate heavy metals behaviour in mine sites for future reclamation[J]. Journal of Geochemical Exploration,2011,109 (3):8-17.
    [136]胡振琪,赵艳玲,程玲玲.中国土地复垦目标与内涵拓展[J].中国土地科学,2004,18(3):3-8.
    [137]Arshad M A, Martin S. Identify critical limits for soil quality indicators in agroecosystem[J]. Agriculture, Ecosystems and Environment,2002,88:153-160.
    [138]Doran J W, parkin T B. Quantitative indicators of soil quality:A minimum data set[C]//Doran J W, Jones A J. Methods for assessing soil quality. Special Publication, Soil Science Society of America,1996,49: 25-37.
    [139]黄勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009,28(1):130-136.
    [140]骆东奇,白洁,谢德体.论土壤肥力评价指标和方法[J].土壤与环境,2002,11(2):202-205.
    [141]叶文虎,栾胜基.环境质量评价学[M].高等教育出版社,1997.
    [142]范拴喜,甘卓亭,李美娟,等.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315.
    [143]郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.
    [144]Nemerow N L. Scientific Stream Pollution Analysis[M]. Washington: Scripta Book Co.1974.
    [145]Hakanson L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. WaterResearch,1980,14:975-1001.
    [146]徐争启,倪师军,庹先国,等.潜大生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [147]北京林学院主编.土壤学[M].北京:中国林业出版社,1982,118-139.
    [148]章家恩,廖宗文.试论土壤的生态肥力及其培育[J].土壤与环境,2000,9(3):253-256.
    [149]Wakentin B P. The changing concept of soil quality[J]. Journal of Soil and Water Conservation,1995,50(3):226-228.
    [150]马祥华,焦菊英,白文娟,等.黄土丘陵沟壑区退耕地土壤养分因子对植被恢复的贡献[J].西北植物学报,2005,25(2):328-335.
    [151]Karlen D L, Andrews S S, Doran J W. Soil quality:Current concepts and applications[J]. Advance Agronomy,2001,74:1-40.
    [152]中国环境监测站.中国土壤元素背景值[M].北京:中国环境科学出版[152]
    [153]张乃英.鞍山宋三污灌区土壤重金属污染状况评价[J].农业环境与发展,2005,22(3):41-44.
    [154]孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[M].北京:科学出版社,2005,38-50.社.1990.
    [155]郭平,谢忠雷,李军,等.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108-112.
    [156]Holling C S. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst.,1973,4:1-23.
    [157]李有志,罗佳,张灿明,等.湘潭锰矿区植物资源调查及超富集植物筛选[J].生态学杂志,2012(31)1:16-22.
    [158]Sammy L.King, Bobby D. Keeland. Evaluation of Reforestation in the Lower Mississippi River Alluvial Valley[J], Restoration Ecology,1999, (12):348-359.
    [159]张国平,杨元萍.亚热带坡地森林生态恢复演替及树种选择的研究[J]. 黑龙江环境通报,2006,(30)2:24-26.
    [160]Harper J L. Population Biology of Plants [M]. London:Academic Press, 1977.222-224.
    [161][德]W.拉夏埃尔.植物生理学[M].北京:科学出版社,1982,53-58.
    [162]Franiel I, Babczynska A. The crowth and reproductive effort of Betula pendula Roth in a heavy-metals polluted area[J]. Plish Journal of Environment,2011,20(4):1097-1101.
    [163]Papazoglou E, Serelis K, Bouranis D. Impact of high cadmium and nickl soil concentration on selected physiological parameters of Arundo donax L[L]. European Journal of Soil Biology,2007,43(4):207-215.
    [164]梁芳.植物重金属毒害作用机理研究进展[J].山西农业科学,2007,34(11):59-61.
    [165]Marchiol L, Assolari S, Sacco P, et al. Phytoextraction of heavy metals by canola(Brassica napus) and radish(Raphanus sativus) grown on multicontaminated soil[J]. Environmental Pollution,2004, (132)3:21-27. [166]Israr M, Jewell A, Kumar D. et al. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii[J]. Journal of Hazardous Materials,2011,186: 1520-1526.
    [167]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学学报,1997,17(2):199-204
    [168]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版),2004(1):72-76.
    [169]Baker A J M. Metal tolerance. New Phytol,1987,106(suppl.):93-111.
    [170]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004,236-237.
    [171]Quartacci M F, Pinzino C, Cristina L M. Growth in excess copper induces changes in the lipid composition and fluidity enriched membranes in wheat[J]. Physiologia Plantarum,2000,(137)108:87-93.
    [172]Klobus G, Buczek J. Chlorophyll, content, cells and chloroplast number and cadmium distribution in Cd-treated cucumber plants[J]. Acta Physiologiae Plantarum,1985,7(3):139-147.
    [173]李荣春.Pb. Cd及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,22(4):238-242.
    [174]Poschenrieder C, Tolra R, Barcelo J. Can metal defend plants against biotic stress[J]. Trends in plant Science,2006,11 (6):288-295.
    [175]Basak M, Shama M, Chakraborty U. Biochemical responses of Camellia sinensis(L) to heavy metal stress. J Enw iron Bio,l 2001,22(1):37-41.
    [176]陈彩云,龙健,李娟,等.植物对土壤重金属复合污染的生理生态适应机制研究进展[J].贵州农业科学,2012,40(11):50-55.
    [177]周璟,张旭东,周金星,等.我国植被恢复对土壤质量的影响研究综述[J].世界林业研究,2009,2(22):56-62.
    [178]杜锋,梁宗锁,徐学选,等.陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应[J].生态学报,2007,27(5):1673-1683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700