用户名: 密码: 验证码:
冻结深立井钢筋混凝土井壁温度场与温度应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大体积混凝土结构由于温度的变化会产生很大的拉应力,要把这种由温度变化而产生的拉应力控制在允许范围内,就需要对混凝土的温度进行控制。影响控制混凝土温度的变化因素较多,引起混凝土裂缝的机理也较为复杂,目前为止,依然难以准确地模拟和预计各种多变因素对混凝土裂缝发生以及发展而产生的影响。本文以淮南矿业集团矿井井壁大体积高高性能混凝土为科学研究背景,首先从混凝土水化热分析的理论出发,阐述了热传导方程在混凝土裂缝控制中的应用,求解热力学所需要的边界条件和初始条件,有限元分析的显式与隐式解法,分析混凝土水化热仿真分析所需要的热力学参数;在对混凝土热力学参数进行确定之后,应用ANSYS结构热力学有限元分析软件热单元SOLID70对该集矿井井壁温度场、温度应力、应变进行了仿真分析,通过理论分析、现场监测、数值模拟研究探讨了井壁混凝土在冻结工况条件下温度场和应力场的变化及分布规律。研究的主要内容有:
     1.对深冻结井井壁高强高性能混凝土的配合比进行了实验室和现场试验研究,在添加高效减水剂的前提条件下,通过使用三种矿物掺和料(粉煤灰、硅粉和磨细矿渣)技术,研究配制的混凝土满足了高强、早强的要求,同时还提高了混凝土的耐久性和后期强度。
     2.依据冻土的物理力学性质和混凝土水化热特性,分析了冻结法施工凿井井壁混凝土的不同组成成分对混凝土强度等性能的影响,研究了井壁混凝土放热性能及水化热的产生机理和理论分析方法。
     3.结合冻结法施工凿井施工过程,对井壁混凝土施工过程中温度、应力变化进行监测与分析,得到了井壁和冻结壁温度场分布变化规律,冻胀压力变化规律和井壁钢筋混凝土的受力规律。
     4.对冻土进行室内物理力学性能试验研究,得出冻土比热、导热系数以及冻土力学基本参数。
     5.混凝土水化热温升模型分别采用指数式、双曲线式和复合指数式进行试算,将计算结果与实测平均温度对比,确定了合适的的水化热升温模型。
     6.考虑了混凝土水化放热情况,建立了冻结法施工凿井冻结壁井壁温度场数值计算模型,运用有限元软件ANSYS对冻结井壁温度场进行计算,得到了冻结井壁温度场分布变化特性。
     7.导入温度场计算结果,采用三种不同计算方案,对井壁温度场应进行有限元分析计算计算,得出井壁温度应力分布。
The mass concrete structure could produce large tensile stress due to temperature change. The tensile stress can be controlled in the allowable range by controlling the temperature of mass concrete. The factors affecting concrete temperature are various and the cracking mechanism of concrete is complicated. It is more difficult to contrl concrete temperature. The impact of various variable factors and the development of concrete cleft are impossible to accurately simulating and forecasting up to now. In this thesis, it is based on the background of mass concrete and high performance concrete used in the wall of shaft on Dingji of Huainan Mining Group. On the basic of concrete hydration heat analysis theory, the application of heat conduction equation of controlling concrete cleft, the boundary conditions and initial conditions for thermodynamics relationship are described. The explicit and implicit methods of finite element are compared. The thermodynamic parameters are obtained by concrete hydration heat simulation analysis. After determining the thermodynamic parameters of concrete.The temperature field and stress field about the wall of shaft under different frozen processing conditions are discussed. The thermodynamics unit SOLID70ANSYS software is applied to carry out simulation thermal analysis of temperature field, temperature stress and strain. Meanwhile, the method of theory analysis, In-situ measurement and numerical simulation are used. Some research works have been done as following:
     1. The experimentation is done for shaft lining's high-strength and high-performance concrete, in the precondition of using super plasticizer, then through the approach of triple-mixed mineral additions-fly ash, silica fume and milled slag, the concrete not only fulfill the request of concrete's properties of high strength and early strength, but also advance concrete's late strength and durability.
     2. On the base of physical and mechanical properties of frozen soil and hydration heat of concrete, analyze the performance impact of concrete strength by the different components of the shaft lining concrete of freezing construction method and the mechanism of hydration heat production and calculation method on shaft sinking.
     3. Through the monitoring of temperature and stress in shaft lining and frozen wall, it is obtained that the varying of temperature field stress field and frost heaving pressure variation and sidewall reinforced concrete force law by freezing construction method sinking construction process.
     4. It is obtained that the heat capacity, coefficient of heat conductivity, and other basic mechanical property by the physical and mechanical experiment.
     5. Concrete hydration heat temperature rise model is calculated by the method of exponential, hyperbolic, and the composite exponential. Comparison of the calculated results and the measured average temperature is to determine the appropriate hydration heat temperature model.
     6. Through the consideration of freeze borehole wall temperature field, it is established that the numeric calculation medal of concrete hydration heat. The temperature field on the frozen wall and the characteristic distribution of temperature are obtained by using software of ANSYS of finite element program.
     7. Base on the result of temperature field's calculation, three different calculation programs are applied. The temperature stress distribution on the shaft wall has been produced by introduction of results of temperature field and three kinds of mathematics operation. The temperature field on the shaft wall is figured out by the method of finite element.
引文
[1]余力,崔广心,翁家杰,等.特殊凿井[M].北京:煤炭工业出版社,1981
    [2]荣传新,盛卫国.深厚冲积层冻结法凿井工程设计及其应用[J].煤炭科学技术,2007,35(11),25-28
    [3]日本建築学会.建築工事襟準仕样书JASS 5铁筋コソク一ト工事2009
    [4]ACI 325.9R-1991 Guide for Construction of Concrete Pavements and Concrete bases Replaces 316R R(1997)
    [5]水利水电科学研究结构材料研究所.大体积混凝土[M].北京:水利水电出版社,1996
    [6]宋海清.深冻结井筒大体积高强混凝土配制及裂缝控制研究[D].淮南:安徽理工大学,2005
    [7]刘武军.高寒地区大体积混凝土表面保温效果仿真计算研究[D].西安:西安理工大学,2010
    [8]刘超.混凝土水池池壁施工期温度场与温度应力研究[D].天津:天津大学,2007
    [9]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2002
    [10]王一凡.高寒地区碾压混凝土重力坝劈头裂缝温度应力仿真计算研究[D].西安:西安理工大学,2010
    [11]乔勇.某水电站碾压混凝土溢流坝段温控计算研究[D].西安:西安理工大学,2008
    [12]马成成.某水闸工程混凝土温控措施研究[D].西安:西安理工大学,2008
    [13]曹靖.碳纤维增强复合材料加固钢结构理论分析和实验研究[D].合肥:合肥工业大学,2011
    [14]张宇客运专线高性能混凝土箱梁关键工艺对耐久性的影响研究[D].北京:北京交通大学,2008
    [15]庄小军.混凝土拱坝温度场应力场仿真方法研究[D].天津:天津大学,2005
    [16]李新.碾压混凝土坝裂缝产生、发展机理及控制研究[D].乌鲁木齐:新疆农业大学,2006
    [17]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,2003:1-700
    [18]潘家铮.水工建筑物的温度控制[M].北京:水利电力出版社,1990
    [19]丁大钧.混凝土结构发展[M].北京:中国建筑工业出版社,1994:1-277
    [20]刘有志.水工混凝土温控和湿控防裂方法研究[D].南京:河海大学,2006
    [21]Wilson E.L.. The Determination of Temperatures within Mass Concrete Structures(SESM Report No.68-17). Structures and Materials Research, Department of Civil Engineering, University of California, Berkeley, Dec.1968:187-202
    [22]Tatro, Stephen B., Ernest K.. Thermal Considerations for Roller Compacted Concrete, Journal of the American Concrete Institute, Vol.82, March-April,1985
    [23]Abifdel Nassin. Johnson Dnical. Evolution ot Temperature for Roller Concrete Dams:Case Study Stagecoach Dam[J]. Dam Engineering,1992(3):45-59
    [24]Barrett P K et al. Thermal structure analysis methords for RCC dams, Proceeding of conference of roller compacted concrete 3rd, San Diedo, California, ACI,1992:407-422
    [25]Tohru Kawaguchi and Sunao Nakane. Investigations on determining thermal stress in massive concrete structures, ACI,1996,93(1):96-101
    [26]Chikahisa H, Tsuzaki J, Nakahara H, Sakurai S. Adaptation of back analysis methods for the estimation of thermal and boundary characteristics of mass concreteStructures[J]. Dam Engineering,1992,3(2):117-138
    [27]Yan-Zhou Niu, Chuan-Liu Tu, Robert Y. Liang, et al. Modeling of Thermal Mechanical Damage of Early Concrete[J]. Journal of structure Engineering. Apr.1995,717-726
    [28]Stig Bernander. Avoidance of Thermal Cracking at Early Ages State of the Concrete Art Report on Practical Measure to Avoiding Early Age Thermal Cracking in Concrete Structure.
    [29]Mats Emborg and Stig Bernander. Assessment of Risk of Thermal Cracking in Hardening Concrete[J]. Journal of Structure Engineering, Oet.1994.2593-2912
    [30]M. Elgaaly. Thermal Gradients in Beams, Walls, and Slabs[J]. ACI Structural Journal, Jan-Feb,1988,76
    [31]Frank J. Vecchio. Nonlinear Analysis of Reinforced Concrete Frames Subjected to Thermal and Mechanical Loads[J]. ACI Structural Journal, Nov-Dec,1987,492-501
    [32]Enrique Mirambell. Antonoi Aguado. Temperature and Stress Distributions in Concrete Box Girder Bridges[J]. Journal of Structural Engineering, Sept.1990,2389-2409
    [33]Sandor Popovics. CONCRETE MATERIALS Propertis, Specfictions and Testing[M]. Second Edition
    [34]ACI.211.1-81. Standard Practice for Selecting Proportions for Normal, Heavyweight. and Mass Concrete,1991
    [35]日本混凝土工程学会著.混凝土工程技术要点[M].北京:中国建筑工业出版社,1987
    [36]G. F. Kheder, R. S. Al-Rawi and J. K. Al-Dhahi. A study of the behaviour of volume change cracking in base restrained concrete walls[J]. Materials and Structures,1994,27,383-392
    [37]Eun-Ik Yang, Shiro Morita, Seong-Tae Y. Effect of Axial Restraint on Mechanical Behavior of High-Strength Concrete Beams[J]. Structural Journal,1997(5),751-756
    [38]潘家铮.水工结构分析文集[M].北京:电力工业出版社,1981:1-60
    [39]潘家铮.重力坝设计[M].北京:水利电力出版社,1987:27-31
    [40]王铁梦.建筑物的裂缝控制[M].上海:上海科技出版社,1987
    [41]陈志明,管大庆.大型地下室墙板混凝土裂缝控制技术[J].建筑施工,1995,17(4):10-12
    [42]朱伯芳.多层混凝土结构仿真应力分析的并层算法[J].水力发电学报,1994,46(3):41-44
    [43]陈尧隆,何劲.用三维有限元浮动网格法进行碾压混凝土重力坝施工期温度场和温度应力仿真分析[J].水利学报,1998,26(1):57-58
    [44]Chen Yaolong, Wang Changjiang, Li Shunyi. et al. Simulation analysis of thermal stress of RCC dams using 3-D finite element relocating mesh method[J]. Advances in Engineering Software. 2001,32(9),677-682
    [45]王建江.碾压混凝土坝温度和温度应力的非均质单元法三维仿真分析[D].武汉:武汉水利电力大学博士学位论文,1995:20-34
    [46]黄达海,殷福新,宋玉普.碾压混凝土坝温度场仿真分析的波函数法[J].大连理工大学学报,2000,40(2):214-217
    [47]黄达海,殷福新,赵国藩.碾压混凝土坝温度场仿真分析的进展[J].土木工程学报,2000,33(4):97-100
    [48]刘光廷,麦家煊,张国新.溪柄碾压混凝土薄拱坝的研究[J].水力发电学报,1997(2):19-28
    [49]肖明,余卫平.考虑温变荷载分析欧阳海薄拱坝的三维非线性有限元法[J].武汉大学学报(工学版),2001,34(1):31-36
    [50]刘宁,刘光廷.大体积混凝土结构温度场的随机有限元算法[J].清华大学学报(自然科学版),1996,36(1):41-47
    [51]曾昭扬,马黔,张峥嵘.温降和水库蓄水引起的碾压混凝土拱坝裂缝分析[J].水力发电,1996(9):23-26
    [52]梅明荣,彭宣茂,陈里红.大体积混凝土结构温控分析的计算机仿真[J].河海大学学报,1995,23(1):109-112
    [53]张子明,姜冬菊,宋培玉,等.龙滩碾压混凝土坝温度场仿真计算[J].红水河,2001,20(3):18-21
    [54]张子明,傅作新.龙滩碾压混凝土坝的仿真计算[J].红水河,1997,16(1):13-17
    [55]张子明,傅作新.龙滩碾压混凝土坝的温控研究[J].红水河,1996,15(3):1-5
    [56]陈里红,傅作新.龙滩碾压混凝土重力坝的温控标准研究[J].红水河,1996,15(1):19-23
    [57]彭诗明.大体积混凝土结构有限单元法应用研究[D].武汉:武汉大学,2005
    [58]姜冬菊,张子明.计算温度应力的广义约束矩阵法[J].河海大学学报(自然科学版),2003,31(1):30-32
    [59]张晓飞.大体积混凝土结构温度场和应力场仿真计算研究[D].西安:西安理工大学,2009
    [60]赵丽娟.大体积混凝土表面保温计算方法研究[D].西安:西安理工大学,2008
    [61]李彬彬.大体积混凝土温度应力有限元分析[D].西安:西安理工大学,2007
    [62]樊锐跳.仓浇筑的水电站厂房坝段温度应力仿真分析[D].西安:西安理工大学,2010
    [63]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998
    [64]朱伯芳.混凝土结构徐变应力分析的隐式解法[J].水利学报,1983(5):40-46
    [65]姚直书,程桦,荣传新.深冻结井筒内层钢板高强钢筋混凝土复合井壁试验研究[J].岩石力学与工程学报,2008,27(1):153-160
    [66]姚直书,程桦,黄小飞.特厚冲积层冻结井壁受力机理与设计优化[J].西安科技大学报,2010,30(2):169-173
    [67]姚直书,宋海清,程桦.高性能混凝土冻结井壁研制及主要力学性能试验研究[J].煤炭工程,2009(12):80-81
    [68]姚直书,余贵华,程桦,等.特厚表土层钢板混凝土复合井壁竖向承载力试验研究[J].岩土力学,2010,31(6):1687-1691
    [69]王军,纪洪广,隋智力.深厚表土层人工冻结法凿井技术研究进展[J].中国矿业,2008,17(7):93-95
    [70]洪伯潜.我国深井快速建井综合技术[J].煤炭科学技术,2006,34(1):8
    [71]姜浩亮.混凝土水化热对井壁和冻结壁的影响研究[D].淮南:安徽理工大学,2007
    [72]李红.李家河碾压混凝土拱坝温度应力仿真及温控防裂研究[D].西安:西安理工大学,2010
    [73]杨大平.大体积高性能混凝土温度应力控制试验研究[D].西安:西安理工大学,2006
    [74]张大同.水泥性能及其检验[M].北京:中国建材工业出版社,1994
    [75]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [76]过镇海,时旭东.混凝土的原理与分析[M].北京:清华大学出版社,2004
    [77]赵国藩.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1999
    [78]杨和礼.原材料对基础大体积混凝土裂缝的影响与控制[D].武汉:武汉大学,2004
    [79]朱伯芳.考虑温度影响的混凝土绝热温升表达式[J].水利发电学报,2003,81(2):69-73
    [80]张子明,宋智通,黄海燕.混凝土绝热温升和热传导方程的新理论[J].河海大学学报(自然科学版),2002,30(3):1-6
    [81]朱伯芳,王同生,丁宝瑛,等.水工混凝土结构的温度应力与温度控制[M].北京:水利电力出版社,1976
    [82]冯乃谦.新实用混凝土大全[M].北京:科学出版社,2005
    [83]吴中伟,廉惠珍.高性能混凝土[M].中国铁道出版社,1999
    [84]冯乃谦,刑锋.高性能混凝土技术[M].北京:原子能出版社,2000
    [85]陈胡星,叶青,楼宗汉.钙矾石膨胀和氧化镁膨胀在大坝水泥中的应用研究[J].水泥,2000(6):4-7
    [86]黄士元.混凝土科学[M].北京:中国建筑工业出版社.1986
    [87]李东升,金正浩,苏家林.等.混凝土冬季施工[M].北京:中国水利水电出版社,2001
    [88]K Nalogawa, K Hikaro. Jap, Kokai. Tokyo Noho,80.32800,1980
    [89]黄亮,程国林.NX超快硬水泥的生产工艺参数优化条件的研究[J].水泥技术,1988(4):54-56
    [90]黄政宇.土木工程材料[M].北京:高等教育出版社,2002
    [91]水利水电科学研究院结构材料研究所.大体积混凝土[M].北京:水利电力出版社,1990
    [92]姚武,郑欣.配合比参数对混凝土热膨胀系数的影响[J].同济大学学报(自然科学版),2007.35(1):77-81
    [93]ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures[R]. ACI Committee Report 209R-92, American Concrete Institute, Detroit:1992
    [94]黄士元,蒋家奋.近代混凝土技术[M].西安:陕西科学技术出版社,1998:114-121
    [95]Kovler K, Bentur A. International RILEM conference on early age cracking in cementitious systems [M]. Bagneux, France:RILEM Publications S A R L,2001,25-47
    [96]伍勇华,何廷树,南峰,等.大体积混凝土中外加剂的应用[J].建筑技术,2009,(40)8:756-758
    [97]Powers.T.C.Void Spacing as a Basis for Producing air-Entrained Concrete.ACI Joural Vol.50.May 1954,741-760
    [98]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002
    [99]姜福田.碾压混凝土[M].北京:中国铁道出版社,1991
    [101]高少霞,穆红英.粉煤灰对硅酸盐水泥水化热影响的试验研究[J].大众科技,2005(9):68-69
    [102]李虹燕,丁铸,邢锋,等.粉煤灰、矿渣对水泥水化热的影响[J].混凝土,2008(10):54-57
    [103]姚燕,王玲,田培,主编.高性能混凝土[M].北京:化学工业出版社,2006
    [104]孙振平,蒋正武,王玉吉,等.混凝土外加剂与水泥适应性[J].建筑材料学报,2002,5(1):26-31
    [105]Higgins D. The Effect of GGBS on the durability of concrete [J]. Concrete,1991,25(6): 17-20
    [106]Nakamura N. Effect of slag fineness on the development of concrete strength and microstructure [A]. Malhotra V M. Fly ash, silica fume, slag and natural pozzolans in concrete[C]. Istanbul:Turkey Press.1992,1343-1366
    [107]Dom one P L J, Sout sos M N. An approch to the proportion of high strength concrete mixes[J]. Concrete International,1994(10):26-31
    [108]万朝均.高强超高强高性能混凝土配合比设计经验探讨[J].混凝土,2002(3):41-43
    [109]陈建奎,王栋民.高性能混凝土(HPC)配合比设计新法—全计算法[J].硅酸盐学报,2000,28(2):194-198
    [110]贾祥道.水泥主要特性对水泥与减水剂适应性影响的研究[D].北京:中国建筑材料科学研究院,2002
    [111]王继宗,梁晓颖,梁宾桥,等.基于Matlab语言的高性能混凝土配合比优化设计[J].工业建筑,2005(1):1-4
    [112]凌道盛,许德胜,沈益源.混凝土中水泥水化反应放热模型及其应用[J].浙江大学学报(工学版),2005,39(11):1695-1698
    [113]付金强.承台大体积防水混凝土冬期施工[J].建筑技术,2002,33(10):755-757
    [114]余宗明.底板型大体积砼的温升及应力计算[J].北京建筑工程学院学报,,2002,18(4):91-96
    [115]蔡正泳.混凝土性能[M].北京:中国建筑工业出版社,1979
    [116]朱伯芳.混凝土的弹性模量、徐变度与应力松弛系数[J].水利学报,1985(9):55-61
    [117]LIE T T, CELIKKOL B. Method to calculate the fire resistance of circular reinforced concrete columns[J]. ACI Materials Journal,1991,88(1):84-91
    [118]H ARADA T, et al. Strength elasticity and thermal properties of concrete subj ected to elevated temperature[J]. Concrete for Nuclear Reactors, ACI Speeral Publicatiun SP34,1972,377-406
    [119]中华人民共和国电力工业部.水工混凝土结构设计规范[S].北京:中国电力出版社,1996
    [120]邓世贵.厚壁高墩水化热温度应力研究[D].重庆:重庆大学,2009
    [121]杨磊.混凝土坝施工期冷却水管降温及温控优化研究[D].武汉:武汉大学,2005
    [123]王伟芳.箱梁高性能混凝土试验研究及应用[D].邯郸:河北工程大学,2010
    [124]范圆圆.茂名高岭土下脚料的活化及其制备C100高性能混凝土的研究[D].广州:暨南大学,2008
    [125]马英明.从井壁受力规律谈深井冻结井壁的结构和设计[J].中国矿业学院学报,1979,(4):59-74.
    [126]杨平,郁楚侯,张维敏,等.冻结壁与外壁温度和受力实测研究[J].煤炭科学技术,1999,27(4):32-35.
    [127]YAO Zhi-shu, CHENG Hua, ZHANG Guo-yong, et al. Research on the site measurement of outer shaft wall stressing in freezing shinking shaft in special thick alluviom [J]. Coal Science and Technology,2004,32(6):49-52.
    [128]刘为国.冻结井筒高强混凝土水化热规律研究[J].煤炭科学技术,2008,36(3):51-52
    [129]闫超,马乾坤.深厚表土层冻结壁温度实测分析[J].山东煤炭科技,2011(6):107-109
    [130]CHANG P C, FLATAU A, LIU S C.Heal th Monitoring of Civil Infrastructure [J]. Structural Health Monitoring,2003,2(3):257-267
    [131]夏才初,李永盛.地下工程测试理论与监测技术[M].上海:同济大学出版社,1999
    [132]李二兵,王镝,王源,等.城市复杂条件下浅埋大跨双连拱隧道施工变形监测与控制[J].岩石力学与工程学报,2007,26(4):833-839
    [133]WANG Jun, XIA Caichu, ZHU Hehua, et al. Site monitoring and analysis ofhon-symmetrical multi-arch highway tunnel[J]. Chinese Journal ofRock Mechanics and Engineering,2004, 23(2):267-271
    [134]金川,汪仁和,王伟.张集矿北区地层冻结温度场的实测与分析[J].安徽理工大学学报(自然科学版),2004,24(2):13-17
    [135]王晓健,程桦,荣传新.复杂水文地质下井壁受力及温度测试研究[J].山西建筑,2009,35(1):23-24
    [136]王文顺,王建平,井绪文,等.人工冻结过程中温度场的试验研究[J].中国矿业大学学报,2004,33(4):388-391
    [137]黄伟,程桦.深冻结井大体积混凝土裂缝分析与控制[J].中国水泥,2005(12):70-72
    [138]沈季良.建井施工手册(Ⅳ)[M].北京:煤炭工业出版社,1986
    [139]中国矿业学院.特殊凿井[M].北京:煤炭工业出版社,1981
    [140]刘宁,刘光廷.非平稳温度场影响下混凝土结构的随机徐变应力[J].应用力学学报,1998,15(2):67-73
    [141]王润富,陈国荣.温度场和温度应力[M].北京:科学出版社,2005
    [142]A B雷柯夫.热传导理论[M].北京:高等教育出版社,1955
    [143]朱伯芳,丁同生,丁宝瑛,等.水工混凝土结构的温度应力和温度控制[M].北京:水利水电出版社,1976
    [144]周万清.大体积砼温度场与应力场的理论研究[D].阜新:辽宁工程技术大学,2002
    [145]裴立峰.大体积混凝土温度裂缝控制研究[D].阜新:辽宁工程技术大学2008
    [146]沈冰.赣龙铁路梅江特大桥三线桥墩混凝土水化热效应研究[D].长沙:中南大学2012
    [147]高涛.转体桥施工监控及安全性分析[D].北京:北京交通大学,2012
    [148]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社,1981
    [149]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998
    [150]季强.大体积混凝土温度场温度应力三位有限元分析[D].南京:河海大学.2006
    [151]刘西军.大体积混凝土温度场温度应力仿真分析[D].杭州:浙江大学,2005
    [152]张宏洋.大体积混凝土温度应力仿真分析[D].郑州:郑州大学,2007
    [153]方俊.基于热力分析的Langmuir探针及其连接件的结构设计和优化[D].南京:南京理工大学,2010
    [154]刘东波.某特大桥梁锚锭大体积砼温度场有限元分析[D].贵阳:贵州大学,2008
    [155]房玉慧.不锈钢舱化学品船温度场及温度应力分析[D].大连:大连理工大学,2007,
    [156]刘亚基.大体积混凝土浇筑块温度应力场仿真分析[D].昆明:昆明理工大学,2011
    [157]解荣.大体积混凝土温度监控的研究[D].西安:长安大学,2011
    [158]Zhang X S, Zhang X X. Exact integration in the boundary element method for two-dimensional elastostic problems[J]. Eng Anal Bound Elem,2003(27):987-997
    [159]Rizzo F J. An integral equation approach to boundary value problem of classical elastastatics[J]. Q. Appl. Math.,1967,25(1):83-95
    [160]Byron F W. Ful ler R W. Mathematics of Classical and Quantum Physics[M]. Addison-Wesley:Dover Publications.1969
    [161]Zienkiewicz O.C. The finite element method[M]. New York:Mc Graw-Hill, Inc.,1977
    [162]库克R D.有限元分析的概念与应用[M](第4版).关正西,强洪夫翻译.西安:西安交通大学出版社,2007
    [163]Martin Wieland, Sujan Malla. Investigating stress concentration[J]. International Water Power and Dam Construction,2007(1):28-32
    [164]梁醒培.应用有限元分析[M].北京:清华大学出版社,2010
    [165]李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].西安:西安交通大学出版社,1992
    [166]苏家铎等编著.泛函分析与变分法[M].合肥:中国科技大学出版社,1993
    [167]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981
    [168]钱伟长.变分法和有限元[M].北京:科学出版社,1980
    [169]Saeed Moaveni. Finite Element Analysis-Theory and Applications with ANSYS[M] (2nd Edition). Prentice Hall/Pearson, January 16,2003
    [170]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003
    [171]张建荣,刘照球.混凝土对流换热系数的风洞实验研究[J].土木工程学报,2006,39(9):39-42
    [172]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001
    [173]Anderaland D M. Frozen Ground Engineering[M]. New Jersey:John Wiley & Sons, Ine.,2004
    [174]木下诚一.冻土物理学[M].王异,张志权译.长春:吉林科学出版社,1985
    [175]谢永超.超高层建筑复杂形状的大体积混凝土底板温度应力分析[D].广州:华南理工大学,2010
    [176]林志祥.混凝土大坝温度应力数值仿真分析关键技术研究[D].南京:河海大学,2005
    [177]P C Aitcin. Concrete of tomorrow[J]. Cement and Concrete Research,2000(30):1349-1359
    [178]Mehta P K. Advancements in Concrete Technology[J]. Concrete International,1999,21(6): 61-70
    [179]Chen C J, Neshart-Naseri, Ho K S. Finite-Analytic Numerical Solution of Heat Transfer in Two-Dimensional Cavity Flow[J]. Numerical Heat Transfer,1981(4):179-197
    [180]罗降.1m以下筏板基础施工期温度及温度应力研究[D].成都:西南交通大学,2009
    [181]马凯.板式道岔混凝土底座早期温度应力研究[D].成都:西南交通大学,2010
    [182]刘莹.内蒙地区煤矿井塔基础大体积混凝土的温度应力研究[D].淮南:安徽理工大学,2011
    [183]熊维.不同强度早龄期混凝土徐变及徐变对长期荷载作用下预应力构件的影响[D].天津:天津大学,2011
    [184]龚召熊.水工混凝土的温控与防裂[M].北京:中国水利水电出版社,1999
    [185]Mehta P K, Monteiro P J M. Concrete:Microstructure, Properties, and Materials (Indian ed)[M]. Chennai:Indian Concrete Institute,1997
    [186]唐世斌,唐春安,林皋.混凝土温湿耦合效应研究综述[J].建筑结构学报,2009(2):315-318
    [187]虞维平.含湿多孔介质的热湿迁移特性[D].北京:清华大学,1987
    [188]Meyers B L, Thomas E W. Elasticity, shrinkage, creep, and thermal movement of concrete[M]. In:Kong F K et al. Handbook of Structural Concrete. London, Pitman,1983
    [189]Neville A M, Dilger W H, Brooks J J. Creep of plain and structural concrete[M]. London and New York:Construction Press,1983
    [190]惠荣炎,黄国兴,易冰岩.混凝土的徐变[M].北京:中国铁道出版社,1988
    [191]黄国兴,陈改新.混凝土徐变的研究[R].北京:中国水利水电科学研究院,1996
    [192]张士铎.现代混凝土基础理论[M].上海:同济大学出版社,1994
    [193]周虑,陈永春.收缩徐变[M].北京:中国铁道出版社,1994
    [194]王传志,滕志明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985
    [195]Neville A M.混凝土的性能[M].李国泮等译.北京:中国建筑工业出版社,1983
    [196]Comite Euro-International du Beton. Bulletin D'information No.213/214 CEB-FIP Model Code 1990(Concrete Structures). Lausanne, May 1993
    [197]England G L, Ross A D. Reinforced concrete under thermal gradients[J].Magazine of Concrete Research,1962,14(40):5-12
    [198]Nasser K W, Neville A M. Creep of concrete at elevated temperatures[J]. ACI Journal,1965, 62(12):1567-1579
    [199]王文炜,翁昌年,杨威.新老混凝土组合梁混凝土收缩徐变试验研究[J].东南大学学报(自然科学版),2008,38(3):505-509
    [200]高国政,黄达海,赵国藩.混凝土结构徐变应力分析的全量方法[J].土木工程学报,2001,34(4):10-14
    [201]Zienkiewicz O C. Some creep effects in stress analysis with particular reference to concrete pressure vessels[J]. Nucl. Engineering and Design,1966, Vol.4
    [202]朱伯芳.水工混凝土结构的温度应力与温度控制[M].北京:中国电力出版社,1998
    [203]刘海成,宋玉普,吴智敏.考虑温度影响的大体积混凝土应力场分析方法[J].大连理工大学学报,2005,45(1):121-127
    [204]朱倩.岩石破碎原状机制砂混凝土力学性能试验研究[D].郑州:华北水利水电学院,2011
    [205]梅明荣,任青文.混凝土结构的干缩应力研究综述[J].水利水电科技进展,2002,22(3):59-62
    [206]侯东伟.混凝土自身与干燥收缩一体化及相关问题研究[D].北京:清华大学,2010
    [207]Neville A M. Properties of Concrete[M]. London:Pitman Publishing Limited,1981.374-395
    [208]Bazant Z P, Xi Y. Drying creep of concrete:constitutive model and experiments separating its mechanisms[J]. Materials and Structure,1994,27:3-14
    [209]Bazant Z P. Mathematical models for creep and shrinkage of concrete. In:Bazant Z P, Wittmann F H eds. Creep and shrinkage in concrete structure[C]. New York:John Wiley & Sons 1982.163-226
    [210]Bazant Z P, Wu S T. Rate type creep law of aging concrete based on maxwell chain[J]. Materials and Structure (RILEM, Paris),1974,7(37):45-60
    [211]Bazant. Concrete at High Temperature[M].1994.198-247
    [212]Man Yop Han, Lytton R L. Theoretical prediction of drying shrinkage of concrete[J]. Journal of Materials in Civil Engineeling,1995,7(4):204-207
    [213]Torrenti J M, Granger L, Diruy M, et al. Modeling concrete shrinkage under variable ambient conditions[J]. ACI Materials Journal,1999,96(1):35-39
    [214]Majorana C E, Vitaliani R. Numerical modeling of creep and shrinkage of concrete by finite element method[A]. In:Bicanic N, Mang H eds. Computer Aided Analysis and Design of Concrete Structure, Proceedings of SCI-C Second International Conference Held in Zell anl Sea[C]. Austria,1990.773-784
    [215]Shimomura T, Maekawa K. Analysis of the drying shrinkage behaviour of concrete using a micromechanical model based on the micropore structure of concrete[J]. Magazine of Concrete Research,1997,49(181):303-322
    [216]Mehta K P. Concrete-structure properties and materials[M]. Prentice-Hall, Englewood Cliffs, 1986
    [217]黄达海,刘光廷.混凝土等温传湿的试验研究[J].水利学报,2002,47(6):96-100
    [218]Huang Dahai, Liu Guangting. Study on mass diffusivity of concrete[A]. Proceeding s of 5th International Symposium on Cement and Concrete[C]. Shanghai:Press of Tongji University, 2002.538-544
    [219]刘光廷,黄达海.混凝土湿热传导与湿热扩散性的试验研究——实验设计原理[J].三峡大学学报,2001,2(4):16-19
    [220]刘光廷,黄达海.混凝土湿热传导与湿热扩散性的试验研究——实验成果分析[J].三峡大学学报,2002,3(2):1-6
    [221]刘光廷,焦修刚.混凝土的热湿传导耦合分析[J].清华大学学报(自然科学版),2004,4(12):1653-1671
    [222]Bazant Z P, Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures-model B3[J]. Materials and Structures (RILEM),1995(28):357-365, 415-430,488-495
    [223]ACI Committee 209. Prediction of Creep Shrinkage and Temperature Effects in Concrete Structures ACI209 R-82[M]. American Concrete Institute, Det riot.1982.193-300
    [224]CEB-FIP. Model Code 1990. Comite Euro-International du Bet on, Bulletin D information No.213/214, Tomas Telford, London,1993,5:473
    [225]Dilger, W.H. and Wang, C.. Shrinkage and Creep of High Performance Concrete[C]. Fourth International Symposium on the Utilization of High-Strength/Higher Performance Concrete, Paris France, May 29-31 1996, eds. deLerrard, F., and Lacroix, R.,311-319
    [226]朱岳明,刘有志,曹为民,等.混凝土湿度和干缩变形及应力特性的细观模型分析[J].水利学报,2006,37(10):1163-1168
    [227]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004
    [228]许德胜.大体积混凝土水化反应温度场与应力场分析[D].杭州:浙江大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700