用户名: 密码: 验证码:
煤层底板突水的“破裂致突、渗流致突”机理与工程实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层底板隔水层在承压水作用下的破坏和突水事故是构成我国华北型煤矿安全生产的主要威胁,因此,研究其突水机理对于有效防治水患威胁、保证煤矿生产安全具有极其重要的现实意义。
     本文研究的核心内容有二个,其一是研究煤层底板承压水作用下隔水层的突水机理,即科学问题;其二是用突水机理理论来解决煤矿防治水害的工程实践问题,即技术问题。
     本研究认为:煤层底板突水问题集中表现为承压水与隔水层之间的相互作用,在这个作用过程中,承压水突破隔水层的阻隔形成突水通道而突水,这个突水通道既不同于隔水层的渗透通道,也不同于含水层的渗透通道,而是一种新型的、与“管道”性质类似的水流通道,因此,煤层底板突水机理就是突水通道在底板隔水层中的形成机理。
     在研究突水机理问题时,首先得出:所有的突水事故都与隔水层的非完整性有关,从而在“岩体结构”及“不连续介质模型”的前提下,提出了突水机理就是(承压水作用下)隔水层的原有结构面扩张而转化为突水通道的作用机理;其次是通过典型现场试验成果的发现和应用对“原始导升高度”进行溯源追踪,指出原始导升高度是承压水在隔水层的渗透高度,是隔水层渗透性的表现,不是突水通道的发育高度;第三,通过对典型突水案例的系统分析,根据突水通道的形成方式把煤层底板突水模式归结为“破裂致突”和“渗流致突”两种类型,并提出渗流致突的临突判据;第四,设计并完成了渗流致突的两个模拟试验。一方面,为揭示出渗流致突的发生机理,设计了微管阻水试验和微管流量试验;另一方面,为验证前面的机理,设计了相似材料的突水通道试验,通过突水通道的断面形态来完整地呈现突水通道形成的过程。第五,专门研究了“突水系数”的问题,提出突水系数是表示突水“征兆”的一个警示性参数,评价矿井生产安全的最终指标是涌水量或突水量,以及据此配备的防排水设施,而非突水系数。通过以上的研究,完整准确地展示出渗流致突的突水机理。
     把突水机理理论应用于煤矿的防治水工程实践的关键是研究“疏水降压”和“含水层改造”技术。研究指出:它们的共同特点和核心内容都是研究煤层底板隔水层的阻水能力,把隔水层的阻水能力作为设计防治水工作的依据。
     比较并研究了我国煤矿目前广泛应用的“疏水降压”和“含水层改造”技术,最后,以平顶山矿区疏水降压的成果展现了该技术的巨大优势。
The destruction of the coal floor impermeable layer and water inrush caused byconfined water is a major threat to the safe production of the North China coal mine.Hence, it is extremely important to study the mechanism of water inrush in order toeffectively prevent and control the water inrush and ensure the safety of coalproduction.
     There are two core contents in this study, namely, mechanism of coal floorwater-inrush and its application in controlling water of coal mine. The former is ascience issue, and the latter is a technical problem.
     The study shows: The water inrush problem focuses on the interaction between theconfined water and impermeable layer. In the process, the confined water breakthroughimpermeable barrier formation water inrush channel and the water inrush. The waterinrush channel is different from the seepage channel in water-resisting layer, alsodifferent from the seepage channel in aquifer instead, a new, and “pipeline” similar innature to the flow channel.Therefore, the mechanism of water inrush from coal floor ismechanism of water inrush channel formed at the impermeable layer. Simple to say istwo problems. One is the formation of water inrush channel, namely method problem, itis the core and focus on the mechanism of water inrush channel. second is the seepagechannel was extended to “how” to achieve the water inrush channel, namely waterinrush channel minimum aperture problem.
     The mechanism of water inrush was investigated by the analysis of a large numberof water inrush cases and the personal experience about prevention and treatment ofmine water hazards during the work. First proposed that all the water inrush accidentsrelated to the non integrity(i.e. fracture belt) of water-resisting layer. Thus in thepremise of “rock mass structure” and “discontinuous medium model”, put forward themechanism of water inrush is the mechanism of seepage channel in confining bedexpanded into water inrush channel.
     Second, according to studied on the root of “the original guide lifting height” andthe result of typical field test, it pointed out that the original guide lifting height is theheight of confined water infiltration into impermeable layer, In essence, it isthe permeability of impermeable layer, not the water inrush channel height.
     Third, based on the analysis of the typical water inrush cases and the pattern offorming water inrush channel, the model of water inrush is attributed to “water burstingby rupture” and “water bursting by seepage”, and put forward three criteria of waterinrush by seepage.
     Fourth, two simulation tests of water inrush by seepage” is designed and completed.On the one hand, microtubule test (including microtubule water resistance test and microtubule flow test) is designed and completed, which not only shows thegroundwater seepage resistance changes with the diameter of seepage channel inimpermeable layer (conversely, when the seepage channel is expanded, the resistancecharacteristic is the releasing characteristics of confined water potential block), but alsoshows the correlation between the diameter and velocity increment.
     On the other hand, for the verification of mechanism front, water bursting channeltest of similar materials is designed and completed, which shows the section shape ofwater inrush channel to show the process of water inrush channel formation.
     Fifth, for the three criteria of water inrush by seepage which includes water inrushcoefficient, and the coefficient of water inrush is the recommended method of theprevention and control groundwater hazards in “water control regulations”, therefore,according to the practical engineering cases, this paper studied the problem of “waterinrush coefficient”, the coefficient of water inrush is a warning parameters that waterinrush “signs”, the final evaluation of mine safety in production is the expected wateryield and the equipped drainage facilities, rather than the coefficient of water inrush.
     Through the above research, the mechanism of water inrush by seepage accuratelyshowed up.
引文
[1]赵铁锤.华北地区奥灰水综合防治技术[M].北京:煤炭工业出版社,2006.
    [2]彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001.
    [3]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [4]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社.1995.
    [5]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].北京:中国矿业大学出版社,2000.
    [6]赵阳升,胡耀青.承压水上采煤理论与技术[M].北京:煤炭工业出版社,2004.
    [7]施龙青,韩进.底板突水机制及预测预报[M].北京:中国矿业大学出版社,2004.
    [8]赵阳升.煤岩流体力学[M].北京:煤炭工业出版社,1993.
    [9]华安增.矿山岩石力学基础[M].北京:煤炭工业出版社,1980.
    [10]赵全福.煤矿安全手册(矿井防治水分册)[M].北京:煤炭工业出版社,1992.
    [11]凌复华.突变理论及应用[M].上海:上海交通大学出版社,1985.
    [12]黄润秋,许强.工程地质广义系统科学分析原理及应用[M].北京:地质出版社,1997.
    [13]煤矿总工程师工作指南(上册)[M].北京:煤炭工业出版社,1988.
    [14]杨成田.专门水文地质学[M].北京:地质出版社,1981.
    [15]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1992.
    [16]许学汉,王杰.煤矿突水预报研究[M].北京:地质出版社,1991.
    [17]张大顺,郑世书.地理信息系统技术及其在煤矿底板水害预测中的应用[M].徐州:中国矿业大学出版社,1996.
    [18]煤炭科学研究总院西安分院,峰峰矿务局.华北型煤矿奥灰水防治研究[M].西安:陕西人民出版社,1990.
    [19]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1996.
    [20]武强,金玉洁.华北型煤田矿井防治水决策系统[M].北京:煤炭工业出版社,1995.
    [21]武强.矿井水灾防治[M].徐州:中国矿业大学出版社,2002.
    [22]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [23]尹尚先,吴文金,李永军,等.华北煤田岩溶陷落柱及其突水研究[M].北京:煤炭工业出版社,2008.
    [24]国家教委社会科学研究与艺术教育司.自然辩证法概论[M].北京:高等教育出版社.1999.
    [25]柴登榜.矿井地质工作手册(下册)[M].北京:煤炭工业出版社,1984.
    [26]淮北矿务局,煤炭科学研究总院西安分院.淮北矿区下组煤安全开采综合防治水技术研究[R].1995.
    [27]淮北矿务局地测处,合肥工业大学资源与环境工程系,淮南矿业学院地质系.闸河煤田南部矿区构造控水规律与区域水文地质条件研究[R].1994.
    [28]田干.煤层底板隔水层阻抗高承压水侵入机理研究[D].煤炭科学研究总院学位论文,2005.
    [29]罗立平.承压水体上对拉工作面开采煤层底板突水机理的研究[D].北京:中国矿业大学(北京),2000.
    [30]清华大学水力学教研组编.水力学[M].北京:人民教育出版社1982.
    [31]中国统配煤矿总公司生产局,煤炭科技情报研究所.煤矿水害事故典型案例汇编[R].1992.
    [32]山东矿业学院特采所.华北型煤田奥灰岩溶水综合防治工业性试验研究报告[R].1988.
    [33]刘仁武,孙景华.南庄矿大型滞后突水及其原因分析[C]//全国矿井水文工程地质学术交流会论文集.北京:地震出版社,1992.
    [34]钱鸣高,沈文.采动底板破坏规律研究报告[R].徐州:中国矿业大学,1995.
    [35]李晓昭.地下工程优势面控稳控水机制及其数值分析[R].南京:南京大学,1998.
    [36]宋景义,刘志中,李谢淮.华北型煤田奥灰岩溶水综合防治工业性试验总报告[R].西安:煤炭科学研究总院西安分院,1995.
    [37]尹尚先.煤矿区突(涌)水系统分析模拟及应用[博士学位论文][D].北京:中国矿业大学(北京校区),2002.
    [38]中华人民共和国行业业标准编写组.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].北京:煤炭工业出版社,2000.
    [39]中华人民共和国行业标准编写组. GB50021–2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2002.
    [40]童有德,叶贵钧.华北岩溶充水煤矿区底板滞后突水机制及其评价方法[C].中国煤炭学会矿井地质专业委员会2001年学术年会论文集.北京:煤炭工业出版社,2001.
    [41]煤炭工业部制定.矿井水文地质规程[S].北京.煤炭工业出版社.1984.
    [42]煤炭工业部制定.煤矿防治水工作条例[S].北京.煤炭工业出版社.1986.
    [43]国家安全生产监督管理总局.煤矿防治水规定[S].北京.煤炭工业出版社.2009.
    [44]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(9):573–576.
    [45]白明洲,许兆义,王勐.长大隧道施工过程中突水突泥灾害预测预报技术研究[J].公路交通科技,2005,22(6):123–126.
    [46]何满潮,谢和平,彭书萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803–2813.
    [47] C.Wolkersdorfer,R.Bowell. Contemporary reviews of mine water studies in Europe[J].Mine Water and the Environment,2004,23:161.
    [48] M.Salis,L.Duckstein. Mining under a limestone aquifer in southern Sardinia:a multiobjective approach[J]. Geotechnical and Geological Engineering,1983,1(4):357–374.
    [49] Wu Q,Wang M,Wu X.Investigations of groundwater bursting into coal mine seam floorsfrom fault zones[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(4):557–571.
    [50]M.S.Reibieic. Hydrofracturing of rock as a method of water, mudmand gas inrushhazards in underground coal mining,4th IMWA,1991,1(Yugoslavia).
    [51] Wang J A,Park H D. Coal mining above a confined aquifer[J].International Journalof Rock Mechanics and Mining Sciences,2003,40(4):537–551.
    [52]郑少河,朱维申,王书法.承压水上采煤的固流耦合问题研究[J].岩石力学与工程学报.2000,19(7):421–424.
    [53]斯列萨列夫.水体下安全采煤的条件,国外矿山防治水技术的发展与实践[R],冶金矿山设计院,1983.
    [54] C.F.Santos,Z.T.Bieniawski.Floor design in underground coalmines[J].RockMechanics and Rock Engineering,1989,22(4):249-271.
    [55] J.Motyka,A.P.Bosch.Karst phenomena in calcareous-dolomitic rocks and theirinfluence over the inrushes of water in lead-zinc mines in Olkusz region (South ofPoland)[J].International Journal of Mine Water,1985,4:1-12.
    [56] O.Sammarco. Spontaneous inrushes of water in underground mines[J].InternationalJournal of Mine Water,1986,5(2):29-42.
    [57] O.Sammarco.Inrush prevention in an underground mine[J].International Journal ofMine Water,1988,7(4):43-52.
    [58] D.Kuscer.Hydrological regime of the water inrush into the Kotredez CoalMine(Slovenia,Yugoslavia).Mine Water and the Environment,1991,10:93-102.
    [59]V.Mironenko, F.Strelsky. Hydrogeomechanical problems in mining[J].Mine Water andthe Environment,1993,12(1):35-40.
    [60]S.V.Kuznetsov,V.A.Trofimov.Hydrodynamic effect of coal seamcompression[J].Journal of Mining Science,1993,12:35-40
    [61]A.V.Mokhov.Fissuring due to inundation of coalmines and its hydrodynamicimplications[J].Doklady Earth Sciences,2007,414(4):223-225.
    [62] P. Schreck. Environmental impact of uncontrolled waste disposal in mining andindustrial areas in Central Germany[J].Environmental Geology,1998,35(1):66-72.
    [63] NOGHABAI K. Discrete versus smeared versus element-embedded crack models on ringproblem[J].Journal of Engineering Mechanics,1999,125(6):307–314.
    [64] Valko P,Economides M J. Propagation of hydraulically induced fractures—acontinuum damage mechanics approach[J].International Journal of Rock Mechanics andMining Sciences and Geomechanics Abstracts,1994,31(3):221–229.
    [65] Charlez P A. Rock mechanics(II: petroleum applications)[M].Paris:TechnicalPublisher,1991.
    [66] C.Wolkersdorfer,R.Bowell.Contemporary reviews of mine water studies in Europe,Part1[J].Mine Water and the Environment,2004,23:162-182.
    [67] C.Wolkersdorfer,R.Bowell. Contemporary reviews of mine water studies in Europe,Part2[J]. Mine Water and the Environment,2005,24:2-37.
    [68] C.Wolkersdorfer,R.Bowell. Contemporary reviews of mine water studies in Europe,Part3[J], Mine Water and the Environment,2005,24:58-76.
    [69] Li L,Holt R M.Simulation of flow in sandstone with fluid coupled particlemodel[C]//Rock Mechanics in the National Interest.[S.l.]:Swets ZeitingerLisse,2001:165–172.
    [70] Bruno M S,Dorfmann A,LAO K.Coupled particle and fluid flow modeling of fractureand slurry injection in weakly consolidated granular media[C]//Rock Mechanics inthe National Interest.[S.l.]:Swets Zeitinger Lisse,2001:173–180.
    [71] Tang C A,Thaml L G,Lee P K K,et al.Coupled analysis of flow,stress and damage(FSD)in rock failure[J]. International Journal of Rock Mechanics and MiningSciences,2002,39(4):477–489.
    [72] Yang T H,Tham L G,Tang C A,et al.Influence of heterogeneity of mechanicalproperties on hydraulic fracturing in permeable rocks[J]. Rock Mech. Rock Eng.2000,37(4):251–275.
    [73]杨天鸿,唐春安,刘红元,等.承压水底板突水失稳过程的数值模型初探[J].地质力学学报,2003,9(3):281–288.
    [74] Yang T H,Wang S H,LI L C,et al.Numerical simulation on instable failure processof floor in confined aquifer[M].Beijing:Science Press,2001:37–43.
    [75] Yang T H,Liu J S,Tang C A.A coupled flow-stress-damage model for groundwaterinrushes from an underlying aquifer into mining excavations[J].International Journalof Rock Mechanics and Mining Sciences,2007,44(1):87–97.
    [76]Paterson S.Experimental deformation of rocks: the brittlefield[M].Berlin:Springer,1978.
    [77]Zhu W,Wong T F.The transition from brittle faulting to cataclasticflow:permeability evolution[J].J.Geophysics.Res.1997,102(B2):3027–3041.
    [78] Cristescu N,Hunsche U. Time effects in rock mechanics[C]//Series,Materials,Modelling and Computation. Chichester:Wiley,1998:342–438.
    [79] Schulze O,Popp T,Kern H.Development of damage and permeability in deforming rocksalt[J].Engineering Geology,2001,61(1):163–180.
    [80] Brace W F. A note on permeability change in geologic materials due to stress[J].Pure Appl. Geophys.1978,116:627–633.
    [81] Oda M T,Takemura A,Aoki T.Damage growth and permeability change in triaxialcompression tests of Inada granite[J].Mechanics of Materials,2002,34(2):313–331.
    [82]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报(自然科学版),1999,8(4):11–18.
    [83] Li S P,Wu D X.Effect of confining pressure,pore pressure and specimen dimensionon permeability of Yinzhuang sandstone[J]. International Journal of Rock Mechanicsand Mining Sciences,1997,34(3/4):435–441.
    [84] Zoback M D,Byerlee J D.The effect of microcracks dilatancy on the permeabilityof Westerly granite[J].Journal of Geophysical Research,1975,80:752–755.
    [85] Schulze O,Popp T,Kern H.Development of damage and permeability in deforming rocksalt[J].Engineering Geology,2001,61(1):163–180.
    [86] Holcomb D J,Olsson W A.Compaction localization and fluid flow[J].J. Geophys.Res.2003,108(10):2290.
    [87] Olsson W A,Holcomb D J. Compaction localization in porous rock[J]. Geophys. Res.Lett.2000,27:3537–3540.
    [88] Wong T F,David C,Zhu W L.The transition from brittle faulting to cataclastic flowin porous sandstones: Mechanical deformation[J].J. Geophys. Res.1997,102(12):3009–3025.
    [89] Wong T F,Baud P,Klein E.Localized failure modes in a compacting porous rock[J].Geophys.Res.Lett.2001,28:2521–2524.
    [90] Yuan S C,Harrison J P.Numerical modeling of progressive damage and associatedfluid flow using a hydro-mechanical local degradation approach[J].InternationalJournal of Rock Mechanics and Mining Sciences,2004,41(4):417–418.
    [91] Biot M A.General theory of three-dimensional consolidation[J].J.Appl.Phys.1941,12:155–164.
    [92] Bai M, Elsworth D.Coupled processes in subsurface deformation,flow,andtransport[M].[S.l.]:American Society of Civil Engineers,2000.
    [93] Bruno M S,Nakagawa F M. Pore pressure influence on tensile fracture propagationin sedimentary rock[J].International Journal of Rock Mechanics and Mining Sciences,1991,28(4):261–273.
    [94] Bridgeman P W.Breaking tests under hydrostatic pressure and conditions ofrupture[J].Phil.Mag.1912,24:63–80.
    [95] Rice J R,Cleary M P.Some basic stress diffusion solutions for fluid-saturatedelastic porous media with compressible constituents[J].Rev.Geophys.Space Phys.1976,14:227–241.
    [96] Bernabe Y.The effective pressure law for permeability in Chelmsford granite andbare granite[J].International Journal of Rock Mechanics and Mining Sciences andGeomech.Abstr.1986,23(3):267–275.
    [97]王连国,宋扬.煤层底板突水突变模型[J].工程地质学报,2002,8(2):160–163.
    [98] Souley M,Homang F,Pepa S,et al.Damage-induced permeability changes in granite:a case example at the URL in Canada[J].International Journal of Rock Mechanics andMining Sciences,2001,38(2):297–310.
    [99]Chan T,Khair K,Jing L,et al.International comparison coupled ofthermo-hydro-mechanical models of multiple-fracture bench mark problem:DECOVALEXphase1,bench mark test2[J].International Journal of Rock Mechanics and MiningSciences and Geomech.Abstr.1995,32(5):435–452.
    [100] Tsang C F,Stephansson O,Hudson J A. A discussion of thermo-hydro-mechanical(THM)processes associated with nuclear waste repositories[J].International Journal ofRock Mechanics and Mining Sciences,2000,37(3):397–402.
    [101]Tsang C F.Coupled thermomchanical hydrochemical processes in rockfractures[J].Review of Geophysics,1991,29:537.
    [102] Rutqvist J,Tsang C F.Analysis of thermal-hydrologic-mechanical behavior near anemplacement drift at Yucca Mountain[J].Journal of ContaminantHydrology,2003,62(2/3):637–652.
    [103]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000,21(1):64–67.
    [104]杨道庆,接铭训.地震目标勘探实现奥灰水研究的可能性[J].煤炭学报,2002,27(1):36–40.
    [105]王鹰,陈强,魏有仪,等.红外探测技术在圆梁山隧道突水预报中的应用[J].岩石力学与工程学报,2003,22(5):855–857.
    [106]胡耀青,赵阳升,杨栋,等.承压水上采煤突水的区域监控理论与方法[J].煤炭学报,2000,25(3):252–255.
    [107]姜福兴,XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23–25.
    [108]张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破,2002,8(1):58–61.
    [109]陆菜平,窦林名,吴兴荣,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772–775.
    [110]李庶林,尹贤刚,郑文达.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048–2053.
    [111] House L.Locating micro-earthquakes induced by hydraulic fracturing incrystalline rock[J].Geophysics Res.Lett,1987,14:919–921.
    [112] Block L V,Cheng C H,Fehler M C,et al.Seismic imaging using micro-earthquakesinduced by hydraulic fracturing[J].Geophysics,1994,59:102–112.
    [113]杨天鸿,唐春安,谭志宏,等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.
    [114]罗立平,彭苏萍.承压水体上开采底板突水机理的研究[J].煤炭学报,2005,30(4):459-462.
    [115]中国生,江文武,徐国元.底板突水的突变理论预测[J].辽宁工程技术大学学报,2007,26(2):216-218.
    [116]李晓昭,罗国煜,俞缙等.地下工程突水的变形失稳机制与控稳优势层[J].湘潭矿业学院学报,2002,17(4):53-55.
    [117] Q.Wu,W.F.Zhou,J.H.Wang et al.Prediction of groundwater inrush into coalmines from aquifers underlying the coal seams in China[J].EnvironmentalGeology,2008,DOI10.1007/s00254-008-1415-9.
    [118]王作宇,刘鸿泉.煤层底板突水机制的研究[J].煤田地质与勘探,1980(1):6-9.
    [119]曹丁涛.兖州矿区新构造裂隙特点及涌水防治[J].煤田地质与勘探,1991,19(1):46~47.
    [120]黎良杰,钱鸣高,李树刚.断层突水机理分析[J].煤炭学报,1996,21(2):119–123.
    [121]钱鸣高,缪协兴,许家林.岩层控制理论的应用研究与实践[J].煤炭学报,1996,6(3):225-230.
    [122]王连国,宋扬,缪协兴.基于尖点突变模型的煤层底板突水预测研究[J].岩石力学与工程学报,2003,22(4):573-577.
    [123]王志荣,胡社荣,陈玲霞.河南省煤矿水害的构造控制作用研究[J].煤田地质与勘探,200432(6),45-48:
    [124]王希良,彭苏萍,郑世书.深部煤层开采高承压水突水预报及控制[J].辽宁工程技术大学学报,2004,23(6):758-760.
    [125]杨新安,程军,杨喜增.峰峰矿区矿井突水分类及发生机理研究[J].地质灾害与环境保护,1999,10(2):24-36.
    [126]靳德武.我国煤层底板突水问题的研究现状及展望[J].煤炭科学技术,2002,30(6),1-4.
    [127]李晓昭,罗国煜,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002,24(6):695-700.
    [128]杨延毅,周维垣.裂隙岩体的渗流–损伤耦合分析模型及其工程应用[J].水力学报,1991,(5):19–27.
    [129]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156–159.
    [130]韩宝平,冯启言,于礼山,等.全应力–应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8(2):127–128.
    [131]夏镛华.焦作煤田矿床充水条件及地下水防治建议[J].煤田地质与勘探,1985,(2):29-35.
    [132]武强,等.焦作矿区突水灾害研究综述[J].中国地质灾害与防治学报,1995,6(4):44-49.
    [133]倪宏革,罗国煜.煤矿水害的优势面机理研究[J].煤炭学报,2000,25(5):518-521.
    [134]卜昌森,张希诚,尹万才,曲修术.“华北型”煤田岩溶水害和防治现状[J].地质论评,2001,47(4):405-410.
    [135]王广才,王秀辉,李竟生等.平顶山矿区突水水源判别模式[J].煤田地质与勘探,1998,(3):47-50.
    [136]李抗抗,王成绪.用于煤层底板突水机理研究的岩体原位测试技术[J].煤田地质与勘探,1997(3):31-34.
    [137]王成绪,王红梅.煤矿防治水理论与实践[J].煤田地质与勘探,2004,32(Z1):100-103.
    [138]葛亮涛.关于煤矿底臌水力学机制的探讨[J].煤田地质与勘探.1986,26(1):33--38.
    [139]董玉良.我国北方二叠纪煤田充水特征及主要水文地质问题研究[J].中国地质科学院水文地质工程地质研究所所刊,1989,(5):95113.
    [140]王明玉,张宝柱.华北型煤田矿井突水灾害的防治[J].地质论评,1995,41(6):553-558.
    [141]张文泉.煤矿底板灾害地下三维空间分布特征[J].中国地质灾害与防治学报,1997,8(1):39-45.
    [142]李晓昭,罗国煜,苏天明,等.岩石地下工程突水的优势含水层[J].水利水电科技进展,2001,21(1):84-86.
    [143]王振安.采煤工作面底板突水的初步研究[J].煤田地质与勘探,1983,20(5):33-39.
    [144]高德福.深矿井底板岩层采动变形与阻水能力分析[J].煤田地质与勘探,1990,27(4):4247.
    [145]牛景才,赵苏启.郑州矿区找水布井的体会[J].中州煤炭,1992,(5):34-36.
    [146]赵苏启.登封—新密煤田滑动构造的水文地质特征[J].煤田地质与勘探,1993,21(1):53-54.
    [147]刘生优.淮北朔里矿六煤层水害防治探讨[J].焦作矿业学院学报,1993,12(4):10-15.
    [148]王志荣,等.河南省煤矿水害防治探讨[J].地质灾害与环境保护,1994,5(3):21-24.
    [149]王志荣.小浪底水库蓄水运行对矿井水害防治的影响评价[J].水文地质工程地质,2003,30(5):61-65.
    [150]王志荣.郜城井田F1滑动构造工程地质水文地质特征及灾害防治[J].地质灾害与环境保护,2003,14(4):21-24.
    [151]王希良. GIS支持下的煤矿底板突水预报研究[J].工程勘察,2001,(1):20-24.
    [152]王则才.国庄矿北大巷突水通道分析[J].煤田地质与勘探,2001,(6):6-7.
    [153]于广明,谢和平,杨伦,等.采动断层活化分形界面效应的数值模拟研究[J].煤炭学报,1998,23(4):396~400.
    [154]施龙青,尹增德,王永红,等.肥城煤田突水机理分析[J].煤田地质与勘探,1998.32(1),42-45
    [155]韩奉平.试论北方煤矿区地下水源地的评价[J],陕西煤炭,2002.(3),19-20.
    [156]武强,董东林,钱增江,等.试论华北型煤田立体充水地质结构理论[J],水文地质工程地质,2000.(2):47-49.
    [157]平顶山矿务局,地矿部水文地质工程地质研究所.平顶山矿区氢氧同位素水文地质研究报告[R],1989.5.
    [158]靳德武,王延福,马培智.煤层底板突水的动力学分析[J].西安矿业学院学报,1997,17(4).
    [159]尹万才,尹增德,施龙青.矿井突水原因及其防治[J].焦作工学院学报,1999,18(1).
    [160]于辉光,郭德勇,樊晋豫.平顶山十三矿突水灾害地质条件分析与研究[J].煤矿安全,2005,36(4).
    [161]胡国勇.煤矿矿井涌水量突增原因分析及对策[J].煤矿现代化,2007.(3):12-13.
    [162]方曙晨,赵喜海,张风杰.厚煤层综放工作面底板出水机理分析及防治[J].煤炭技术,2004.23(11):63—65.
    [163]王新军,翟加文,潘国营.朝川矿水文地质特点与防治水对策[J].煤矿安全,2005.(5):53-55.
    [164]杜波.平煤八矿二水平己组煤带压开采防治水研究[J].中国煤炭,2006,32(6):43-44.
    [165]尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型[J].岩石力学与工程学报2005,24(2):77–82.
    [166]尹尚先,武强.华北煤矿区岩溶陷落柱特征及成因探讨[J].岩石力学与工程学报,2004,23(1):120–123.
    [167]李家祥.原岩应力与煤层底板隔水层阻水能力的关系[J].煤田地质与勘探,2000,28(4):47–50.
    [168]董书宁.煤层底板原位综合测试及突水危险性评估[J].工程地质学报,2010,18(1):116-120.
    [169]张宝柱,陈振东.华北型煤田岩溶陷落柱分布规律及其水文地质意义[J].阜新矿业学院学报(自然科学版),1996,15(3):295–298.
    [170]李铁汉,潘别桐.岩体力学[M].北京:地质出版社,1980.
    [171]刘汉湖,郭敬波.带压开采时隔水层的隔水能力研究[J].中国煤田地质,1998,10(2):40-43.
    [172]李飞,安栓志,高琪.采煤工作面底板加固和含水层改造防治水方法[J].煤炭技术,2004,23(11):20-21.
    [173]靳德武,董书宁,胡宝玉.邢台矿大青灰岩水文地质条件及疏水降压可行性研究[J].煤田地质与勘探,2005,8(33)增刊:92–96.
    [174]隋旺华,董青红,狄乾生.工程地质模型在防水煤岩柱研究中的应用[J].中国矿业大学学报,1999,28(5):417–420.
    [175]孙钦坤,史永军,李耀伟.疏水降压工程可行性方案论证[J].中州煤炭,2009.(5),29-31.
    [176]牛森营.焦作矿区构造控水特征研究[J].煤炭工程,2007.(5),75-77.
    [177]许光泉,桂和荣,吴基文.煤矿底板突水分析及底板水防治[J].地下水,2001,23(3):141-143.
    [178]管恩太.郑州矿区淹井原因分析及防治对策[J].中州煤炭,2006.(5):85-86.
    [179]赵苏启.郑州矿区奥灰-寒灰水害与防治技术[J].煤炭科学技术,2002,30(5):4-6.
    [180]赵苏启.煤矿突水灾害快速治理的配套技术[J].煤炭科学技术,2001,29(2):26-28.
    [181]陈忠胜,杨思光,张成银.三河尖煤矿21102面底板奥灰特大突水原因及治理[J].煤田地质与勘探,2005,33(2):44-46.
    [182]夏含峰.矿井巷道钻孔注浆治理煤层底板突水实录[J].中国煤田地质,2004,16(6):38-39.
    [183]孙力.封堵突水点的技术措施及工程效果[J].煤矿开采,1997,(3):52-53.
    [184]白峰青,卢兰萍.井下高压突水钻孔的双注浆封堵技术[J].煤矿安全,1999,(8):10-11.
    [185]李松营.应用动水注浆技术封堵矿井特大突水[J].煤炭科学技术,2000,28(8):10-11.
    [186]谢兴华,速宝玉,高延法,等.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-993.
    [187]桂和荣,孙本魁.“深部开采底板突水控制论”研究意义及核心内容[J].淮南工业学院学报,1999,19(3):1–4.
    [188] Gidley J L,Holditch S A,Nierode D E,et al. Recent advances in hydraulicfracture[J]. Society Petroleum Engineering Monograph,1989,452:119–204.
    [189] Veatch R W. Overview of current hydraulic fracture design and treatmenttechnology—part1[J]. J. Pet. Technol.,1983,(3):677–687.
    [190] Veatch R W. Overview of current hydraulic fracture design and treatmenttechnology—Part2[J]. J. Pet. Technol.,1983,(4):853–863.
    [191] Murdoch L C,Slack W W. Forms of hydraulic fractures in shallow fine-grainedformations[J]. J. Geotech. Geoenviron. Eng.,2002,128(6):479–487.
    [192]朱珍德,张爱军,徐卫亚.脆性岩石全应力–应变过程渗流特性试验研究[J].岩土力学,2002,23(5):556–563.
    [193]李连崇,杨天鸿,唐春安等.岩石水压致裂问题的耦合分析[J].岩石力学与工程学报,2003,22(7):1060–1066.
    [194] Morgenstern N R,Vaughan P R. Some observations on allowable grouting pressures[A].In:Proc. Conf. Grouts and Drill[C]. London:Muds,Institute of Civil Engineering,1963.36–42.
    [195] Wong H Y, Farmer I W. Hydro-fracture mechanisms in rock during pressuregrouting[J]. Rock Mech.,1973,(5):21–41.
    [196] Murdoch, LC. Forms of hydraulic fractures created during a field test infine-grained glacial drift[J]. Q. J. Eng. Geol.,1995,28:23–35.
    [197] Murdoch L C. Remidation of organic chemicals in the vadose zone[A]. In: LooneyB B,Falta R W ed. Vadose zone,Science andTechnology Solutions[C].[s. l.]:[s. n.],2000.949–1237.
    [198] Pollard D D. Derivation and evaluation of a mechanical model for sheetintrusions[J]. Tectonophysics,1973,19:233–269.
    [199] Pollard D D. Forms of hydraulic fractures as deduced from field studies of sheetintrusions[A]. In:Kim Y S ed. United StatesSymposium of Rock Mechanics[C]. Reno,Nev.:Univ. of Nevada,1978.1–9.
    [200]Pollard D D,Johnson A M. Mechanics of growth of some laccolithic intrusions inthe Henry mountains[J]. Tectonophysics,1973,18:311–354.
    [201] Ito T,Evans K,Kawai K,etal. Hydraulic fracture reopening pressure and theestimation of maximum horizontal stress[J]. Int. J. Rock Mech. Min. Sci.,1999,36:811–826.
    [202] Klee G,Rummel F, Williams A. Hydraulic fracturing stress measurement in HongKong[J]. Int. J. Rock Mech. Min. Sci.,1999,36:731–741.
    [203]武强,张志龙,马积福.煤层底板突水评价的新型实用方法Ⅰ———主控指标体系的建设[J].煤炭学报,2007,32(1):42-47.
    [204]武强,张志龙,张生元,等.煤层底板突水评价的新型实用方法II:脆弱性指数法[J].煤炭学报,2007,32(11):1121-1126.
    [205]武强,解淑寒,裴振江,等.煤层底板突水评价的新型实用方法III———基于GIS的ANN型脆弱性指数法应用[J].煤炭学报,2007,32(12):1301-1306.
    [206]瞿中文.河北南部煤矿防治奥灰岩溶水的建议[C].煤矿灰岩水防治技术选编,1986,:28~35.
    [207]施能为.底板灰岩水突出规律及开发下组煤途径的探讨[C].煤矿灰岩水防治技术选编,1986,:36~42.
    [208]庞萌恒,王良.井陉煤田煤层底板突水规律初步探讨[C].煤矿灰岩水防治技术选编,1986,:42~51.
    [209]李连崇,唐春安,李根,等.含隐伏断层煤层底板损伤演化及滞后突水机理分析[J].岩土工程学报,2009,31(12):1838-1844.
    [210]王友瑜.峰峰煤田灰岩水及其防治[C].煤矿灰岩水防治技术选编,1986,:56~63.
    [211] L.Q.Shi, R.N.Singh. Study of Mine Water Inrush from Floor Stratathrough Faults[J]. Mine Water and the Environment,2001,20:140–147.
    [212] Q.Wu, W.F.Zhou, J.H.Wang et al. Prediction of groundwater inrushinto coal mines from aquifers underlying the coal seams inChina[J].Environmental Geology,2008,DOI10.1007/s00254-008-1415-9.
    [213] J.Rutqvist, O.Stephansson. The role of hydromechanical coupling in fracturedrock engi neering[J]. Hydrogeology Journal,2003,11:7–40.
    [214]井陉矿务局.井陉矿区带压开采防治水技术与实践[C].全国煤矿重点水害防治技术方法交流会论文选编.1991:21-32.
    [215]尚克勤.不疏降奥灰水,充分利用有限隔水层开采太原群下组煤的实践与体会[C].全国煤矿重点水害防治技术方法交流会论文选编.1991:57-65.
    [216]王贵虎,何廷峻.高承压水体上开采底板岩层变形特征研究[J].西安科技大学学报,2007,27(3):359-400.
    [217]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [218]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561564.
    [219] Feng M M, Mao X B, Bai H B, etal. Analysis of water insulating effect of compoundwater-resisting key strata in deep mining[J]. Journal of china university of miningand technology,2007,17(1):1-5.
    [220]吴基文.工作面推进方向对含断层底板采动效应的影响[J].煤炭科学技术,2009,37(9):119-121.
    [221]霍槟槟,宁超,杨柯.河南天瑞集团韩庄矿水文地质特征与矿井充水因素分析[J].煤炭技术,2009,28(11):134-136.
    [222]尹尚先.煤层底板突水模式及机理研究[J].西安科技大学学报,2009,29(6):661-665.
    [223] Zhang J. Investigations of water inrushes from aquifers under coal seams[J]. IntJ Rock Mech Min Sci,2005,42(3):350-360.
    [224]施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报,2005,34(1):16-23.
    [225]尹尚先,虎维岳,刘其声,等.承压含水层上采煤突水危险性评估研究[J].中国矿业大学学报,2008,37(3):311-315.
    [226]尹尚先,虎维岳.岩层阻水性能及自然导升高度研究[J].煤田地质与勘探,2008,36(1):34-36.
    [227]王经明.承压水沿煤层底板递进导升突水机理的模拟与观测[J].岩土工程学报,1999,21(5):546-549.
    [228]张文泉,李白英,李家祥等.矿井底板突水点空间分布规律的研究[J].中州煤炭,1992,1:6–10.
    [229]李丽,程久龙.基于信息融合的矿井底板突水预测[J].煤炭学报,2006,31(5):623–626.
    [230]孔海陵,陈占清.龙固煤矿采场底板突水因数与突水危害性分析[J].武汉理工大学学报,2006,28(9):80–81.
    [231]邢吉亮,李冠良,程政,等.郑州矿区承压水体上煤层开采技术[J].煤炭科学技术,2007,35(2):44-46.
    [232]赵振中,宋顺,郭绪华,等.郑州矿区三软煤层底板注浆加固技术[J].煤炭科学技术,2007,35(5):39-41.
    [233]钟亚平,张志平.实施疏水降压工程安全开采受底板奥灰水威胁的煤炭资源[J].中国矿业,1996,35:29-31.
    [234]武强,刘金韬,董东林,等.煤层底板断裂突水时间弱化效应机理的仿真模拟研究[J].地质学报,2001,75(4):554–561.
    [235]武强,周英杰,刘金韬.煤层底板断层滞后型突水时效机理的力学试验研究[J].煤炭学报,2003,28(6):562–565.
    [236]尹尚先,武强.陷落柱概化模式及突水力学判据[J].北京科技大学学报,2006,28(9):812-817.
    [237]尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型[J].岩石力学与工程学报,2005,24(1):77–82.
    [238]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149–154.
    [239]华东水利学院.岩石力学[M].北京,水利出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700