用户名: 密码: 验证码:
井下水力压裂煤层应力场与瓦斯流场模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对井下煤层水力压裂过程中滤失率引起的煤体水分增加对瓦斯运移的负效应以及“瓦斯场、渗流场、应力场”重新分布规律问题,采用理论分析、数值模拟、实验室实验和现场工业性试验相结合的方法,分析了不同煤体结构适应性的井下水力压裂技术,研究了煤-水-气三相介质条件下瓦斯解吸规律,揭示了水力压裂影响区域地应力分布特征,探讨了水力压裂煤层瓦斯运移产出的双重效应,指出了利用瞬变电磁法和示踪剂法对井下煤层水力压裂流场分布特征研究和评价的可行性。
     (1)煤-水-气三相介质条件下瓦斯解吸规律的实验/试验研究表明,煤样含水率越高,累计解吸量越少、瓦斯解吸速率越低;ΔP、q、K13个指标值随煤体含水率的增大而减小。说明水分对瓦斯解吸运移不但有抑制作用,同时还揭示出含水状态下所测试的校检指标,掩盖了煤与瓦斯突出危险性。
     (2)井下单孔水力压裂数值模拟表明,压裂孔两侧本来的应力升高区域地应力大大降低,很大范围内地应力都降低到低状体,钻孔两侧及Z方向煤体发生位移;现场水力压裂影响区钻屑量的变化特征,反映了压裂后集中应力带向煤体深部转移,采掘工作面卸压带长度增大,钻屑量变化响应的工作面应力分布状态,与压裂影响区应力场特征数值模拟结果一致;通过数值模拟同时也发现了水力压裂的不足之处,在裂缝尖端也产生了新的应力集中。
     (3)针对煤层赋存地质条件的复杂性和非均质性,以及水力压裂研究过程中出现的压裂液流场短路、裂隙扩展分布不均、单孔尖端应力集中等现象,提出了“双孔(多孔)均匀压裂、定向钻进控制压裂、水力喷射辅助压裂、预先水力割缝导向压裂、开楔形环槽定向压裂”5种用于实现煤层整体、均匀压裂的优化工艺。
     (4)利用流态判识标准雷诺数Re和启动压力梯度λ,对水力压裂增透加速瓦斯产出的正效应,以及煤体水分增大抑制瓦斯运移负效应的研究表明,含水率并不是影响启动压力梯度的主要因素,当煤层渗透率增大到一定程度,启动压力梯度就将消失,揭示了对于透气性较好的高渗煤层,水分的增加对瓦斯抽采的影响是有限的,水力压裂增透加速瓦斯抽采的本质是改变了瓦斯在煤层内流态,与压裂过程中压裂液滤失引起的负效应相比,压裂增透产生的正效应对瓦斯运移产出起控制作用。
     (5)针对在评价压裂流场分布特征(渗流能力、影响范围、均匀程度)方面存在的难题,构建了含瓦斯煤体水力压裂流场评价数学模型,开展了基于瞬变电磁法和示踪剂跟踪法的水力压裂流场分布特征理论和实验研究,丰富了井下水力压裂评价的方法和手段,对提高现场施工质量、减小施工风险有很大应用价值。
According to the underground coal seam hydraulic fracturing process of coal moisturefiltration rate caused by the increase of gas migration in the negative effects as well as theredistribution problem of gas field, seepage field, stress field. This paper analysed thehydraulic fracturing technology in different coal structure adaptability and researched thegas desorption laws under coal-water-air three-phase medium conditions to reveal theeffect of regional stress distribution characteristics of hydraulic fracturing by adoptingtheoretical analysis, numerical simulation as well as combining laboratory experiment andindustrial experiment. Discussed the double effects of hydraulic fracturing of coalbed gasmigration and production and pointed out the feasibility of using transient electromagneticmethod and tracer method to study and evaluate underground coal seam hydraulicfracturing field distribution characteristics.
     (1) Experimental study on the gas desorption law which is under the condition ofcoal-water-air three-phase medium shows that the higher the coal sample moisture contentis, the less the cumulative desorption quantity and the lower the desorption rate will be;values of ΔP、q、K1decrease with the increase of coal water content. It not only gives thatwater has inhibitory effect on methane desorption and migration, but also reveals thechecking indexes which are tested under the moisture-contained condition conceal the riskof coal and gas outburst.
     (2) Numerical simulation of single drill hydraulic fracturing showed both sides of thedrill reduced greatly. The stress was reduced to a low state in a wide range. Coal bodydisplaced beside the drilling and in the direction on of Z. The variation of drilling cuttingsvolume of field test reflected stress concentration belt transferred to the deep coal seam.Pressure relief belt length increased in front of mining working face. The variation ofdrilling cuttings volume of field test corresponded to the distribution of stress state in thenumerical simulation. The shortage of hydraulic fracturing was discovered duringnumerical simulation. Hydraulic fracturing causes a new stress concentration at the cracktip.
     (3) In view of the complexity of geological conditions of coal seam occurrence andheterogeneity, and in the study of hydraulic fracturing fluid break down agent flow fieldshort circuit, fracture propagation maldistribution, haplopore point stress concentrationphenomena, propose diplopore(multihole)uniformity fracturing, directional drilling dam fracturing, hydrojet assistance fracturing, beforehand waterpower slotting guidingfracturing, karat cambridge ring gutter orient fracturing five strain design to realize coalseam whole, even used to implement the coal fracturing optimization process.
     (4) Flow state was applied for recognizing standard Reynolds number Re and startingpressure gradient. The studies on positive effect of hydraulic fracture accelerating gasproduction by increasing permeability, as well as negative effect of increasing moisturerestraining gas migration, reflected that moisture content is not the dominant factoraffecting the starting pressure gradient, however, while permeability of coal seam increasesto certain extent, starting pressure gradient vanishes. When it comes to a high permeabilitycoal seam, increasing moisture has a limited impact on gas extraction, and hydraulicfracture accelerating gas production by increasing permeability in essence alters the flowstate of gas in coal seam. Compared to negative effect caused by fracturing fluid loss, thepositive effect resulting from fracturing controls gas production.
     (5) For the problem of evaluating the distribution’s characteristics of fracturing’s flowfield(including seepage capability, influence area and degree of uniformity),we build amathematical model to evaluate the fracturing’s folw field of the coal containing gas. Weconducted the survey that is the distribution’s characteristics of fracturing’s flow field bymeans of experiment and theory,which is based on TEM and tracer method. It enriches themethod of evaluating the fracturing downhole and makes great application value toimprove the quality of site construction and reduce the risk of construction.
引文
[1]王庆一.中国能源资源状况分析[J].节能与环保,2008(5):10-20.
    [2]王显政.中国煤炭工业面临的机遇与挑战[J].山西能源与节能,2010,62(5):4-6.
    [3]煤炭信息研究院《世界煤炭工业发展趋势与我国对策研究》课题组.世界煤炭工业发展趋势与我国对策研究[J].中国煤炭,2000,26(6):10-22.
    [4]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139.
    [5]王晓泉,陈作,姚飞.水力压裂技术现状及发展展望[J].钻采工艺,1998,21(2):28-32.
    [6] Ouyang Zhi-hua, Elsworth Derek, LI Qiang. Characterization of Hydraulic Fracture with InflatedDislocation Moving Within a Semi-infinite Medium[J]. Journal of China University of Mining&Technology,2007,17(2):220-225.
    [7]陈勉,陈治喜.三维弯曲水力裂缝力学模型及计算方法[J].石油大学学报,1995,9(1):32-37.
    [8] Gidley, J. L.水力压裂技术新发展[M].蒋阗,单文文.译.北京:石油工业出版社,1995.
    [9]何艳青.采用工艺技术的突破性进展-顶端脱砂技术[J].世界石油工业,1995,2(2):16-19.
    [10]张文玉.压裂-充填措施的应用、设计及经验[J].世界石油工业,1995,2(2):22-24.
    [11]张士诚,王鸿勋.国外水力压裂工艺技术近期发展水平综述[J].世界石油工业,1995,2(6)7-10.
    [12]叶芳春.水力压裂技术进展[J].钻采工艺,1995,18(1):4-8.
    [13]程兆蕙,罗英俊.中深井油层水力压裂[M].石油工业出版社,1990.
    [14]张士诚.重复压裂技术的研究与应用[J].世界石油工业,1995,2(7):22-25.
    [15]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005.
    [16]国家发展和改革委员会.煤层气(煤矿瓦斯)开发利用“十二五”规划.[EB/OL].http://www.sdpc.gov.cn/zcfb/zcfbtz/2011tz/t20111231_454225.htm,2011-11-26.
    [17]张德江.大力推进煤矿瓦斯抽采利用[J].中国煤层气,2010,7(1):1-3.
    [18] Valliappan, S. Zhang Wohua. Numerical modeling of methane gas migration in dry coal seams,Geomechanics Abstract,Volume:1997, Issue:1, January,1997,PP.10.
    [19] Zhao Chongbin, Valliappan. S. Finite element modeling of methane gas migration in coal seams,Computer&Structures, Volume:55, Issue:4, May17,1995,PP.625-629.
    [20]姜光杰,孙明闯,付江伟.煤矿井下定向压裂增透消突成套技术研究及应用[J].中国煤炭,2009(11):6-8.
    [21]王国鸿,徐赞.水力压裂技术提高低透气性煤层瓦斯抽放量浅析[J].煤矿安全,2010,41(8):120-124.
    [22]吕有厂.水力压裂技术在高瓦斯低透气性矿井中的应用[J].重庆大学学报,2010,33(7):102-107.
    [23]翟合.“水力压裂”可治三软煤层瓦斯[N].中国国土资源报,2011-09-15.
    [24]李培培.钻孔注水高压电脉冲致裂瓦斯抽放技术基础研究[D].太原:太原理工大学,2010.
    [25]周军民.水力压裂技术在突出煤层中的试验[J].中国煤层气,2009,3(3):34-39.
    [26]艾灿标,贾献宗,吕涛,等.新义煤矿水力压裂试验与效果分析[J].煤矿开采,2010,15(4):109-117.
    [27]路洁心,李贺.穿层定向水力压裂技术的应用[J].山西焦煤科技,2011,31(6):1-3.
    [28]王念红,任培良.单一低透气性煤层水力压裂技术增透效果考察分析[J].煤矿安全,2011,42(2):172-176.
    [29]孙炳兴,王兆丰,伍厚荣.水力压裂增透技术在瓦斯抽采中的应用[J].煤体科学技术,2010,41(11):80-84.
    [30]荣景利,高亚明,郭永敏,隽柏君.水力压裂提高煤层瓦斯抽采效率技术研究[J].能源技术与管理,2012,36(3):84-85.
    [31]王兆丰,李志强.水力挤出措施消突机理研究[J].煤矿安全,2004,35(12):1-4.
    [32]刘明举,潘辉,李拥军,等.煤巷水力挤出防突措施的研究与应用[J].煤炭学报,2007,32(2):168-171.
    [33]赵岚,冯增朝.水力割缝提高低渗透煤层渗透性试验研究[J].太原理工大学学报,2001,32(2):109-111.
    [34]冯增朝.低渗透煤层瓦斯抽放理论理论与应用研究[D].太原:太原理工大学,2009.
    [35]于警伟,史宗保.煤层注水在防治煤与瓦斯突出中的应用[J].中州煤炭,2008,16(1):71-72.
    [36]袁崇孚.构造煤和煤与瓦斯突出[J].瓦斯地质(创刊号)1985,45-52.
    [37]王恩营.煤层断层形成的岩性结构分析[J].煤炭学报,2005,30(3):319-321.
    [38]曹代勇,张守仁,穆宣社等.中国含煤岩系构造变形控制因素探讨[J].中国矿业大学学报,1999,28(1):25-28.
    [39] ZHANG Yugui, WANG Baojun, CAO Yunxing etc.Coal Mechanochemstry Action and Collierygas Disaster[A]. Proceeding of the5th international symposium on mining science and technology[C]. Beijing: Science Press,2004.10,876~880.
    [40]琚宜文,姜波,侯泉林等.构造煤结构-成因新分类及其地质意义[J].煤炭学报,2004,29(5):513-517.
    [41]徐耀奇,石淑娴,任玉琴.突出煤与非突出煤的结构探讨[J].煤矿安全,1980,1(11):10-15.
    [42]焦作矿业学院瓦斯地质研究室.瓦斯地质概论.北京:煤炭工业出版社,1990.
    [43]中华人民共和国煤炭工业部.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [44] Warren, J. E. and Root, P. J. The behavior of Naturally fractured reservoir. Paper SPE426,presented at the Fall Meeting of the Society of Petroleum Engineering, LosOct.7-10,1952:245-255.
    [45] Ammosov I I, Eremin I V. Fracturing in coal. Moscow: IZDAT Publishers,1954,109.
    [46] Macrae J C, Lawson W. The incidence of cleat fracture in some Yorkshire Coal Seams. Trans.Leeds. Geol. Assoc.,1954,(6):224-227.
    [47] Van Krevelen D W. Coal. Amsterdam: Elsevier Publishing Co.,1981.
    [48] Stach E, Mackowsky M T, Teichüller M et al. Stach’s Textbook of Coal Petrology,3rd ed.Gebruder Borntraeger, Berlin Stuttgart, Germany,1982.
    [49] Gash B W, Volz R F, Potter G et al. The effect of cleats orientation and confining pressure on cleatporosity, permeability and relative permeability in coal. In: Proceedings of the1993InternationalCoalbed Methane Symposium,1993,247-256.
    [50] Tyler R, Laubach S E, Ambrose W A et al. Coal fracturing patterns in the foreland of theCordilleran thrust belt, west US. In: Proceedings of the1993International Coalbed MethaneSymposium,1993,695-704.
    [51] Close J C. Natural fractures in coal. In: Law B E&Rice D D (eds). Hydrocarbon From Coal,Vol.38, Am. Assoc. Petrol. Geol. Stud. Geol.,1993:119-132.
    [52] Law B E. The relationship between coal rank and cleat spacing: Implications for the prediction ofpermeability in coal. In: Proceedings of the1993International Coalbed Methane Symposium,Birmingham, AL, May17-21,1993, PP:435-441.
    [53] Laubach, S. E., Marret, R. A., Olson, J. E., Scott,coal cleat: A review.Journal of CoalA. R.Characteristics and origins ofGeology,1998,35:175-207.
    [54]张新民,庄军,张遂安主编.中国煤层气地质与资源评价[M].北京:科学出版社,2002..
    [55]傅雪海,秦勇,薛秀谦,等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报2001,30(3):225-228.
    [56]苏现波,谢洪波,华四良.煤体脆-韧性变形识别标志[J].煤田地质与勘探,2003,31(6):18-21.
    [57]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].中国矿业大学出版社,2003.
    [58]张虹,胥菊珍,杨宏斌等.和顺地区煤储层裂隙系统评价与渗透率预测研究[J].煤田地质与勘探,2002,30(4):27-29.
    [59]马财林,李延祥,权海奇等.煤层气高渗区综合预测技术[J].天然气工业,2003,24(5):85-87.
    [60]刘升贵,安里千,薛茹等.运用高斯曲率法预测煤层天然裂隙发育区[J].中国矿业大学学报,2004,33(5):573-577.
    [61]刘洪林,王勃,王烽等.沁水盆地南部地应力特征及高产区带预测[J].天然气地球科学,2007,18(6):885-890.
    [62] Gash B W, Volz R F, Potter G et al. The effect of cleats orientation and confining pressure on cleatporosity, permeability and relative permeability in coal. In: Proceedings of the1993InternationalCoalbed Methane Symposium,1993,247-256.
    [63] Yee, D., Seidle, J.P., Hanson, W.B. Gas sorption on coal and measurement of gas content.Hydrocarbons from Coal. AAPG, Tusa., Oklahoma,1993, p.203-218.
    [64] Levine J.R. Model study of the influence of matrix shrinkage on absolute permeability of coal bedreservoir. In: Gayer R., Iharris,(eds.) Coalbed Methane and Coal Geology. Geological SocietySpecial Publication No.109,1996:197-212.
    [65]傅雪海,秦勇,姜波等.多相介质煤岩体力学实验研究[J].高校地质学报,2002,8(4):466-451.
    [66]杨永杰,楚俊,郇冬至等.煤岩全应力应变过程渗透性特征试验研究[J].岩土力学,2007,28(2):381-385.
    [67]罗新荣.煤层瓦斯运移物理与数值模拟分析.煤炭学报,1992,17(2):49-55.
    [68] Gash B W,Volz R F,Potler et al.The effect of cleat orientation and confining pressure on cleatporosity,permeability and relative permeability in coal. In:9321Proceedings of the1993.
    [69] International Coalbed Methane Cymposium.Walsh J B.Effect of pore pressure and confiningpressure on fracture permeability.Int:J.Rock Mech.Min.Sci.Vol.18,1981:429~435.
    [70] Harpalin S.&Miphreson M J.The effect of gas pressure on permeability of coal.2nd US MineVentulation Symp.Reho.(1)1986:369-375.
    [71]林伯泉.含瓦斯煤体变形和渗透性的实验研究.[硕士学位论文].徐州:中国矿业大学,1987.
    [72] McKee C R,Bumb A C,Koenig R A. Stress-dependent permeability and porosity ofcoal.Rockey Mountain Association of Geologist.1988.
    [73] Warpinsky N R, Teufel L W,Graf D C.Effect of stress and pressure on gas flow through naturalfractures SPE22666.1991,pp.105.
    [74]张国华.本煤层水力压裂致裂机理及裂隙发展过程研究[D].阜新:辽宁工程技术大学,2004.
    [75]李胜利,勒钟铭,魏锦平.软煤大煤样的压裂特征研究[J].太原理工大学学报,1999,30(6):567-570.
    [76]李志刚,付胜利,乌效鸣等.煤岩力学特性测试与煤层气井水力压裂力学机理研究[J].石油钻探技术,2000,28(3):10-12.
    [77]王鸿勋编著.水力压裂原理[M].北京:石油工业出版社,1987.
    [78]杜春志,茅献彪,卜万奎.水力压裂时煤层缝裂的扩展分析[J].采矿与安全工程学报,2008,25(2):231-234、238.
    [79]邓广哲,王世斌,黄炳香.煤岩水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004,23(20):3489-3493.
    [80] Perkins,T K,Kern,L R.WidthsofHydraulieFractures.JPT,SePt,1961.
    [81] Norgren,R P.ProPagation of a Vertieal Hydraulie Fraeture.SPEJ,Aug,1972.
    [82] Khristianovie,S A,Zheltov,Y P.Formation of Vertieal FractUresby Means of Highly VicousLiquids. Proeeeding of the fourth W0rld Petroleum Congress,Section Ⅱ,1955.
    [83] Geertsma,J,Dekerk,F.A RaPid Method of Predieting Width and Extent of Hydraulieally inducedFraetures.JPT,Dec,1969.
    [84] Daneshy,A A.Numerical Solution of Sand Transport in Hydraulie Fracturing.JPT,Jan,1978.
    [85] Simonson,E R,Abou Sayed,Clifton,R J.Containment of Massive Hydraulie Fractures.SPEJ,Feb,1978.
    [86] Van Eekelen, Hrdyaulic Fracture Geometry:Fracture Containment in Layed Formation.SPEJ,June,1982.
    [87] Advani,S H,Chang,H Y,Komar,C A,Stonesifer,R.Rock Meehanies Aspeets of HydraulieFracturing in the Devonian Shale.21th Rock Mechaneis SymPosium,1980.
    [88] Advani,S H,Lee,L K.Finite Eelment Model Simulations Assoeiated Width Hydraulie FractUring.SPEJ,APril,1982.
    [89] Settari,A,Cleary,M P.DeveloPment and Testing of a Pseudo-Three-Dimensional Model ofHydraulie Fraeture Geome try(P3DH).SPE10505.
    [90] Settari,A,Cleary,M P.Three-Dimensional Simulation of HydraulieFraeturing.JPT,July,1984.
    [91] Cleary,M P,Keek,R G,Mear,M E.Mierocomputer Models for the Design of Hydraulic Fractures.SPE/DOC11628.
    [92] Palmer,I D,Davids,M W,Jeu,S J.Analysis of Unconventional Behavior Observed DuringCoalbed Fracturing Treatments. Proceedings19891nt CBM SymP,1989.
    [93] Palmer,I D,Kinard,C M,Fryar,R T·Sandless Water Fracture Treatments in Warrior BasinCoalbeds.Proceedings1993. Int CBM SymP,1993.
    [94]郭大立,纪禄军,赵金洲,等.煤层压裂裂缝三维延伸模拟及产量预测研究[J].应用数学和力学,2001,22(4):27-32.
    [95]张平,赵金洲,郭大立,等.水力压裂裂缝三维延伸数值模拟研究[J].石油钻采工艺,1997,19(3):42-46.
    [96] Clifton,R J,Abou-Sayed,A S.On the Computation of the Three-DimensionalGeometry ofHydraulic Fractures.SPE7943.
    [97] Clifton,R J,Abou-Sayed,A S.A Variational APProach to the Prediction of theThree-DimensionalGeometry of Hydraulie Fractures.SPE9879.
    [98] Cleary,M P,Lam, K Y. A Complete Three-Dimensional Similator for Anaiysis and Design ofHydraulic Fracturing,SPE15266.
    [99] Robinson,B M,Holditeh,S A,Peterson,R E,The Gas Research Institute’s,Second StagedField Experiment:A Study of Hydraulie Fracturing.SPE21495.
    [100] Meyer,B R.Three-Dimensional Hydraulic Fracturing Simulation on Personal Computers: Theoryand Comparison Studies.SPE19329.
    [101] Meyer,B R,Cooper,G D,Nelson,S G.Real-Time3-D Hydraulic Fracturing Simulation: Theoryand Field Case Studies.SPE20658.
    [102] Guirajani,S N,Nolte,K G,Romero,J.Evaluation of the M-Site B-Sand Experiments:TheEvolution of a Pressure Analysis Methodojogy.SPE38575.
    [103] Gulrajani,S N,Romero,J. Evaluation and Modifieation of Fraeture Treatments ShowingNear-Wellbore Effects.SPE36901.
    [104] Piggott,A R,Brady,B H,Gu,H. Reservior Formation Characterization from HydraulicFracturing Reeords.Proc Eurock’92Symposium,London,U K,1992.
    [105]乌效鸣.煤层气井水力压裂裂缝产状和形态研究[J].探矿工程,1995(6):19-21.
    [106]吴继周,曲德斌.水力压裂裂缝几何形态的数值模拟及影响因素分析[J].大庆石油地质与开发,1990,9(4):64-70.
    [107]申晋,赵阳升.低渗透煤岩体水力压裂的数值模型[J].煤炭学报,1997,22(6):580-585.
    [108]郝艳丽,王河清,李玉魁等.煤层气井压裂施工压力与裂缝形态简析[J].煤田地质与勘探,2001,29(3):20-22.
    [109]李同林.煤岩层水力压裂造缝机理分析[J].天然气工业,1997,17(4):53-56.
    [110]单学军,张士诚,李安启等.煤层气井压裂裂缝扩展规律分析[J].天然气工,2005,11:130-132.
    [111]刘洪,张光华,钟水清等.水力压裂关键技术分析与研究[J].钻采工艺,2007,30(2):49-52
    [112]胡湘炯,高德利.油气井工程[M].北京:中国石化出版社,2003.
    [113]唐书恒.煤储层渗透性影响因素探讨[J].中国煤田地质,2001,13(1):28-30.
    [114]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [115]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [116]陈胜宏.计算岩体力学与工程[M].北京:中国水利水电出版社,2006.
    [117] H.杰弗里斯.地球—它的起源和物理结构[M].北京:科学出版社,1985.
    [118]钱伟长,叶开元.弹性力学[M].北京:科学出版社,1985.
    [119]丁一中,王仁.引潮力的全球位移场及应力场.地球物理学报[J].1986,29(6):578-596.
    [120]许忠淮.地应力研究现状与展望[J].地球科学进展,1990,34(5)27-34.
    [121]刘飞.深部矿井地应力场研究及其在冲击地压预测中的应用[D].徐州:中国矿业大学,2005.
    [122]陶振宇.对岩体初始应力的初步认识[J].水文地质工程地质,1980,7(2):1-12.
    [123]陈志敏.不同岩性侧压比随深度变化规律探讨[J].西部探矿工程,2006,(6):99-101.
    [124]朱焕春,陶振宇.不同岩石中的地应力分布[J].地震学报,1999,16(1):49-62.
    [125]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [126]杨志法,王思敬,冯紫良.岩土工程反分析原理及应用[M].北京:地震出版社,2002.
    [127]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.
    [128]王文军.深部矿井工程小区地应力场研究与应用[D].天津:天津大学,200.
    [129]岳晓蕾.大岗山地应力场反演与工程应用研究[D].济南:山东大学,2006.
    [130]郝哲,刘斌.基于差分法及神经网络的硐室围岩力学参数反分析[J].岩土力学,2003,24(增刊):77-79.
    [131] Yi Da,X Mingyi,Chen Shenghong,et. Applications of artificial neural network to back analysisofinitial stress field of rock masses[J].Rock and Soil Mechanics,2004,25(6):943-945.
    [132] Jia Chao,Liu Ning,Xiao Shufang. Applications of direct displacement inverse analysis torockmassparameters of caverns[J].Rock and Soil Mechanics,2003,24(3):450-454.
    [133]易达,陈胜宏,葛修润.岩体初始应力场遗传算法与有限元反演[J].岩土力学,2004,7:1077-1080.
    [134]文建华.改进遗传算法地下工程岩体参数反演分析研究[D].武汉:武汉理工大学,2004:9-12.
    [135]苏凯之.地应力测量方法[M].北京:地震出版社,1985.
    [136]王连捷,任希飞,丁原辰,等.地应力测量在采矿工程中的应用[M].北京:地质出版社,1994.
    [137]侯明勋,葛修润,王水林.水力压裂法地应力测量中的几个问题[J].岩土力学,2003,(5):840-844.
    [138]钟方平,楼沩涛,张景森,等.深层地应力测量[J].应用力学学报,2000,9(3):18-22.
    [139]康红普,王金华.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2006.
    [140] Lieurance, R.S. Stress in foundation at boulder dam[J].Tech.Memo.,Reclamation Denver,1933,12.
    [141] Guo F.,Morgenstern N R.,Scott J D.Interpretation of hydraulic fracturing pressure: A comparisonof eight methods used to identify shut-in pressure[J]. Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1993,30(6):627-630.
    [142] Fairhurst., C. Methods of determining in-situ stress at great depth [J].Missouri River Div.,Corps.Of Engrs., Omaha, Tech.,1968:1-68.
    [143]沈明荣.岩体力学[M].上海:同济大学出版社,,1999.
    [144] Cai, M. and Blackwood,R.L. A technique for recovery and reuse of CSIRO hollow inclusioncells[J]. Rock Mech.Min.Sci.Geomech.Abstr,1990,28(2):225-228.
    [145] CSIR. Instruction manual for the use of CSIR tri-axial rock stress measuring equipment[R].CSIRPretoria:1973.
    [146]张延新,蔡美峰,王克忠.平顶山一矿地应力分布特征[J].岩石力学与工程学报,2004,23(23)4033-4037.
    [147] Hooker V.E., Bicker D.L. Over coring equipment and techniques used in rock stressdetermination [J].U.S. Bureau of Mines Information Circular8618,1974.
    [148]吴振业.环氧树脂三轴应变计与岩体应力测量[J].煤炭学报,1987,(3):38-46.
    [149]李文平.牛马司、潘集两矿区现代地应力场及其井巷工程稳定性影响的研究[D].徐州:中国矿业大学,1989.
    [150]黄志鹏,朱可善,郭映忠.关于Kaiser效应方向独立性实验研究[J].长江科学院院报,1998,15(2):41-45.
    [151]吴刚,赵震洋.不同应力状态下岩石材料破坏的声发射特性[J].岩土工程学报,1998,20(2):78-83.
    [152]尹菲.声发射测地应力在黄河小浪底等坝址区的应用[J].人民黄河,1990,12(6):47-50.
    [153]刘允芳,罗超文,景峰.水压致裂法三维应力测量及修正和工程应用[J].岩土工程学报,1999,21(4):412-417.
    [154]樊荣金.地应力在锚杆支护设计中的应用[J].矿山压力与顶板管理,2004:1(1):13-14.
    [155]徐纪人,赵志新.中国岩石圈应力场与构造运动区域特征[J].中国地质,2006(4):783-790.
    [156]中国煤炭学会.第175次香山科学会议学术研讨会专题报告[C].北京:2001.
    [157]潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学,1999.
    [158]张书田.构造应力对煤和瓦斯突出的作用[J].煤矿安全,1988,(07):31-39.
    [159]于不凡.煤和瓦斯突出的机理概述[J].川煤科技,1976(12):56-65.
    [160]程远平,周德永,俞启香等.保护层卸压瓦斯抽采涌出规律研究[J].采矿与安全工程学报,2006,23(1):12-18.
    [161]程远平,俞启香,袁亮等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [162] L. N. Germanovich. Deformation of Nature Coals.Soviet Mining Science,1983,13(5):377~381
    [163]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J].煤矿安全,1981,12(11):9-14.
    [164]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [165]杨其銮.关于煤屑瓦斯扩散规律的试验研究[J].煤矿安全,1987,18(2):9-16.
    [166]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,27(5):13-17.
    [167]郭勇义,吴世跃.煤粒瓦斯扩散规律及扩散系数测定方法的探讨[J].山西矿业学院学报,1997,(1):16~19.
    [168]郭勇义,吴世跃.煤粒瓦斯扩散规律与突出预测指标的研究[J].太原理工大学学报,1998,29(2):138~142.
    [169]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [170]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,12(2):19-28.
    [171]谭学术.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报,1986,(1):106-112
    [172]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,(5):1-9.
    [173]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探,1993,21(5):61-62.
    [174] Sun Peide. Coal gas dynamics and it applications.Scientia Geologica Sinica,1994,3(1):66~72.
    [175]黄运飞,孙广忠.煤─瓦斯介质力学[M].北京:煤炭工业出版社,1993.
    [176]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [177]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [178]罗新荣.可压密煤层瓦斯运移方程与数值模拟研究[J].中国安全科学学报,1998,8(5):19-23.
    [179] Tek, M.R. Development of a Generalized Darcy Equation, Journal of Petroleum Technology,1957, pp45-47.
    [180] Das, A.K. Genaerlized Darcy’s law including source effect. Journal of Canadian PetroleumTechnology,1997,36(6),57-59.
    [181]吴凡,孙黎娟,乔国安,等.气体渗流特征及启动压力规律的研究[J].天然气工业,2001,21(1):82-84.
    [182]任晓娟,闫庆来,何秋轩等.低渗气层气体渗流特征实验研究[J].西安石油学院学报,1997,12(3):22-25.
    [183]周克明,李宁,袁小玲.残余水状态下低渗储层气体低速渗流机理[J].天然气工业,2003,23(6):103-107.
    [184]郭红玉.基于水力压裂的煤矿井下瓦斯抽采理论与技术[D].河南理工大学,2010.
    [185]中国煤炭学会.第22届国际采矿安全会议论文集[C].北京:煤炭工业出版社,1987.
    [186]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [187]段三明,聂百胜.煤层瓦斯扩散~渗流规律的初步研究[J].太原理工大学学报,1998,29(4):14-18.
    [188]吴世跃.煤层瓦斯扩散渗流规律的初步探讨[J].山西矿业学院学报,1994,29(3):259-263.
    [189]吴世跃,郭勇义.煤层气运移特征的研究[J].煤炭学报,1999,24(1):65-70.
    [190]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [191] Anbarci K. Ertekin T(1990), A comprehensive study of pressure tranisient analysis withsorption phenomena for single-phase gas flow in coal seams. SPE paper,20568(8.5.4).
    [192] Kolesar J E. Ertekin T. Obut S T(1990), The unsteady-state nature of sorption and diffusionphenomena in the micropore structure of coal, SPE FE,5(1)81-97(8.5.4).
    [193]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [194]苏现波,陈江峰,孙俊民,等.煤层气地质学与勘探开发[M].北京:科学出版社,2001.
    [195]张冬丽,王新海,宋岩.考虑启动压力梯度的煤层气羽状水平井开采数值模拟[J].石油学报,2006,27(4):89-92.
    [196]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    [197]尹光志,李小双,赵洪宝,等.瓦斯压力对突出煤瓦斯渗流影响实验研究[J].岩石力学与工程学报,2009,28(4):697-702.
    [198]覃建华,肖晓春,潘一山,等.滑脱效应影响的低渗储层煤层气运移解析分析[J].煤炭学报,2010,35(4):619-622.
    [199]彭守建,许江,陶云奇,等.地球物理场中煤岩瓦斯渗流研究现状及展望[J].地球物理学进展,2009,24(2):558-564.
    [200] Somerton W.H. Effect of stress on permeability of coal. Int.J. Rock Meck. Mech. Min. Sci.&Geomech. Abstr,1975,12(2):151-158.
    [201] Ettinger A. L. Swelling stress in the gas~coal system as an energy source in the development ofgas bursts. Soviet Mining Science.1979,(5):494-501.
    [202] Gwwuga J. Flow of gas through stressed carboniferous strata[D].Univ. of Nottingham. Ph. D.thesis,1979.
    [203] Khdot, V.V. Role of methane in the stress state of a coal seam. Fiziko~tekhnicheskie ProblemRazrabotki poleznykh is kopaemykh,1980,(5):23-28.
    [204] Harpalani, S. Gas flow through stressed coal [D].Univ. of California. Berkeley,1985.
    [205] Borisenko A A. Effect of gas pressure on stress in coal strate. Soviet Mining Science.1985,(1):88-91.
    [206] Harpalani, S.&Mopherson,M.J. The effect of gas evacation on coal permeability tests peciments.Int.J.Rock. Meth. Min. Sci&Geomech.Abstr,1975,12(2):151-158.
    [207] J.R.E.Enever, A.Henning. The Relationship Between Permeability and Effective StressforAustralian Coal and Its Implication with Respect to Coalbed Methane Exploration andReservoirModeling.Proceedings of the1997International Coalbed Methane Symposium,1997:13-22.
    [208]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986,15(3):67-72.
    [209]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):26-32
    [210]靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271-280.
    [211]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的实验研究[J].岩土工程学报,1995,17(3):26-31.
    [212]赵阳升,胡耀青,魏锦平,等.气体吸附作用对岩石渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [213]杨栋,赵阳升,胡耀青,等.三维应力作用下单一裂缝中气体渗流规律的理论与实验研究[J].岩石力学与工程学报,2005,24(6):999-1003.
    [214]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-45.
    [215]梁冰,刘建军,范厚彬,等.非等温情况下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [216]王宏图,杜云贵,鲜学福,等.受地应力、地温和地电效应影响的煤层瓦斯渗流方程[J].重庆大学学报,2000,23(增刊):47-50.
    [217]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报,2001,20(1):36-39.
    [218]孙可明,梁冰,朱月明.考虑解吸扩散过程的煤层气流固耦合渗流研究[J].辽宁工程技术大学学报,2001,20(4):548-549.
    [219]刘建军.煤层气热~流~固耦合渗流的数学模型[J].武汉工业学院学报,2002,(2):91-94.
    [220]林良俊,马凤山.煤层气产出过程中气~水两相流与煤岩变形耦合数学模型研究[J].水文地质工程地质,2001,22(1):1-3.
    [221]王锦山,尹伯悦,谢飞鸿.水-气两相流在煤层中运移规律[J].黑龙江科技学院学报,2005,15(1):16-19.
    [222]刘晓丽,梁冰,王思敬,等.水气二相渗流与双重介质变形的流固耦合数学模型[J].水利学报,2005,36(4):405-412.
    [223]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [224]倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2009.
    [225] Simonson E R, Abou-Sayed A S, Clifton R J. Containment of Massive Hydraulic fracture.1978,18(1):27-32.
    [226] Hanson M E, Shaffer R J, Some Results from Continuum mechanics analyses of the HydraulicFracturing Process, SPE,7942.1979,(1):48-71.
    [227]詹美礼,崔建.岩体力学劈裂机制圆筒模型试验及解析理论研究[J].岩石力学与工程学报,2007,26(6):1173-1181.
    [228] Brown E T, Bray J W, Santarelli. Influence of stress-dependent elastic moduli on stresses andstrains around axisymmetric boreholes. Rock Mech Qock Eng.1989,(22):189-203.
    [229]刘升贵.西山煤田煤层气成藏条件及开发工艺研究[M].徐州:中国矿业大学出版社,2009.
    [230]徐向荣,马利成等.地应力及其在致密页岩气藏压裂开发中的应用[J].钻采工艺,2000,(6):17-21.
    [231]郭红玉.基于水力压裂的煤矿井下瓦斯抽采与技术[D].焦作:河南理工大学,2011.
    [232]刘建新,李志强,李三好.煤巷掘进工作面水力挤出措施防突机理[J].煤炭学报,2006,31(2):183-186.
    [233]何启林,常胜秋,谢满温.水采工作面瓦斯涌出规律的研究[J].水力采煤与管道运输,2003(1):31-33.
    [234]郭红玉,苏现波.煤层注水抑制瓦斯涌出机理研究[J].煤炭学报,.2010,35(6):928-931.
    [235]程庆迎.低透煤层水力致裂增透与驱赶瓦斯效应研究[D].徐州:中国矿业大学,2012.
    [236]煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1992.
    [237]孟絮屹,桂祥友,郁钟铭.钻屑量与钻屑瓦斯解吸指标预测突出中的应用[J].矿业研究与开发,2008,28(4):65-67.
    [238]孟贤正,王君得.钻屑量指标预测综采面煤突出危险性研究[J].陕西煤炭,2003,22(4):20-23.
    [239]文光才,王先义.突出预测钻屑量指标的探讨[J].矿业安全与环保,1998,5(3):17-20.
    [240] Yang R T, Saunders J T. Adssorption of gases on coals and heated-treated coals at elevatedtemperature and pressure [J] Fuel,1985,64,(18):616-620.
    [241]张力,何学秋,王恩元,等.煤吸附特征的研究[J].太原理工大学学报,2001,(4):449-451.
    [242]赵栋,刘文虎.矿井综合防尘措施[J].矿业安全与环保,2003,30(增刊):111-114.
    [243]张延松.煤层注水渗流的求解及应用[J].应用数学与力学,1992(6):35-40.
    [244]滕新荣.表面物理化学[M].应用数学与力学,北京:化学工业出版社,2009.
    [245]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001.
    [246]傅雪海,秦勇等.现代构造应力场中煤储层孔裂隙应力分析与渗透率研究.地球学报,(增刊),1999:623~627(中国地质学会第四届全国青年地质工作者学术讨论会优秀论文).
    [247]冯文光.非达西低速渗流的研究现状与进展[J].石油勘探与开发,1986,13(4):76-80.
    [248]翟云芳.渗流力学[M].北京:石油工业出版社,1994.
    [249]王晓冬.渗流力学基础[M].北京:石油工业出版社,2006.
    [250]韩国锋,王恩志,刘晓丽.岩石峰后非达西流探讨[J].岩土工程学报,2011,33(11):1792-1796.
    [251] R.J. Miller, L.W. Low. Threshold gradient for water flow in clay systems. Proc.Soil Sci.Soc.Am.,1963,27(6):605-609.
    [252]计秉玉,李莉,王春燕.低渗油藏非达西渗流面积井网产油量计算方法[J].石油学报,2008,29(2):256-261.
    [253]杨琼,聂孟息,宋付权.低渗透砂岩渗流启动压力梯度[J].清华大学学报,2004,44(12):1650-1652.
    [254]王正波,岳湘安,韩冬,等.影响低渗透油藏低速非线性渗流的实验研究[J].矿物学报,2008,28(1):48-53.
    [255]邓英尔,阎庆来,马宝岐.界面分子力作用与渗透率的关系及其对渗流的影响[J].石油勘探与开发,1998,25(2):46~481.
    [256] Shawn Maxwell. Microseismic Hydraulic Fracture Imaging:The Path Toward Optimizing ShaleGas Production[J]. Shales,2011,30(3):340-346.
    [257] Robert C Downie,Le Calvez Joel H,Ken Kerrihard. Real-Time Microseismic Monitoring ofSimultaneous Hydraulic Fracturing Treatments in Adjacent Horizontal Wells in theWoodfordShale[J]. Frontiers+Innovation-2009CSPG CSEG CWLS Convention,2009,26(1):484-492.
    [258] Mayerhofer M, Demetrius S, Griffin L,et al. Tiltmeter hydraulic fracture mapping in the NorthRobertson Field, West Texas[C]. SPE59715,2000.
    [259] Fisher MK, Winght BM,Davidson, et al. Integrating Fracture Mapping Technologies to OptimizeStimulations in the Barnett shale[C]. SPE77441,2002.
    [260] Molenaar M M, Hill D J,Webster P, et al. First Downhole Application of Distributed AcousticSensing (DAS)for Hydraulic Fracturing Monitoring and Diagnostic[C]. SPE140561,2011.
    [261]贾利春,陈勉,金衍.国外页岩气井水力压裂裂缝监测技术进展[J].天然气与石油,2012,30(1):44-47.
    [262] Cipolla C L, Wright C A. Diagnostic Techniques To Understand Hydraulic Fracturing: What?Why? and How?[C]. SPE75359,2002.
    [263]牛之琏.时间域电磁法原理[M].成都:中南工业大学出版社,1992.
    [264]李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002.
    [265]张保祥,刘春华.瞬变电磁法在地下水勘查中的应用研究综述[J].地下水,2004,26(2):129-133.
    [266]郭纯,刘白宙,白登海.地下全空间瞬变电磁技术在煤矿巷道掘进头的连续跟踪超前探测[J].地震地质,2006,28(3):456-462.
    [267]程德福.近区磁源瞬变电磁法信号检测技术研究[D].长春:吉林大学,2001.
    [268]汪明启.地球化学弱信息提取技术研究[D].北京:中国地质大学,2003.
    [269]邹建伟.促胰岛素分泌肽融合蛋白的初步药效及同位素示踪法测定其药代动力学的实验研究[D].苏州:苏州大学,2009.
    [270]邹信芳.油田示踪剂优选与检测技术研究研究[D].大庆:大庆石油学院,2008.
    [271]娄兆斌.烃气混相驱气体示踪剂解释理论与应用技术研究D].武汉:中国地质大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700