用户名: 密码: 验证码:
沿空留巷围岩应力优化与结构稳定控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沿空留巷是无煤柱连续开采、无煤柱煤与瓦斯共采以及煤层群连续卸压开采等技术的空间基础,是解决瓦斯与动力灾害、提高煤炭采出率、降低巷道掘进率的重要保障,也是实现煤炭科学开采的关键技术之一。但是沿空留巷位处采空区边缘,服务期间经受多次采动影响,围岩结构的稳定与巷道空间的维控都将受到严重的挑战。
     本文采取物理模拟、数值计算和理论分析等综合研究手段,从采空区侧向顶板的岩层运动特征入手,细致分析了沿空留巷的顶板来压机理,揭示了留巷围岩的应力演化和最终分布规律,在此基础上得到了通过侧向顶板超前预裂实现留巷围岩区域应力优化的思路,阐明了侧向块体的断裂稳定机制,从而形成了区域应力控制技术,并进一步提出了围岩结构稳定控制技术体系,主要结论如下:
     (1)开采过程中采空区顶板先后出现分次垮落和一次性垮落两种现象,在垮落岩层上部主离层空间的隔离之下顶板发生应力分流,并经过侧向楔形区的传递作用向留巷围岩施压;顶板下沉量由断裂前的挠曲下沉、断裂时的旋转下沉和断裂后的压缩下沉三部分组成,因而对侧向低位岩体的给定变形具有长期性;沿空留巷在顶板分次垮落时表现为多次来压和长期渐缓变形,在顶板一次性垮落时表现为强烈来压和短期剧烈变形。
     (2)采场围岩的采动应力在平面和空间上分别呈双T型分布和应力环分布,沿空留巷则位于峰值应力T型区和谷值应力T型区之间,留巷围岩在顶板长期运动下持续弱化,整体处于低值应力区,采取深锚支护可调动深部支承应力环区岩体的高承载性能、约束浅部低值应力环区岩体的变形。
     (3)超前预裂卸压能够加速老顶的破断运动并有效缓解留巷顶板的压力,卸压后侧向支承应力向浅部转移、应力峰值有小幅降低,留巷围岩变形得到明显改善;断裂块体短期分离后还会再次接触并形成岩拱结构,结构间的力学关系决定了顶板卸压程度,因而悬臂长度存在优化空间;提出了侧向顶板的卸压判据和悬臂长度的优化方法。
     (4)分析了留巷围岩稳定的影响因素:巷旁支撑体与顶底板共同形成“顶-墙-底”复合承载结构,该结构的系统刚度决定了承载效率;巷旁充填体的强度发展与顶板压力应实现动态协调;锚固盲区与等效跨度增大时不利巷道维护。
     (5)提出了沿空留巷T型区围岩分区治理的技术思路,形成了留巷围岩结构稳定控制技术体系:结构上包括侧向顶板预裂卸压技术、巷道跨高比与墙体宽高比优化技术;支护上包括“三高”锚固技术、“高跨双减”支护技术及深锚浅注支护技术;巷旁支撑上包括膏体混凝土充填技术、砌块式巷旁充填技术、钢筒支柱式充填技术及高水材料充填技术;留巷长度上包括全长沿空留巷技术和阶段性沿空留巷技术。
     结合凤凰山矿154307工作面10m厚坚硬石灰岩顶板、小青矿E1403工作面1.45m薄层直接顶以及中兴矿1205工作面10m以上厚层复合顶板三种条件下的沿空留巷案例给出了工程验证。
Gob-side entry retaining supplies the essential space for pillarless-continuousmining, pillarless-simultaneous extraction of coal and gas, and continuousde-stressing mining of coal seams, which provides a pretty important safeguard fordecreasing dynamic disasters of methane, boosting coal recovery ratio, reducingroadway drivage ratio and is one of key technologies for performing scientific miningof coal. However, both surrounding rock structure stability and space maintaneanceare under threat due to the fact that position of gob-side entry retaining is near the gob,which will suffer mining activity for many times during its service period.
     Through physical simulation, numerical simulation and theoretic analysis, thisdissertation analyzes systematically roof weighting mechanism by investigating roofstrata movement characteristics of lateral roof beside gob. Besides, on the basis ofstress evolution and distribution of the surrounding rock of gob-side entry, an idea thatapplying lateral roof presplitting technology optimizes region stress of surroundingrock is proposed, which indicates fracture stability mechanism of lateral block.Ultimately, region stress control technology is formed and structure stability controltechnology system for surrounding rock of entry is presented, from which it can beconcluded as follows:
     (1) Roof of gob experiences orderly fractionated collapse and once collapse incoal mining effect, which indicates after insulation of separation space from fracturedroof strata. Roof stresses are under distributary and impose pressure on thesurrounding rock of entry by transmiting effect from lateral wedge area. Subsidencevalue of roof consistes of deflection subsidence before fracture, rotation subsidence infracture period, and compression subsidence after fracture, which means givendeformation to low location rock mass continues a long time. Roof of gob-side entrypresents multi-weighting property and long term gradual deformation characteristicduring fractionated collapse, while it presents fierce weighting and short term severedeformation.
     (2) Mining stress for surrounding rock of mining panel presents T-shapedistribution and stress-ring distribution in a plane and in the space respectively, whilegob-side entry is located between valley point and peak point of T-shaped area.Surrounding rock of gob-side entry will become weaker under the condition of longterm movement of roof, which makes entry in low stress area and deep bolting support can exert the bearing capacity of deep rock mass and restrict rock massdeformation of shallow low-stress area.
     (3) Presplitting de-stressing can accelerate fracture movement of main roof,which can release pressure from entry roof. On this basis, abutment pressure willmove towards shallow area and there is a small decrease of peak point of stress. Theimprovement of de-stressing to deformation of entry surrounding rock, from high tolow, is roof, filling wall, floor and rib. It is noticed that fractured blocks will form newrock arch structure by attaching other blocks. Mechanics relationship betweenstructures determines stress release degree, which means optimization space ofcantilevel length is objective. Therefore, a new optimization methodology ofcontilevel length, with stress release criteria for lateral roof, is proposed in thisdissertation.
     (4) Impact factors about surrounding rock stability of gob-side entry are analyzedand these show that system stiffiness of “roof-wall-floor”structure, which is formedby gob-side supporting wall, roof and floor of entry, determines the bearing efficiency.Strength development of filling wall should be in accord with roof pressuredynamically and roadway maintaneance is hard when blind area of bolting andequivalent span increase.
     (5) An idea that district control technology for surrounding rock of T-shape areaof gob-side entry is proposed, which forms structure stability control technologysystem for surrounding rock of entry. Firstly, there are presplitting de-stressingtechnology for lateral roof, optimization techonolgy for span-depth ratio of roadwayand width-height ratio of wall in structure aspect. Secondly, there are three heightbolting technology, height-span reducing technology, and deep-bolting andshallow-grouting technology in supporting aspect. Thirdly, there are plaste-concretefilling technology, masonry structures filling technology, steel cylinder prop fillingtechnology and high-water material filling technology in filling aspect. Ultimately,there are full-length and stage gob-side entry retaining technology in entry lengthaspect.
     Combining with gob-side entry retaining engineering cases which contains10mthick hard limestone roof of entry in154307mining panel of FenghuangshangCoalmine, superposition main roof with1.45m thin direct roof in E1403mining panelof Xiaoqing Coalmine, and over10m compound roof in1205mining panel ofZhongxing Coalmine, these above technologies are tested and verified in this dissertation.
引文
[1]煤炭科学院北京煤化学研究所编.工业的粮食煤[M].北京:煤炭工业出版社,1985.
    [2]《能源中长期发展规划纲要》草案原则通过[J].中国能源,2004,26(7):24.
    [3]袁亮.煤矿瓦斯灾害防治理论与关键技术[A].中国工程科技论坛第118场——2011国际煤矿瓦斯治理及安全论文集[C].徐州:中国矿业大学出版社,2011:34-57.
    [4]中国煤炭产销量占全球比重近一半[EB/OL].能源界.[2011-06-25].http://www.cceec.com.cn/html/Coal/News/2011/0625/53063.html
    [5] BP发布《世界能源统计2011》[EB/OL].中国石油新闻中心.[2011-06-21].http://news.cnpc.com.cn/system/2011/06/21/001338212.shtml
    [6]中国超97%矿难人为所致死亡人数约占全世界70%[EB/OL].人民网.[2011-06-28].http://society.people.com.cn/GB/15020575.html
    [7]黄盛初.2005世界煤炭发展报告[M].北京:煤炭工业出版社,2006.
    [8]中国煤炭工业协会.中国煤炭经济研究2005~2008[M].北京:煤炭工业出版社,2009.
    [9]卫修君,林柏泉.煤岩瓦斯动力灾害发生机理及综合治理技术[M].北京:科学出版社,2009.
    [10]中国煤炭产业可借鉴美国经验[EB/OL].新华网.[2003-11-06]. http://news.xinhuanet.com/fortune/2003-11/06/content_1164232.htm
    [11]劳动部,煤炭工业部颁发.中华人民共和国职业技能鉴定规范暨技能培训教材煤炭行业瓦斯检查工[M].北京市:煤炭工业出版社,2000.
    [12]任德惠,丁焜,张永兴.高沼气易燃煤层无煤柱开采[M].北京市:煤炭工业出版社,1991.
    [13]袁亮.低透气性煤层群无煤柱煤与瓦斯共采理论与实践[M].北京市:煤炭工业出版社,2008.
    [14]付建华.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州市:中国矿业大学出版社,2005.
    [15]涂敏,袁亮,缪协兴,等.保护层卸压开采煤层变形与增透效应研究[J].煤炭科学技术,2013,41(01):P40-43+47.
    [16]张农,袁亮,王成,等.卸压开采顶板巷道破坏特征及稳定性分析[J].煤炭学报,2011,36(11):P1784-1789.
    [17]贾喜荣.岩层控制[M].徐州:中国矿业大学出版社,2011.
    [18]郭凤贤,魏胜利.矿山压力观测与控制[M].北京:煤炭工业出版社,2005.
    [19]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [20]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [21]白以龙,杨卫.力学2000[M].北京:气象出版社,2000.
    [22]安·萨武斯托维奇.地下开采对地面的影响[M].北京:煤炭工业出版社,1959.
    [23]钱鸣高.岩层控制与煤炭科学开采文集[M].徐州:中国矿业大学出版社,2011.
    [24] ZHANG Zhiqiang,XU Jialin,ZHU Weibing,et al.Simulation research on the influence oferoded primary key strata on dynamic strata pressure of shallow coal seams in gullyterrain[J].International Journal of Mining Science and Technology,2012,22(1):51-55.
    [25] WANG Xiaozhen,XU Jialin,ZHU Weibing,et al.Roof pre-blasting to prevent supportcrushing and water inrush accidents[J].International Journal of Mining Science andTechnology,2012,22(3):379-384.
    [26]姜福兴.矿山压力与岩层控制[M].北京市:煤炭工业出版社,2004.
    [27]贾喜荣.岩石力学与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [28]何廷峻.应用Wilson铰接岩块理论进行巷旁支护设计[J].岩石力学与工程学报,1998,17(2):173-177.
    [29]邢昭芳,阎永利,李会良.深孔控制卸压爆破防突机理和效果考察[J].煤炭学报,1991(02):1-9.
    [30] Petr Konicek,Kamil Soucek,Lubomir Stas,et al.Long-hole destress blasting for rockburstcontrol during deep underground coal mining[J].International Journal of Rock Mechanicsand Mining Sciences,2013,61:141-153.
    [31]张春华,刘泽功,徐涛,等.石门对掘揭开急倾斜煤层突出与爆破增透消突技术[J].煤炭学报,2010(01):85-88.
    [32]林柏泉,邹全乐,沈春明,等.双动力协同钻进高效卸压特性研究及应用[J].煤炭学报,2013(06):911-917.
    [33]蔡峰,刘泽功,张朝举,等.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J].煤炭学报,2007(05):499-503.
    [34]徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995(05):485-491.
    [35]魏明尧,王恩元,刘晓斐,等.深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J].岩土力学,2011(08):2539-2543.
    [36]牟宗龙,窦林名,张广文,等.坚硬顶板型冲击矿压灾害防治研究[J].中国矿业大学学报,2006(06):737-741.
    [37]陆菜平,窦林名,吴兴荣.煤岩动力灾害的弱化控制机理及其实践[J].中国矿业大学学报,2006(03):301-305.
    [38]姜福兴,王平,冯增强,等.复合型厚煤层“震-冲”型动力灾害机理、预测与控制[J].煤炭学报,2009(12):1605-1609.
    [39]何烨,彭飞,胡学军,等.济二矿首例孤岛综放面冲击矿压监测治理[J].中国矿业大学学报,2004(05):79-82.
    [40]方新秋,窦林名,柳俊仓,等.大采深条带开采坚硬顶板工作面冲击矿压治理研究[J].中国矿业大学学报,2006(05):602-606.
    [41]张世超,周科平,胡建华,等.顶板诱导崩落技术及其在大厂铜坑92号矿体的应用[J].中南大学学报,2008(03):429-435.
    [42]胡建华,周科平,罗先伟,等.顶板诱导崩落爆破效果的全景探测与评价[J].岩土力学,2010(05):1529-1533.
    [43]胡建华,苏家红,周科平,等.诱导顶板崩落时变力学模型的建立与应用[J].中南大学学报,2007(06):1212-1218.
    [44]闫少宏,宁宇,康立军,等.用水力压裂处理坚硬顶板的机理及实验研究[J].煤炭学报,2000(01):34-37.
    [45]靳钟铭,赵阳升,张惠轩,等.预注水软化顶板岩石在特厚煤层多分层开采中的实践[J].岩土工程学报,1991(01):68-74.
    [46]黄文尧,颜事龙,刘泽功,等.煤矿瓦斯抽采水胶药柱在煤层深孔爆破中的研究与应用[J].煤炭学报,2012(03):472-476.
    [47]富向,刘洪磊,杨天鸿,等.穿煤层钻孔定向水压致裂的数值仿真[J].东北大学学报,2011(10):1480-1483.
    [48]邓广哲.封闭型煤层裂隙地应力场控制水压致裂特性[J].煤炭学报,2001(05):478-482.
    [49]戴荣贵.杜儿坪矿十五尺煤层坚硬顶板垮落规律和矿山压力的初步分析[J].煤炭学报,1965(04):40-50.
    [50]朱德仁,钱鸣高,徐林生.坚硬顶板来压控制的探讨[J].煤炭学报,1991(02):11-20.
    [51]屠世浩,窦凤金,万志军,等.浅埋房柱式采空区下近距离煤层综采顶板控制技术[J].煤炭学报,2011(03):366-370.
    [52]李春睿,康立军,齐庆新,等.深孔爆破数值模拟及其在煤矿顶板弱化中的应用[J].煤炭学报,2009(12):1632-1636.
    [53]郭德勇,商登莹,吕鹏飞,等.深孔聚能爆破坚硬顶板弱化试验研究[J].煤炭学报,2013(07):1149-1153.
    [54]魏锦平,靳钟铭,阎志义.“两硬”条件下综放工艺参数数值模拟优化研究[J].煤炭学报,2000(S1):39-42.
    [55]张子飞,来兴平.复杂条件下急斜厚煤层高阶段综放开采超前预爆破[J].煤炭学报,2008(08):845-849.
    [56]鞠文君.应力控制法维护巷道的数值模拟研究[J].煤炭学报,1994(06):573-580.
    [57]段克信.用巷帮松裂爆破卸压维护软岩巷道[J].煤炭学报,1995(03):311-316.
    [58]蒋金泉,韩继胜,石永奎.巷道围岩结构稳定性与控制设计[M].北京市:煤炭工业出版社,1999.
    [59]何富连,陈建余,邹喜正,等.综放沿空巷道围岩卸压控制研究[J].煤炭学报,2000(06):589-592.
    [60]高明仕,张农,郭春生,等.三维锚索与巷帮卸压组合支护技术原理及工程实践[J].岩土工程学报,2005(05):587-590.
    [61]刘红岗,贺永年,徐金海,等.深井煤巷钻孔卸压技术的数值模拟与工业试验[J].煤炭学报,2007(01):33-37.
    [62]王襄禹,柏建彪,胡忠超.基于变形压力分析的有控卸压机理研究[J].中国矿业大学学报,2010(03):313-317.
    [63]柏建彪,王襄禹,贾明魁,等.深部软岩巷道支护原理及应用[J].岩土工程学报,2008(05):632-635.
    [64] YUYang,BAI Jianbiao,CHEN Ke,et al.Failure mechanism and stability control technologyof rock surrounding a roadway in complex stress conditions[J].Mining Science andTechnology,2011,21(3):301-306.
    [65]田建胜,靖洪文.软岩巷道爆破卸压机理分析[J].中国矿业大学学报,2010(01):50-54.
    [66]吕恒林,张强,蒙勇,等.卸压法治理井壁结构破裂的模拟试验研究[J].中国矿业大学学报,2001(02):22-26.
    [67]吕恒林,崔广心.卸压法治理井壁破裂的力学机理[J].中国矿业大学学报,2000(04):3-7.
    [68]杨平.卸压槽治理井壁破裂研究[J].岩土工程学报,1998(03):19-22.
    [69]胡巍,隋旺华.地层失水沉降诱发井筒破裂治理效果的三维数值分析[J].岩土力学,2011(S1):743-748.
    [70] B.N.Whittaker,R.N.Singh.Design and Stability of Pillar in Longwall Mining[J].TheMining Engineer,June,1979,P59-70.
    [71] MDG.Salamon.AStudy of the Strength of Coal Pillars[J].Journal of the SouthAfrican InstMin Metall,1967,68,P55-67.
    [72] Whittaker.B.N,Woodron.G.G.M etc.Design Loads for Gateside pack and SupportSystem[J].The Mining Engineer,Feb,1997.
    [73] B.C.Williams.Packing Technology[J].The Mining Engineer,No.3,1988.
    [74] Smart.B.G.D,Davies.D.O etc.Application of the Rock-TitleApproach to pack Designin anArch-Sharped Roadway[J].Mining Engineer,Dec,1982.
    [75] Bjurstrom.S.Shear Strength of Hard Rock Joints Reinforced by Grouted Untensioned Bolts,Proc.of3rd Congress,ISRM Denver,Vol.II.B.1974.
    [76]孙恒虎,赵炳利.沿空留巷的理论与实践[M].北京:煤炭工业出版社,1993.
    [77]李化敏.沿空留巷顶板岩层控制设计[J].岩石力学与工程学报,2000,19(5):651-654.
    [78]漆泰岳,郭育光,侯朝炯.沿空留巷整体浇注护巷带适应性研究[J].煤炭学报,1999,24(3):256-260.
    [79]谢文兵,笪建原,冯光明.综放沿空留巷围岩控制机理[J].中南大学学报,2004,35(4):657-661.
    [80]华心祝,马俊枫,许庭教.沿空留巷巷旁锚索加强支护与参数优化[J].煤炭科学技术,2004,32(8):60-64.
    [81]华心祝,马俊枫,许庭教.锚杆支护巷道巷旁锚索加强支护沿空留巷围岩控制机理研究及应用[J].岩石力学与工程学报,2005,24(12):2107-2112.
    [82]陆士良编著.无煤柱护巷矿压显现研究[M].北京:煤炭工业出版社,1993.
    [83] YUAN Liang.Study on Critical, Modern Technology for Mining in Gassy DeepMines[J].Journal of China University of Mining&Technology,2007,17(2):226-231.
    [84]布铁勇,冯光明,贾凯军.大采高综采沿空留巷巷旁充填支护技术[J].煤炭科学技术,2010,38(11):41-44.
    [85]武景山,李学彬,马鹏鹏,等.高支承压力区沿空留巷围岩稳定性数值分析[J].煤炭科学技术,2010,38(6):23-26.
    [86]唐建新,胡海,涂兴东,等.普通混凝土巷旁充填沿空留巷试验[J].煤炭学报,2010,35(9):1425-1429.
    [87]张镇,林健,范明健,等.强烈采动影响下的沿空留巷巷道加固技术[J].煤炭科学技术,2010,38(6):14-17.
    [88]闫玉彪,石建军,蒋正君.沿空留巷锚带索耦合支护技术[J].采矿与安全工程学报,2010,27(2):273-276.
    [89]张成文,孙春东.沿空留巷锚网索与密集支柱联合支护技术[J].煤炭科学技术,2010,38(9):50-53.
    [90]张登龙,华心祝.深部矿井Y型通风沿空留巷围岩控制技术[J].煤炭科学技术,2010,38(12):28~32.
    [91]孙恒虎,刘文永,黄玉诚,等.泵送高水材料巷旁充填活空留巷技术[Z].北京市:中国矿业大学,2005-01-01.
    [92]张明安,缪协兴,赵英利,等.综放大断面沿空留巷技术研究[Z].山西省:山西潞安矿业,2001-11-30.
    [93]孙春东,张成文,唐智良,等.轻放综合支护沿空留巷往复式开采技术研究[Z].河北省:邯郸矿业集团有限公司,2007-12-25.
    [94]王继承,鲁庆明,权景伟,等.锚杆支护巷旁充填沿空留巷新技术研究[Z].江苏省:徐州矿务集团有限公司,2004-06-01.
    [95]赵少华,华心祝,朱昊,等.困难条件下锚网索支护巷道沿空留巷围岩控制机理与应用研究[Z].安徽省:淮北矿业,2004.
    [96]黄庆亨,冉隆明,赵茂森,等.急倾斜松软围岩煤巷沿空留巷锚网支护研究[Z].四川省:攀枝花煤业,2007-04-21.
    [97]喻孝斌,吴历忠,许国安,等.急倾斜煤层多次采动沿空留巷围岩失稳机理与控制技术[Z].四川省:四川广旺能源发展,2008-05-17.
    [98]唐军,成云海,宋召谦,等.沿空巷旁支护不等强承载留巷机理与应用[Z].山东省:山东华泰矿业有限公司,2008-12-26.
    [99]河北金牛能源股份有限公司.特种组合支护切顶护帮无人工巷旁充填沿空留巷技术研究[Z].河北省:河北金牛能源股份有限公司,2009-02-28.
    [100]赵茂森,周宝精,曾庆林,等.冒落矸石自然充填注浆固化留巷成套技术研究[Z].四川省:攀枝花煤业,2010-05-16.
    [101]成云海,郭信山,庞继禄,等.新汶矿区复杂条件巷旁多模式充填留巷机理与应用体系[Z].山东省:新汶矿业集团公司技术中心,2010-12-18.
    [102]黄福昌,林东才,倪兴华,等.深部松软顶底板中厚煤层综采沿空留巷技术研究[Z].山东省:兖州煤业股份有限公司,2010-12-11.
    [103]何长海,王晓利,尚书海,等.柔模泵注混凝土沿空留巷支护技术应用研究[Z].河北省:冀中能源峰峰集团有限公司,2010-01-17.
    [104]王明光,徐营,毕天富,等.沿空留巷围岩控制及煤与瓦斯共采技术[Z].山西省:山西沁新能源集团股份有限公司,2010-12-27.
    [105]刘玉果,李明国,孙常军,等.深部坚硬顶板留巷充填系统、材料及应用成套技术[Z].山东省:山东华恒矿业有限公司,2010-12-01.
    [106]刘玉果,孙常军,秦立伦,等.大采深破碎软岩综采工作面窄小煤柱留巷技术研究[Z].山东省:山东华恒矿业有限公司,2010-10-01.
    [107]李希勇,邢茂俭,张圣国,等.薄煤层综采面矸石充填及沿空留巷成套装备与技术[Z].山东省:山东新阳能源有限公司,2010-12-18.
    [108]赵尚忠,刘书梁,石建军,等.超前预裂坚硬顶板巷旁无填充留巷技术研究与应用[Z].河北省:邯郸市孙庄采矿有限公司,2011-12-23.
    [109]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [110]ZHANG Nong,WANG Cheng,ZHAO Yi-ming.Rapid development of coalmine bolting inChina[J].Procedia Earth and Planetary Science1,2009:41-46.
    [111]WANG Cheng,ZHANG Nong,LI Guichen,et al.De-stressed mining of multi-seams:Surrounding rock control during the mining of a roadway in the overlying protectedseam[J].Mining Science and Technology,2011,21(2):159-164.
    [112]ZHANG Nong,YUAN Liang,HAN Changliang,et al.Stability and deformation ofsurrounding rock in pillarless gob-side entry retaining[J].Safety Science,2012,50(4):593-599.
    [113]郭育光,柏建彪,侯朝炯.沿空留巷巷旁充填体主要参数研究[J].中国矿业大学学报,1992,21(4):1-11.
    [114]谢文兵,殷少举,史振凡.综放沿空留巷几个关键问题的研究[J].煤炭学报,2004,29(2):146-149.
    [115]华心祝,赵少华,朱昊,等.沿空留巷综合支护技术研究[J].中国矿业大学学报,2006,27(12):2225-2228.
    [116]王金安,韦文兵,冯锦艳.综放沿空异形煤柱留巷系统力学场演化规律[J].北京科技大学学报,2006,28(4):317-323.
    [117]张国华.主动支护下沿空留巷顶板破碎原因分析[J].煤炭学报,2005,30(4):429-432.
    [118]朱川曲,张道兵,施式亮,等.综放沿空留巷支护结构的可靠性分析[J].煤炭学报,2006,31(2):141-144.
    [119]唐建新,邓月华,涂兴东,等.锚网索联合支护沿空留巷顶板离层分析[J].煤炭学报,2010,35(11):1827-1831.
    [120]何廷峻.工作面端头悬顶在沿空巷道中破断位置的预测[J].煤炭学报,2000,25(1):28-31.
    [121]黄玉诚,孙恒虎.沿空留巷护巷带参数的设计方法[J].煤炭学报,1997,22(2):127-131.
    [122]漆泰岳.沿空留巷整体浇注护巷带主要参数及适应性[J].中国矿业大学学报,1999,28(2):122-125.
    [123]颜志平,漆泰岳,张连信,等.ZKD高水速凝材料及其泵送充填技术的研究[J].煤炭学报,1997,22(3):270-275.
    [124]张东升,缪协兴,冯光明,等.综放沿空留巷充填体稳定性控制[J].中国矿业大学学报,2003,32(3):232-235.
    [125]徐金海,付宝杰,周保精.沿空留巷充填体的流变特性分析[J].中国矿业大学学报,2008,37(5):585-589.
    [126]谢文兵,王世彬,冯光明.放顶煤开采沿空留巷围岩移动规律及变形特征[J].中国矿业大学学报,2004,33(5):513-516.
    [127]DENG Yuehua,TANG Jianxin,ZHU Xiangke,et al.Analysis and application in controllingsurrounding rock of support reinforced roadway in gob-side entry with fully mechanizedmining [J].Mining Science and Technology,2010,20(6):839-845.
    [128]WANG Hongsheng,ZHANG Dongsheng,FAN Gangwei.Structural effect of a soft–hardbackfll wall in a gob-side roadway[J].Mining Science and Technology,2011,
    [129]鞠文君.锚杆支护巷道顶板离层机理与监测[J].煤炭学报,2000,25(增刊):58-61.
    [130]于涛,王来贵.覆岩离层产生机理[J].辽宁工程技术大学学报,2006,25(增刊):132-134.
    [131]张玉卓,陈立良.长壁开采覆岩离层产生的条件[J].煤炭学报,1996,21(6):576-581.
    [132]章伟,郑进凤,于广明,等.覆岩离层形成的力学判据研究[J].岩土力学,2006,27(增刊):275-278.
    [133]杨伦,于广明,王旭春,等.煤矿覆岩采动离层位置的计算[J].煤炭学报,1997,22(5):477-480.
    [134]张庆松,高延法,刘松玉.开采覆岩离层发育规律的动态数值仿真分析[J].矿山压力与顶板管理,2004,21(2):7-9.
    [135]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报,2004,26(5):632-636.
    [136]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004,33(5):524-527.
    [137]LU Yan,LIU Changyou.Similarity simulation of bolt support in a coal roadway in a tectonicstress field[J].Mining Science and Technology,2010,20(5):718-722.
    [138]CHANG Qingliang,ZHOU Huaqiang,XIE Zhihong,et al.Anchoring mechanism andapplication of hydraulic expansion bolts used in soft rock roadway floor heavecontrol[J].International Journal of Mining Science and Technology,2013,23(3):323-328.
    [139]FU Jianqiu,FENG Chao,SHI Jianjun.Investigation into the deformation of a large spanroadway in soft seams and its support technology[J].Mining Science and Technology,2011,21(4):531-535.
    [140]LU Yinlong,WANG Lianguo,ZHANG Bei.An experimental study of a yielding support forroadways constructed in deep broken soft rock under high stress[J].Mining Science andTechnology,2011,21(6):839-844.
    [141]王素华,高延法,付志亮.注浆覆岩离层力学机理及其离层发育分类研究[J].固体力学学报,2006,27(S1):164-168.
    [142]范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(2):196-201.
    [143]张百胜,康立勋,杨双锁.大断面全煤巷道层状顶板离层变形模拟研究[J].采矿与安全工程学报,2006,23(3):264-267.
    [144]YANG Jiping,CAO Shenggen,LI Xuehua.Failure laws of narrow pillar and asymmetriccontrol technique of gob-side entry driving in island coal face[J].International Journal ofMining Science and Technology,2013,23(2):267-272.
    [145]黄炳香,刘长友,许家林.采动覆岩破断裂隙的贯通度研究[J].中国矿业大学学报,2010,39(1):45-49.
    [146]LU Haifeng,YUAN Baoyuan,WANG Lin.Rock parameters inversion for estimating themaximum heights of two failure zones in overburden strata of a coal seam[J].MiningScience and Technology,2011,21(1):41-47.
    [147]吴立新,王金庄,郭增长.煤柱设计与监测基础[M].徐州市:中国矿业大学出版社,2000.
    [148]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [149]徐颖,刘永胜,傅菊根,等.软弱层带爆炸注浆理论与实践[M].合肥:中国科学技术大学出版社,2008.
    [150]李迎富,华心祝,蔡瑞春.沿空留巷关键块的稳定性力学分析及工程应用[J].采矿与安全工程学报,2012,(03):357-364.
    [151]夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002.
    [152]冯光明.超高水充填材料及其充填开采技术研究与应用[D].徐州:中国矿业大学,2009.
    [153]孙恒虎,黄玉诚,杨宝贵.当代胶结充填技术[M].北京:冶金工业出版社,2002.
    [154]冯光明,王成真.超高水材料采空区充填工艺系统与应用研究[J].山东科技大学学报,2011,30(2):1-8.
    [155]马民乐,孙春东,李永元.新型高水材料沿空留巷技术的应用与研究[J].煤炭与化工,2013,36(2):49-51.
    [156]冯光明,丁玉,朱红菊,等.矿用超高水充填材料及其结构的实验研究[J].中国矿业大学学报,2010,39(6):813-819.
    [157]冯光明,孙春东,王成真,等.超高水材料采空区充填方法研究[J].煤炭学报,2010,35(12):1963-1968.
    [158]冯光明,王成真,李凤凯,等.超高水材料开放式充填开采研究[J].采矿与安全工程学报,2010,27(4):453-457.
    [159]王鹏宇,冯光明,戚洋,等.新型高水材料巷旁充填系统可靠性分析[J].金属矿山,2012,4:27-31.
    [160]刘树轮.大采高新型高水速凝材料沿空留巷技术研究[C].北京:煤炭工业出版社,2010:106-112.
    [161]蔡嗣经,毛市龙,方祖烈.高水速凝充填材料的风化特征和风化机理[J].北京科技大学学报,1996,18(5):406-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700