用户名: 密码: 验证码:
锚固复合承载体承载特性研究及在巷道锚杆支护设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锚杆支护不仅可以起到悬吊、组合梁和挤压加固的作用,而且能够与围岩相互作用形成具有一定强度的承载结构,然而现行锚杆支护设计缺乏对承载结构的考虑。本文在前人研究的基础上,采用实验室岩块实验、平面应变相似模拟试验、数值模拟、理论分析、计算机编程和工程实践相结合的综合研究手段,提出了“锚固复合承载体”的概念,建立了不同巷道断面的锚固复合承载体力学模型,揭示了锚固复合承载体的承载机理和承载特性,确定了锚固复合承载体稳定性判据,并根据判据开发锚杆支护参数设计软件。论文主要成果如下:
     (1)锚固复合承载体内部的应力及巷道围岩移近量的变化呈如下规律:在加载初期,其应力与位移缓慢增长;加载中期,随着锚杆与围岩的协调作用,其应力快速增长至围岩的承载的峰值应力,锚固复合承载体很快产生承载作用,巷道位移也随之增长;外载达到一定程度后,锚固复合承载体内的应力超过其极限承载能力,围岩发生破坏致应力迅速降低至残余承载应力状态,而此时巷道变形量大幅度增加。
     (2)提出了“锚固复合承载体”的概念。反映锚固复合承载体在外载作用下抵抗变形能力的标志之一是巷道围岩移近增速,巷道围岩移近增速愈小,巷道抵抗变形的能力愈大。模拟研究表明,巷道围岩移近增速的变化呈如下规律:峰前承载阶段小于峰后阶段,高密度锚杆支护小于低密度支护;长锚杆支护小于短锚杆支护;大直径锚杆支护小于小直径锚杆支护。但当锚杆长度的增加到一定值后对锚固复合承载体的承载能力提高作用较小。
     (3)基于半圆拱巷道和矩形巷道,建立相应的锚固复合承载体的力学模型,并计算锚固复合承载体的几何参数和强度。基于自然平衡拱理论计算了上覆潜在松动岩层的重量,提出了锚固复合承载体的稳定性判据。
     (4)通过对锚固复合承载体进行的破坏性加载试验,得出锚固复合承载体的破坏形式:顶板发生近似“人”字形的裂缝后,顶板下沉量急剧增加,加载载荷难以维持稳定。通过对锚固复合承载体强度实测验证了理论计算的正确性。
     (5)根据锚固复合承载体稳定性判据建立了锚杆支护参数设计步骤,并初步编写了巷道锚杆支护参数设计软件。针对三个不同巷道的生产地质条件,采用巷道锚杆支护参数设计软件进行支护参数设计,并将设计结果应用于工程实践,结果表明基于“锚固复合承载体”理论的参数设计应用后有效的控制了巷道变形,从工程实践的角度验证了本文研究成果的科学性和可靠性。
Bolting support can not only play a role as suspension, composite beam andcombined arch, but also form a bearing structure with some intensity by theinteraction with the surrounding rock. But the current bolting design methods don’ttake the bearing structure into account. Based on the analysis of predecessors’achievements and by combining with the existing theoretical results of surroundingrock control, plane strain similar material simulation experiment, numericalsimulation analysis, theory analysis, calculator program and engineering practices,this dissertation put forward the theory of Composite Bolt-Rock Bearing Structure,established a mechanical model of Composite Bolt-Rock Bearing Structure ofdifferent roadway section, revealed its loading bearing mechanism and characteristic,determined its stability criterion and developed a design software. Main results are asfollows:
     (1) The change of stress and rock deformation around roadway of CompositeBolt-Rock Bearing Structure were as follows: In the initial stage the stress anddeformation increased slowly. In the middle stage the stress had a rapid growth topeak stress and the deformation increased rapidly with the coordinated effect of boltand surrounding rock. When the load reaches a certain degree, the stress exceeded thelimit bearing capacity and then fallen to the residual stress state due to the damage ofsurrounding rock and the deformation was accelerated development.
     (2) The paper put forward the concept of Composite Bolt-Rock Bearing Structure.Displacement per stress of rock deformation around roadway was one symble whichreflected the ability to resist deformation under pressure. The less displacement perstress of rock deformation around roadway was, the stronger the ability to resistdeformation of the roadway had. The simulation showed that the displacement perstress in the initial and middle stage was less than it is in the last stage, thedisplacement per stress with high support density was less than it is with low supportdensity and the displacement per stress with long bolt length was less than it is withshort bolt length. The displacement per stress with large bolt diameter was less than itis with small bolt diameter. However, when the bolt length was relatively long,increasing the bolt length had little effect on the strength of Composite Bolt-RockBearing Structure.
     (3) Based on different roadway section, for instance semi-circular arch andrectangle, we established a corresponding mechanical model of Composite Bolt-RockBearing Structure and obtained the formula of geometric parameter and strength. Theformula of Composite Bolt-Rock Bearing Structure strength indicated that thestrength not only associated with force condition, but also affected by geometricparameter. Based on natural equilibrium arch theory, we calculated the weight of thepotential overlying loose strata and determined stability criterion of CompositeBolt-Rock Bearing Structure.
     (4) By separating Composite Bolt-Rock Bearing Structure from surrounding rockand its destructive loading test, we got its destruction form of Composite Bolt-RockBearing Structure: cracks occurred in roof, roof sag increased dramatically andapplied stress was difficult to maintain stable. The correctness of the theoreticalcalculations was verified.
     (5) Based on the stability criterion of Composite Bolt-Rock Bearing Structure,we established design procedure of bolt support parameters initially and developeddesign software of roadway bolting support with a computer program. The resultsdesigned by this design software were applied successfully in three field tests ofGucheng coal mine, Dan Shuigou coal mine and Huale coal mine under typicalgeological conditions of roadway. The application results showed that the bolt supportparameters designed based on Composite Bolt-Rock Bearing Structure controlled ofthe deformation of roadway effectively and the research results of paper werevertifyed to be sicence and reliability from the engineering practice.
引文
[1]侯朝炯,郭励生,勾攀峰,等.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [2]耿卫红,罗春华.岩土锚固工程技术及其应用[J].探矿工程,1997,(4):8-10.
    [3]陆士量,汤雷,新新安.锚杆锚固力与锚固技术[M].徐州:煤炭工业出版社,1998.
    [4]宋海涛,张益东,朱卫国.锚杆支护现状及其发展[J].矿山压力与顶板管理,1999,(1):2-4.
    [5]勾攀峰.巷道锚杆支护提高围岩强度和稳定性研究[D].徐州:中国矿业大学,1998.
    [6]康洪普,王金华.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
    [7]何满潮,袁和生.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004.
    [8]何满潮,孙晓明.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004.
    [9]郑颖人,等.地下工程锚喷支护设计指南[M].北京:中国铁路出版社,1989.
    [10]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [11]陈玉祥,王霞,刘少伟.锚杆支护理论现状及发展趋势探讨[J].西部探矿工程,2004,(10):155-157.
    [12][英]A哈依斯,等.岩层控制技术的发展现状[C].国外锚杆支护技术译文集,煤炭科学研究总院北京开采所,1997,6.
    [13]董方庭.井巷设计与施工[M].徐州:中国矿业大学出版社,1997.
    [14]东兆星,吴士良.井巷工程[M].徐州:中国矿业大学出版社,2004.
    [15]张益东,张少华,侯朝炯,等.地应力对锚杆支护的沿空巷道的影响[J].中国矿业大学学报,1999,28(4):371-374.
    [16]彭苏萍,孟召平.矿井工程地质理论与实践[M].北京:地质出版社,2002.
    [17]郑雨天,朱浮声.预应力锚杆体系—锚杆支护技术发展的新阶段[J].矿山压力与顶板管理,1995,1:2-7,56.
    [18]郭颂.水平应力—对采准巷道围岩稳定性的新认识[J].煤矿开采,1998,(4):14-17.
    [19] Song Guo, J. Stankus.1997Control mechanism of a tensioned bolt system in the laminatedroof with a large horizontal stress[C].16th Int. Conf. on Ground Control in Mining MorgantownWest Virginia.
    [20]闰莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社,2004.
    [21]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报,2004,23(21):3734-3737.
    [22]李德忠等.深部矿井开采技术[M].徐州:中国矿业大学出版社,2005,10.
    [23]杜计平,苏景春.煤矿深井开采的矿压显现及控制[M].徐州:中国矿业大学出版社,2000,4.
    [24]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [25]沈明荣.岩体力学[M].上海:同济大学出版社,1991.
    [26] Terzaghi K. Theoretieal soil Mechanics [M]. NewYork:John Wiley and Sons,1943.
    [27] Terzaghi K, Peck R B, Mesri G. Soil Mechanics in Engineering Praetiee [M]. NevYork:JohnWiley and Sons,1969.
    [28]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994.
    [29]于学馥,郑颖人,刘怀恒.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [30]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [31] HKastner.Osterreich Bauzeitischrift,Vol.10(11),1947.
    [32] Kawahara,Mutsuto. Strain-softening finite element analysis of rock applied to tunnelexcavation[J]. In: Proceedings of the International Symposium on Weak Rock,Tokyo,1981.
    [33] LiuBaoshen. Mechanical models of fractured rock[J]. In: Proceedings of the InternationalSymposium on Weak Rock,Tokyo,1981.
    [34] Bazant Z P, BelytschkoTed B, Ta-Peng Chang. Continuum theory for strain-softening[J].Journal of Engineering Mechanies,1984,110(12):1666-1693.
    [35] Oka Fusao, Leroueil S., Tavenas F. A constitutive model for natural soft clay with strainsoftening[J]. Soils and Foundations,1989,29(3):54-66.
    [36] Nawroeki P., Mroz Z. Constitutive model for rock accounting for viseoplastic deformationand damage[J]. In: Tillerson, Wawersik, eds: Rock Mechanies. Rotterdam:Balkema,1992
    [37] Liao J. S. An elastoplastic-damage model for rock-like materials. In: Rossmanith, eds:Mechanics of Jointed and Faulted Rock. Rotterdam: Balkema,1995
    [38]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986,11(3):77-86.
    [39]马念杰,张益东.圆形巷道围岩变形压力新解法[J].岩石力学与工程学报,1996,15(1):84-89.
    [40]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [41]柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报,2006,35(2):145-148.
    [42]马念杰.软化岩土中巷道围岩塑性区分析[J].阜新矿业学院学报,1995,14(4):18-21.
    [42]张益东,李晋平.综放锚杆支护巷道顶煤内部支护结构承载能力探讨[J].煤炭学报,1999,24(6):605-608.
    [44]米勒.新奥法的基本思想和主要原则.地下工程,1980.
    [45]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [46]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2000.
    [47]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [48]景海河,何满潮,孙晓明等.软岩巷道支护荷载的确定方法[J].中国矿业大学学报,2002,31(5):375-378.
    [49]康红普.巷道围岩的承载圈分析[J].岩土力学,1996,17(4):84-88.
    [50]康红普.巷道围岩的承载圈理论[J].力学与实践,1997,19(1):34-36.
    [51]田永山.软泥岩巷道矿压机理的相似模拟探讨[J].阜新矿业学院学报,1987,6(4):15-25.
    [52]田永山.软泥岩巷道锚喷支护的相似模拟探讨[J].阜新矿业学院学报,1988,7(2):12-20.
    [53]陈学华,沈海鸿,王善勇.巷道围岩自稳结构原理及其影响因素研究[J].辽宁工程技术大学学报,2002,21(3):261-263.
    [54]黄明利,张绍文,田永山.巷道围岩应力分布影响因素的研究[J].阜新矿业学院学报,1996,16(3):375-350.
    [55]王成.隧道系统锚杆设计计算理论研究[J].重庆交通大学学报(自然科学版),2008,27(1):37-39.
    [56]谢广祥,王磊.采场围岩应力壳力学特征的岩性效应[J].煤炭学报,2013,38(1):44-49.
    [57]汤雷,王五平.锚杆支护与围岩共同承载的协调性[J].煤炭学报,2004,1:12-16.
    [58]陈士林,钱七虎,王明洋.深部坑道围岩的变形与承载能力问题[J].岩石力学与工程学报,2005,24(13):2203-2210.
    [59]余伟健,高谦,朱川曲.深部软弱围岩叠加拱承载体强度理论及应用研究[J].岩石力学与工程学报,2010,29(10):2134-2141.
    [60] J.P.A.Roest,W.KamP.The self supporting rock ring[J]. Proceed of Mining and Technology(ed4),1985.
    [61]李永和.孔群支护一自承围岩承载结构体系的非作线性机理分析[J].岩石力学与工程学报,1995,14(2):161-170.
    [62]李永友,李树清.深部软岩巷道锚注联合支护围岩承载机理分析[J].湖南科技大学学报(自然科学版),2008,23(1):10-14.
    [63]张开,朱敏,张建强,等.深部巷道围岩承载结构的数值分析[J],煤矿安全.2012,1:377-380.
    [64]李树清.深部煤巷围岩控制内外承载结构祸合稳定原理的研究[D].长沙:中南大学,2008.
    [65]伍永平,柴敬.回采巷道内岩体结构与支护体相互作用分析[J].阜新矿业学院学报,1997,16(l):56-60.
    [66]孙河川,张鏖,施仲衡.喷锚支护与隧道自承拱的机理[J].岩土工程学报,2004,26(4):490-494.
    [67]赵俭斌,易南概,高德山.承压拱在隧道喷锚支护参数优化设计中的应用[J].哈尔滨工业大学学报,2003,35(6):677-678,697.
    [68]韩立军,贺永年.深部破裂岩体锚注加固结构承载机理分析[J1.煤炭学报,2005,30(s):38-41.
    [69]方祖烈.拉压域特征及主次承载区的维护理论[M].世纪之交软岩工程技术现状与展望.北京:煤炭工业出版社,1999.
    [70]朱建明,徐秉业,任天贵等.巷道围岩主次承载区协调作用[J].中国矿业,2000,9(2):41-44.
    [71]钟世航.隧道围岩自承体系的形成及发展[J].铁道工程学报,1994,(9):678-684.
    [72]卢汝绥,钟世航.隧道自承体系形成机理的分析[J].隧道及地下工程,1997,18(4):5-9,24.
    [73]孔恒,王梦恕,高海宏.岩体锚固承载结构的构成分析[J].西部控矿工程,2003,(2):97-99.
    [74] Man-chu Ronald Yeung.Application of Shi’s discontinuous deformation analysis to the studyof rock behavior [D]. Department of Civil Engineering College of Engineering University ofCalifornia Berkeley.1991.
    [75]赵星光,蔡美峰,蔡明等.地下工程岩体剪胀与锚杆支护的相互影响[J].岩石力学与工程学报,2010,29(10):2056-2062.
    [76]马全礼,代进,李洪.锚杆支护对围岩碎裂区的作用分析[J].矿山压力与顶板管理,2005,1,42-46.
    [77] V.V.Nazimko, Peng,A.A, LaPteev,et.al. Damage mechanics around a tunnel due toincremental ground pressure[J]. Int.J.Rock Meeh&Min.Sci,1997,34(3-4):655-658.
    [78]李桂臣.软弱夹层顶板巷道围岩稳定与安全控制研究[D],徐州:中国矿业大学,2008.
    [79]张农,李桂臣,阚甲广.煤巷顶板软弱夹层层位对锚杆支护结构稳定性影响[J].岩土力学,2011,32(9):2753-2758.
    [80]王金华,修作量,赵森林,等.邢台矿综放面全煤巷道组合锚杆支护技术[J].煤炭科学技术,1999,27(1):14-17.
    [81]袁亮.淮南矿区煤巷稳定性分类及工程对策[J].岩石力学与工程学报,2004,23(增刊2):4790-4794.
    [82]胡学军,范世明.煤巷锚杆支护成套技术在潞安矿区的应用[J].煤炭科学技术,2003,31(6):33-35.
    [83]朱晓明,姜铁明,赵军.晋城矿区煤巷锚杆支护的实践[J].煤炭工程,2003,8(4):46-48.
    [84]秦斌青.西山矿区煤巷锚杆支护的应用[J].煤炭科学技术,2000,28(6):4-5.
    [85]戴俊,郭相参.煤矿巷道锚杆支护的参数优化[J].煤炭学报,2008,33(7):721-726.
    [86]张小强,田取珍.大断面软岩巷道锚杆支护参数的模拟研究[J].煤炭技术,2011,30(6):81-83.
    [87]康红普,姜铁明,高富强.预应力锚杆支护参数的设计[J].岩土力学,2009,30:140-143.
    [88]徐立功,李浩,陈详林,等.锚杆参数对围岩稳定性影响的数值分析[J].岩土工程学报,2010,32(增刊2):249-252.
    [89]韩现明,孙明磊,李文江,等.复杂条件下隧道断面形状和支护参数优化[J].岩土力学,2011,32(增刊1):725-731.
    [90] Rabcewicz L.Principles of dimensioning the Support System for the New Austrian TunnelingMethod[J].Water Power,1973,25(3):88~93.
    [91] Lang T A, Bischoff J A. Stability of reinforced rock structure[J].In:Design and Performanceof Underground Excavations[C].London: British Geotechnical Soeiety,1984.11-18.
    [92]杨松林.锚杆抗拔机理及其在节理岩体中的加固作用[D].武汉:武汉大学,2001.
    [93]董方庭.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [94] P.P.oreste, D Peil.Modeling Progressive Hardening of shotcrete in Convergence-Confinement Approach to Tunnel Design[J]..Journal of Tunneling and Underground SpaceTeehnology,1997,12(3):425~431.
    [95] Lutz,L.,Gergeley.P.Mechanics of bond and slip of deformed bars in concrete[J].Journal ofAmerican Concrete Institute,1967,64(1):711-721.
    [96] Hansor,N.W.Influence of surface roughness of prestressing strand on bandperformance[J].Journal of Prestessed Concrete Institute,1969,14(1):32-45.
    [97] Goto,Y.Cracks formed in concrete around deformed tension bars[J].Journal of AmericanConcrete Institute,1971,68(4):144-251.
    [98] Tepferd,P.A.Theory of bond applied to overlapped tensile reinforcement species fordeformed bars[J].Chalmers University of Technology, Sweden, Publication,1973,73(2):328.
    [99] Ostermayer H.Scheele F. Research on ground anchors in noncohesive soils [A].In:Proceedings of the9th International Conference on Soil Mechanics and FoundationEngineering[C].Tokyo: The Japanese Society of Soil Mechanics and Foundation Engineering,1977.92-97
    [100]王思敬,杨志法.地下工程中岩体工程地质力学问题团[J].岩石力学与工程学报,1987,6(4):301-308.
    [101] FreemanT.J.The behavior of fully-bonded rock bolts in the Kielder experimental tunnel[J].Tunnels and Tunneling June,1978:37-40.
    [102]王明恕,何修仁,郑雨天.全长锚固锚杆的力学模型及其应用[J].金属矿山,1983,4:24-29.
    [103]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理,2001,1:12-15.
    [104]陈庆敏,郭颂.基于高水平地应力的锚杆“刚性”梁支护理论及其设计方法[J].煤炭学报(增刊),2001,26:111-115.
    [105]马念杰,胡昌顺,刘夕才.煤巷锚杆支护地应力设计方法[J].矿山压力与顶板管理,1997,3(4):195-197.
    [106]刘洪涛,马念杰,袁聚良,等.基于顶板结构分类的锚杆参数动态设计方法[J].煤炭科技,36(5):58-61.
    [107]刘洪涛.基于锚固串群体围岩的煤巷锚杆支护参数研究[D].北京:中国矿业大学(北京),2007.
    [108]徐恩虎,平顶巷道锚杆支护的组合深梁模型[J].山东科技大学学报(自然科学版),21(2):72-75.
    [109]周保生,朱维申,李术才.神经网络在综放回采巷道锚杆支护设计中的应用研究[J].岩石力学与工程学报,2001,20(4):497-501.
    [110]谢广祥,查文华.基于ANN-ES综放回采巷道锚杆支护设计[J].煤炭工程,2003,6:60-61.
    [111]康天合,薛亚东,靳钟铭.基于围岩条件与动载作用的回采巷道锚杆支护设计原则[J].岩石力学与工程学报(增刊),1996,15:571-576.
    [112]何满潮,苏永华,孙晓明.锚杆支护煤巷稳定性可靠度分析[J].岩石力学与工程学报,2002,21(12):1810-1814.
    [113]杨振茂,马念杰,官山月,等.锚杆钻孔、杆体、树脂卷直径的合理匹配[J].岩石力学与工程学报,2003,22(4),659-663.
    [114]李大伟,侯朝炯.巷道锚杆支护特性分析与应用[J].煤炭学报,2008,33(6):613-618.
    [115] Malek Bouteldja. Design of cable bolts using numerical modeling [D]. Department ofMiningand Metallurgical Engineering. McGill University, Montreal, Canada. April2000.
    [116]王卫军,侯朝炯.回采巷道煤帮锚杆支护可靠性分析[J].岩石力学与工程学报,2001,20(6):813-816.
    [117]李东.基于可靠性的锚杆支护设计理论与应用研究[D].辽宁工程技术大学,2004.
    [118]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [119]顾大钊.相似材料和相似模型[M].徐州:中国矿业大学出版社,1995.
    [120]林韵梅.实验岩石力学—模拟研究[M].北京:煤炭工业出版社,1984.
    [121]高富强.FLAC用于煤巷锚杆支护综合设计系统的研究[D].徐州:中国矿业大学,2006.
    [122]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [123]宋宏伟,牟彬善.破裂岩石锚固组合拱承载能力及其合理厚度探讨[J].中国矿业大学学报,1997,26(2):33-35.
    [124]缪协兴.自然平衡拱与巷道围岩的稳定[J].矿山压力与顶板管理,1990,(2):55-57.
    [125]于学馥,乔端.轴变论和围岩稳定轴比三规律[J].有色金属,1981,(8):2125.
    [126] McVay.M., Cook.A.R.,and Kailash.K. Pullout simulation postinstalled chemically bondedanchors [J]. Journal of Structural Engineering,1996,122:1016-1024
    [127]唐树名,饶枭宇,张永兴.公路边坡锚固失效模式及影响因素[J].公路交通技术,2005:10(5):26-28,39.
    [128] T.H.Hanna[英].胡定等译.锚固技术在岩土工程中的应用[M].北京:中国建筑工业出版社,1987.
    [129]李磊,杨威.锚杆失效的原因及防治措置[J].矿业工程,2007,5(6):28-30.
    [130]王英,任瑞云,姜洪雨.大雁矿区煤巷锚杆支护失效原因分析及预防[J].煤炭工程,2005,4:23-25.
    [131]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004,33(5):524-527.
    [132]李英明,石建军,贾安立,等.影响煤巷锚杆支护初锚力的主要技术因素分析[J].煤矿开采,2005,10(4):45-48.
    [133]秦爱新.全长锚固锚杆支护力学分析[J].河北煤炭,2001,1:3-4,40.
    [134] Eligehausen, R, Mallee,R, Rehm,G. Fastenings with bonded anchors[J]. Betonwerk undFertigteril-Technik.1984, No10:682; No11:781-785; No:12;825-829.
    [135] Eligehausen, R, Sawade, G. Fracture. Mechanics based description of the pull-out behaviorof headed bolts embedded in concrete[J]. Frature mechanics of concrete structures; from theory toapplications. Lelfgren, Ed, Chpman&Hall, London,1989:263-281.
    [136] PCI Design Handbook:PCI Design Handbook-Precast and Prestressed Concrete [M].Prestressed Concrete Institute, Chicago,1985.
    [137] Farrow, C. B, Tensile capacity of anchors with partial or overlapping falure sruface:evaluation of existing formulas in an LRFD badis.M.S.Thesis [D].The University Of Texas,1982.
    [138] Suttton, T.W. and Meinheit, D. E valuation of expansion anchor ultimate tensile capacityprediction equations, anchors in concrete:design and behavior,SP-130[M]. American ConcreteInsitute,Detroit,1991.
    [139] Frigui,L Tensile capacity of single anchors in concrete;evaluation of existing formulas on anLRFD basis.M S.thesis[D].The University of Texas,1992.
    [140] Fuchs,W.,Eligehausen.,Breen,J.E.Concrete capacity design(CCD)approach for fastening toconcrete[J].ACI Structural Journal,1995,92(1):73-94.
    [141]鞠文君.煤矿巷道支护动态信息设计法[J].中国安全科学学报,2006,16(2):99-102.
    [142]张勇,华安增.巷道系统的动态稳定性研究[J].煤炭学报,2003,(1):22-25.
    [143]康红普,煤巷锚杆支护动态信息设计法及其应用[J].煤矿开采,2002,(1):5-8.
    [144]汪占领.基于动态信息设计法的锚杆支护巷道稳定性分析[J].煤矿开采,2004,(3):34-38.
    [145]刘可伟,杨兆建.基于神经网络的提升设备故障诊断系统[J].太原理工夫学学报,2002.33(4):441-443.
    [146]张农,侯朝炯,杨米加,等.巷道围岩强度弱化规律及其应用[J].中国矿业大学学报,1999,28(2):133-135.
    [147] ZHANG Nong, Study on Strata Control by Delay Grouting in Soft Rock Roadway [J].Journal of Coal Science&Engineering, June2003, Vol.9, No.1P51-56.
    [148]王国际.注浆技术理论与实践[M].徐州:中国矿业大学出版社,2000.
    [149]张农.巷道滞后注浆围岩控制理论与实践[M].徐州:中国矿业大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700