用户名: 密码: 验证码:
注气驱替深部煤层CH_4实验及驱替后特征痕迹研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO_2是温室效应最主要的贡献者,利用深部不可开采煤层封存CO_2可同时实现CO_2大规模减排和增加煤层气资源产量(CO_2-ECBM),具有巨大的发展潜力。然而我国煤层的渗透率普遍较低,传统的煤气层开采方法,排放煤层气藏中的水分,降低气藏的压力,促使煤层气解吸出来,这种方法只能回收20~60%的CH_4,还有相当多的煤层气滞留在煤层中。为了实现这部分资源的开采,在增加煤层透气性基础上,开发了气体驱采煤层CH_4技术,但是这种技术还处于探索阶段。本文基于表面化学、渗流力学、有限元数值分析等理论和方法对CO_2驱替深部煤层CH_4动态过程开展了较系统的实验与模拟研究;以及现场连续采取煤样和气样开展在距离注入点不同尺度中的原始煤层中气体组分浓度及碳同位素的变化,煤体的物理化学结构特性演变研究,获得地质时间内煤层条件CO_2封存的煤体-气体结构的演化规律。
     对窑街煤田海石湾煤样进行了煤对CO_2、CH_4及二元气体吸附解吸实验。煤对CO_2的吸附量明显大于煤对CH_4的吸附量,约1.36~2.1倍,煤样对CO_2/CH_4混合气体的总吸附量介于煤对CO_2和CH_4吸附量之间。随着CO_2比例逐渐越高,煤对混合气体的总的吸附量逐渐增大。二元气体的游离相和吸附相组分比例关系,揭示了CO_2-CH_4二元气体解吸时CH_4优先解吸,解吸速度由快转慢;而吸附时,CO_2会优先吸附,吸附速度由快转慢,上述结论是煤层中二元气体竞争吸附和CO_2驱替煤层CH_4的重要依据。
     自主研发了一套考虑地应力条件注气驱替煤层CH_4实验系统,并利用此实验系统开展了不同注气压力(1.5、1.8、2.2MPa),不同应力条件下(14、19MPa)CO_2、N_2驱替煤层CH_4实验研究。结果表明注入0.5个置换体积比后,N_2突破出气口,随着注气压力的升高,突破时间逐渐提前,而且N_2突破出气口后,其浓度缓慢增加。CO_2驱替CH_4实验,驱替效率较高,煤层里的CH_4基本被驱替出来。注入1.4~2.4个置换体积比,CO_2突破出气口,气体突破以后CO_2浓度迅速在90%以上。随着注气压力的增加,CO_2突破时间减小。地应力增加,导致渗透率减小。CO_2在煤体中的渗流速度变缓,CO_2就能充分的跟煤体发生吸附作用,致使CO_2的突破时间明显变缓了,由地应力为14MPa时的1.4个置换体积比到地应力为19MPa时的2.4个置换体积比了。地应力显著影响气体的驱替效果。
     在物理模拟实验基础上建立了反映二元气体竞争吸附、竞争扩散、气体渗流数学模型。应用COMSOL Multiphysics求解并建立了数值模拟平台,在此数值模拟平台上分别对CO_2、N_2注入煤层后驱替煤层CH_4进行了数值模拟研究。相同的条件下N_2先突破出气口,而CO_2先驱替完煤层中的CH_4。随着注气压力的提高,渗流速度加快,缩短了注气时间。
     窑街煤田煤层中深部CO_2注入煤层驱替CH_4的这一良好的地质背景为研究提供了独特的视角,采用CO_2吸附和压汞法,进行煤的物理结构分析;同时采用质谱仪与色谱仪进行气体的CO_2的δ13C和气体组分、浓度分析,采用傅里叶红外光谱仪进行煤的化学结构分析。实验室试验及现场试验表明,随着远离CO_2注入点,系列煤样的微孔、介孔及大孔有逐渐减小的趋势。井田东部到西部CO_2浓度逐渐减小,CH_4浓度逐渐增大。系列煤样的红外光谱谱图显示:吸收峰在2800~3000cm-1,2270~2413cm-1,1000~1200cm-1波段吸收峰强度变化较大。高压CO_2甚至超临界CO_2在运移的过程中从煤基质中萃取了部分脂肪烃及矿物质,改变了对应官能团的数量,导致吸收峰强度有所减弱,即化学结构发生改变。
CO_2contributes the most to the greenhouse effect of the earth. CO_2sequestrationin deepunminable coal seam is a potential management option for greenhouse gas emissions,reducing CO_2emission meanwhile enhancing coalbed methane recovery, which has has greatpotential for development. And coal seam permeability is generally in China lower,traditional recovery methods of methane by depressurization of coalbeds yield only20~60%of CH_4in place and generally produce large volume of water at the same. There is aconsiderable number of methane in the coal seam. In order to recovery this part of theexploitation of resources, on the basis of increasing coal seam permeability, the technologythat CH_4is recovered by injecting another gas. But this technology is still in the exploratorystage. Based on the theories and methods of surface chemistry, fluid flow mechanics, finiteelement numerical analysis, CO_2flooding for deep coal CH_4dynamic process carried out bysystematic experiment and simulation study. The coal samples and gas samples were selectedcontinuously. Laboratory and field measured methods were used to carry out the gascomponent concentration and carbon isotope change, evolution of the physical and chemicalstructure characteristics of the coal. Coal-gas structure evolution was obtained in the originalseam away from the injection points over the geological time.
     Single gas adsorption isotherms and binary gas adsorption and desorption isotherms oncoal samples from Haishiwan coal mine in the Yaojie coalfield, were experimentally observed.The adsorption amount of CO_2on coal was significantly greater than the adsorption amountof CH_4on the coal, approximately1.36~2.1times. The total amount of adsorption ofCO_2-CH_4mixed gas on coal samples is between adsorption amount of pure CO_2andadsorption amount of pure CH_4, with the higher the proportion of CO_2gradually, the totalamount of adsorption of mixed gas on the coal gradually increases. According to theseparation information of binary gas composition both in free phase and adsorptive phase,CH_4tends to be desorbed preferentially, which however slows down with desorptionproceeding. On the contrary, CO_2adsorbs preferentially on coal. But the velocity of CO_2adsorption slows down as well. Above findings are regarded as the fundamental theories forcompetitive adsorption of binary gas and displacing the coalbed methane by CO_2injection.Experimental platform was developed independently to use to displace coalbed CH_4by gasinjection. Using this platform, we carry out displacing coalbed CH_4by CO_2or N_2the underdifferent injection pressure (1.5,1.8,2.2MPa) and different stress conditions (14,19MPa).Theresearch results show that after injection of0.5displaced volume, N_2break through outlet, as the injection pressure increases, the breakthrough time gradually advance, after N_2breakthrough the gas outlet, its concentration increased slowly to100%. In the CO_2displacing CH_4experiments, there was high efficiency of displacement, the coalbed CH_4canbe all drive completely, after1.4~2.4replacement volume being injected, the CO_2breaksthrough gas outlet, and CO_2concentration quickly reach100%, with increasing the injectionpressure, CO_2breakthrough time is reduced. After increasing stress, the permeability reduces,which results in lower flow velocity of CO_2in the coal, CO_2can be sufficiently adsorbed oncoals. The breakthrough time is only1.4displaced volume under the stress of14MPa,however the breakthrough time increases to2.4displaced volume under stress of19MPa. Thestress significantly influences on the gas displacement.
     The mathematicoal model was established, which consists of the competitive adsorptionof binary gas, the competitive proliferation, the gas flow equation; COMSOLMultiphysicswas adopted to solve and built numerical simulation platform, CO_2, N_2respectively wasinjected into the coal seam to displace coalbed CH_4in this numerical simulation platform.Under same conditions, N_2first breaks through outlet, but the coalbed CH_4was recoveriedcompletely by CO_2injection first. With the improvement of the gas injection pressure,seepage velocity increases, shortening the displacing time.
     Good geological background of Yaojie coalfield provides a unique perspective for thestudy that displacing CH_4by CO_2injection. The physical structure of the coal was analysedby CO_2adsorption and mercury porosimetry. Gas composition and concentration wasdetermined using mass spectrometry and chromatography. The chemical structure of the coalwere analysed by fourier transform infrared spectroscopy. The results show that away fromthe injection points, the pore volumes of micropores, mecropores and macropores decreasegradually, and the CO_2concentration decreased, whereas the CH_4concentration increasedgradually. According to the FIR spectra of series of coal samples, the absorption peakschange significantly in the2800~3000cm-1,2270~2413cm-1, and1000~1200cm-1regions. Injection of CO_2into deep coal beds, particularly at conditions near the CO_2criticalpoint, may displace aromatic hydrocarbons from the coal matrix during migration, resultingin the absorption peak intensity weakened, and changing the corresponding to the number offunctional groups, which indicates the chemical structure of coal changed.
引文
[1] Thomas Conway and Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)
    [2] Bachu,S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., Mathiassen, O.M.CO2storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse GasControl.2007:430-443.
    [3] Bruant, R.G., Guswa, A.J., Celia, M.A., Peters, C.A. Safe storage of CO2in deep aquifers[J].Environment Science and Technology.2002,36(11):240-245.
    [4] Gentzis,T. Subsurface sequestration of carbon dioxide-an overview from an Alberta (Canada)perspective[J]. International Journal of Coal Geology.2000,43(1-4):287-305.
    [5] Stevens, S.H., Spector, D., Riemer, P. Enhanced coalbed methane recovery using CO2injection:Worldwide resource and CO2sequestration potential[C]. Society of Petroleum Engineering.Proceedings of the International Oil&Gas Conference and Exhibition of the Society of PetroleumEngineers, November2-6,1998. Beijing, China. SPE,1998:489-501.
    [6] Ho,M.T. Techno-economic modeling of CO2capture systems for Australian industrial sources[D].Sydney: The University of New South Wales,2007.
    [7] Wong, S., Law, D., Deng, X., Robinson, J., Kadatz, B., Gunter, W.D., Ye, J.P., Feng, S.L., Fan, Z.Q.Enhanced coalbed methane and CO2storage in anthraciticcoals-Micro-pilot test at South Qinshui,Shanxi, China[J]. International Journal of Greenhouse Gas Control,2007,1(2):215-222.
    [8] Jessen, K., Tang, G.Q., Kovscek, A.R. Laboratory and simulation investigation of enhanced coalbedmethane recovery by gas injection [J]. Transport in Porous Media,2008,73(2):141-159.
    [9]杨宏民.井下注气驱替煤层甲烷机理及规律研究[D].焦作:河南理工大学,2010.
    [10]杨宏民,魏晨慧,王兆丰,杨天鸿.基于多物理场耦合的井下注气驱替煤层甲烷的数值模拟[J].煤炭学报,2010, S1:109-114.
    [11]杨宏民,张铁岗,王兆丰,赵长春.煤层注氮驱替甲烷促排瓦斯的试验研究[J].煤炭学报,2010,35(05):792-796
    [12]方志明.混合气体驱替煤层气技术的机理及试验研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    [13]李小春,赵英利,赵文才,张法智,方志明,王伟,任伟,汪海滨,白冰,王彦凯.混合气体驱替煤层气现场试验研究[J].2008年煤层气学术研讨会论文集,2008.
    [14] Stevenson, M. D., Pinczewski, W. V., Somers, M. L., Bagio, S. E. Adsorption/desorption ofmulticomponent gas mixtures at in-seam conditions. In: SPE Paper23026. Presented at the SPEAsia-Pacific Conference, Perth, Western Australia, November4-7,1991.
    [15] Chaback, J. J., Morgan, W. D., Yee, D. Sorption of nitrogen, methane, carbon dioxide and theirmixtures on bituminous coals at in-situ conditions[J]. Fluid Phase Equilib.,1996,117(1-2):289-296.
    [16] Ceglarska-Stefanska, G., Zarebska, K. Sorption of carbon dioxide methane mixtures[J]. InternationalJournal of Coal Geology,2005,62(4):211-222.
    [17] Shi, J. Q., Durucan, S. Gas storage and flow in coalbed reservoirs: Implementation of a bidispersepore model for gas diffusion in a coal matrix. Spe Reservoir Evaluation&Engineering,2005,8(2):169-175.
    [18] Fitzgerald, J. E., Robinson Jr., R. L., Gasem, K. A. M. Modeling high-pressure adsorption of gasmixtures on activated carbon and coal using a simpli_ed local-density model. Langmuir,2006,22(23):9610-9618.
    [19]于洪观,范维唐,孙茂远.煤中甲烷等温吸附模型的研究[J].煤炭学报,2004,29(4):463-467.
    [20] Dutta, P., Harpalani, S., Prusty, B. Modeling of CO2sorption on coal[J]. Fule,2008,87(10-11):2023-2036.
    [21] K. Schroeder,A. Busch, G. J. Duffy. Interlaboratory Comparison of CO2Adsorption Isotherms onCoals”[C]. Proc. of20th Ann. Int. Pittsburg Coal Conf., Pittsburgh, PA,15-19Sept.2003.
    [22] Harpalani, S., Prusty, B.K., Dutta, P. Methane/CO2sorption modeling for coalbed methane productionand CO2sequestration[J]. Energy Fuels,2006,20(4):1591-1599.
    [23] Clarkson, C.R. Application of a New Multicomponent Gas Adsorption Model to Coal Gas AdsorptionSystems[J]. SPE Journal,2003,8(3):236-251.
    [24] Stevenson, M.D. Multi-component gas adsorption on coal at in-situ conditions[D]. University of NewSouth Wales, Sydney,1997.
    [25] Clarkson,C. R., Bustin, R. M. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.1. Isotherms and pore volume distributions[J].Fuel,1999,78(10):1333-1344.
    [26] Pan, Z.J. Modeling of gas adsorption using two-dimensional equations of state [D] CSIRO EarthScience and Resource Engineering, Australia,2004.
    [27] Ruppel, T.C., Grein, C.T. and Bienstock, D. Adsorption of methane/ethane mixtures on dry coal atelevated pressure[J]. Fuel,1972,51(4):297-303.
    [28] Saunders, J. T., Tsai, B.M.C. and Yang, R.T., Adsorption of Gases on Coals and Heat Treated Coalsat Elevated Temperature and Pressure:2. Adsorption from Hydrogen-Methane Mixtures[J]. Fuel,1985,64(5):621-626.
    [29] Stevenson, M.D., Pinczewski, W.D., Somers, m.L. Bagio, S.E. Adsorption/Desorption ofMulticomponent Gas Mixtures at In-Seam Conditions[C].1991,SPE23026.
    [30] Arri, L.E., Yee, D., Morgan, W.D. and Jeansonne, M.W. Modeling Coalbed Methane Production withBinary Gas Sorption[C].1992, SPE24363:459-472.
    [31] Hall, F.E., Zhou, C.H., Gasem, K.A.M., Robinson, R.L. Adsorption of pure methane, nitrogen, andcarbon dioxide and their binary mixtures on wet fruitland Coal[C].1994, SPE29194:329-344.
    [32] Busch, A., Krooss B. M., Gensterblum, Y., van Bergen, F. Pagnier, H.J.M. High-pressure adsorptionof methane, carbon dioxide and their mixtures on coals with a special focus on the preferentialsorption behaviour [J]. Journal Geochemical Exploration,2003,78-79:671-674.
    [33]唐书恒,汤达祯,杨起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,2004,33(4):448-452.
    [34]于洪观,范维唐,孙茂远,叶建平.煤对CH4/CO2二元气体等温吸附特性及其预测[J].煤炭学报,2005,30(5):619-622.
    [35]张子戌,刘高峰,张小东,杨晓娜. CH4/CO2不同浓度混合气体的吸附-解吸实验[J].煤炭学报,2009,34(4):551-555.
    [36] Reucroft, P. J., Patel, H. Gas-induced swelling in coal[J]. Fuel,1986,65:816-820.
    [37] Reucroft, P. J., Sethuraman, A. R. Effect of pressure on carbon dioxide induced coals swelling[J].Energy Fuels,1987,1:72-75
    [38] Walker, P.L., Verma,S.K., Rivera-Utrilla, J. A direct measurement of expansion in coals and maceralsinduced by carbon dioxide and methanol[J]. Fuels,1988,67:719-726.
    [39] Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impact onpermeability of coal[J]. Fuel,1990,69:551-556.
    [40] Stgeorge, J.D., Barakat, M.A. The change in effective stress associated with shrinkage from gasdesorption in coal[J]. International Journal of Coal Geology,2001,45:105-113.
    [41] Levine, J.R. Model study of influence of matrix shrinkage on absolute permeability of coal bedreservoirs[J]. Coalbed Methane and Coal Geology. Geological Society Special Publication,1996:197-212.
    [42] Cui, X.J., Bustin, R.M., Chikatamarla, L. Adsorption-induced coal swelling and stress: implication formethane production and acid gas sequestration into coal seams[J]. Journal of Geophysical Research,2007,112:1-16.
    [43] Majewska, S., Zietek, J. Change of acoustic emission and strain in hard coal during gassorption-desorption cycles[J]. International Journal of Coal Geology,2007,70:305-312.
    [44] Zarebska, K., Celarska-stefanska, G. The change in effective stress associated with swelling duringcarbon dioxide sequestration on natural gas recovery[J]. International Journal of Coal Geology,2008,74:167-174.
    [45]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986,3:9-16.
    [46]陈金刚,陈庆法.煤岩力学性质对其基质自调节能力的控制效应[J].天然气工业,2005,25(2):140-142.
    [47]傅雪海,秦勇,姜波,王文峰.多相介质煤岩体力学实验研究[J].高校地质学报,2002,8(4):446-452.
    [48]张小东,王利丽,张子戌.山西古交矿区马兰煤矿肥煤注水后煤体吸附膨胀行为[J].煤炭学报,2009,34(10):1310-1315.
    [49]方志明,李小春,白冰.煤岩吸附量-变形-渗透系数同时测量方法研究[J].岩石力学与工程学报,2009,28(9):1828-1933.
    [50] Robertson, E.P., Christiansen, R.L. Measurement of sorption induced strain. Tuscaloosa, Alabama[C].Proceeding of the2005International Coalbed Methane Symposium,2005.
    [51] Day, S., Fry, R., Sakurovs, R. Swelling of Australian coals in supercritical CO2[J]. InternationalJournal of Coal Geology,2008,74:41-52
    [52] Ottiger, S., Pini, R., Storti,G., Mazzotti, M. Competitive adsorption equilibria of CO2and CH4on adry coal[J]. Adsorption,2008,14(4-5):539-556.
    [53] Pini, R., Ottiger, S., Burlini, L., Storti, G., Mazzotti, M. CO2storage through ECBM recovery: Anexperimental and modeling study[J]. Energy Procedia,2009,1(1):1711-1717.
    [54] Bergen, F.V., Spiers, C., Floor, G., Bots, P. Strain development in unconfined coals exposed toCO2,CH4and Ar: Effect of moisture[J]. International Journal of Coal Geology,2009,77(1-2):43-53.
    [55] Durucan, S., Ahsan, M., Shi, J.Q. Matrix shrinkage and swelling characteristics of European coals[J].Energy Procedia,2009,1(1):3055-3062.
    [56] Day, S., Fry,R., Sakurovs, R., Weir, S. Swelling of coals by supercritical gases and its relationship tosorption[J]. Energy&Fuels,2010,24(4):2777-2783.
    [57] Siemons, N., Busch, A. Measurement and interpretation of supercritical CO2sorption on variouscoals[J]. International Journal of Coal Geology,2007,69(4):229-242.
    [58] Romanov, V., Soong,Y. Long-term CO2sorption on Upper Freeport coal powder and lumps[J].Energy&Fuels,2008,22(2):1167-1169.
    [59] Pan, Z.J., Connell, L.D. A theoretical model for gas adsorption induced coal swelling[J]. InternationalJournal of Coal Geology,2007,69(4):243-252.
    [60]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674-1678.
    [61]白冰,李小春,刘延锋,等.CO2-ECBM中气固作用对煤体应力和强度的影响分析[J].岩土力学,2007,28(4):823-826.
    [62]周军平,鲜学福,姜永东,等.基于热力学方法的煤岩吸附变形模型[J].煤炭学报,2011,36(3):468-472.
    [63]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006.
    [64]张行周,郭勇义,吴世跃.注气驱替煤层气技术的探讨[J].太原理工大学学报,2000,31(3):251-253.
    [65]王剑光,余小广.注气驱替煤层气机理研究[J].中国煤炭,2004,30(12):44-46.
    [66]李希建,蔡立勇,常浩.注气驱替煤层气作用机理的探讨[J].矿业快报,2007,460(8):20-22.
    [67]陈诵英,孙予罕,丁云杰等著.吸附与催化[M].郑州:河南科学技术出版社,2001.8:4-6.
    [68]叶振华.化工吸附分离过程[M],北京:中国石化出版社,1992,50-172.
    [69]夏雅君.工程传质学[M],北京:机械工业出版社,1985,33-100.
    [70] Reeves, S.R. The Coal-Seq project: key results from field, laboratory, and modeling studies[C].Proceedings of7th Conference on Greenhouse Gas Control Technologies (GHGT7). Oxford: ElsevierLtd.,2004.
    [71] Gunter, W.D., Matthew, J.M, Robinson, J.R. CO2storage and enhanced methane production: fieldtesting at Fenn-Big valley, Alberta, Canada, with application[C]. Proceedings of7thConference onGreenhouse Gas Control Technologies (GHGT7). Oxford: Elsevier Ltd.,2004.
    [72] Fulton, P.F, Parente, C.A., Rogers, B.A, Shah, N., Reznik, A.A. A laboratory investigation ofenhanced recovery of methane from coal by carbon dioxide injection[C]. Symposium onUnconventional Gas Recovery held in Pittsburgh, SPE8930,1981.
    [73] Reznik, A.A, Singh, P.K., Foley, W.L. An Analysis of the Effect of CO2Injection on the Recovery ofIn-Situ Methane From Bituminous Coal[C]. An Experimental Simulation. SPE10822,1984.
    [74] Mazumder, S. Wolf, K.H.A.A., Hemert, P.V., Busch, A. Laboratory experiments on environmentalfriendly means to improve coalbed methane production by carbon dioxide/flue gasinjection[J].Transport in Porous Media,2008,75(1):63-92.
    [75] Jessen, K., Tang, G.Q., Kovscek, A.R. Laboratory and simulation investigation of enhanced coalbedmethane recovery by gas injection[J]. Transport in Porous Media,2008,73(2):141-159.
    [76] Dutka, B., Kudasik, M., Topolnicki J. Pore pressure changes accompanying exchange sorption ofCO2/CH4in a coal briquette[J]. Fuel Processing Technology,2012,100:30-34.
    [77] Dutka, B., Kudasik, M., Pokryszka, Z., Skoczylas, N., Topolnicki, J., Wierzbicki, M. Balance ofCO2/CH4exchange sorption in a coal briquette[J]. Fuel Processing Technology,2013,106:95-101.
    [78] Parakh, S. Experimental investigation of enhanced coalbed methane recovery[D]. California: Stanforduniverdity,2007.
    [79]郭彪侯,吉瑞,赵凤兰. CO2在多孔介质中的运移规律研究[J].重庆科技学院学报(自然科学版),2009(4):76-78.
    [80]梁卫国,吴迪,赵阳升. CO2驱替煤层CH4试验研究[J].岩石力学与工程学报,2010,29(4):665-673.
    [81]唐书恒,马彩霞,叶建平,吴建光.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(5):607-616.
    [82]于洪观.煤对CH4、CO2、N2及其二元混合气体吸附特性、预测和CO2驱替CH4的研究[D].青岛:山东科技大学,2005.
    [83]程林峰.煤层气注入增产法的探讨[J].中国煤层气,2006,3(3):40-43.
    [84]李前贵,康毅力,罗平亚.超破裂压力注气开发煤层甲烷探讨[J].天然气工业,2005,25(6):87-89.
    [85]彭小龙,杜志敏.注气开发驱替前沿的离散渗流模型[J].西南石油大学学报(自然科学版).2008,30(1):67-84.
    [86]李向良,李振泉,郭平等.二氧化碳混相驱的长岩心物理模拟[J].石油勘探与开发.2005,31(5):102-104.
    [87]孙可明.煤层气注气开采多组分流体扩散模型数值模拟[J].辽宁工程技术大学学报,2005,24(3):306-308.
    [88]庞丽萍,王浚.活性炭床多组分竞争吸附数值方法研究[J].系统仿真学报,2005,17(9):2104-2112.
    [89]孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,26(5):994-1001.
    [90]张宛君,邰英楼.煤层气注井开采数值模拟[J].辽宁工程技术大学学报(自然科学版)2009,28Suppl (9):298-291.
    [91]吴嗣跃,郑爱玲.注气驱替煤层气的三维多组分流动模型[J].天然气地球科学,2007,18(4):581-583.
    [92]郑爱玲,王新海,刘德华.注气驱替煤层气数值模拟研究[J].石油钻探技术,2006,31(2):55-57.
    [93]梅海燕,张茂林,李闽等.气驱过程中考虑弥散的渗流方程[J].天然气工业,2004,24(3):97-99.
    [94] Gunter, W.D., Mavor. CO2storage and enhanced methane production: field testing at fenn big Valley,Alberta and Canada with Application[C]. Proceedings of7th Conference on Greenhouse Gas ControlTechnologies,Oxford: Elsevier Ltd.,2005:413-421.
    [95] Bergen, F. V.,Pagnier, H. J. M.Development of a field experiment of CO2storage in Coal seams inthe up-per silesian basin of poland[C]. Proeeedings of6thConference on Greenhouse Gas ControlTechnologies,Ox-ford: Elsevier Ltd.,2003:569-574.
    [96] Reeves,S. R., Taillefert, A. Reservoir Modeling for the Design of the recopol CO2SequestrationProject, Poland[R]. Houston: U.S. Department of Energy,2002:1-4.
    [97] Shi, J.Q., Durucan, S., Fujioka, M. A reservoir simulation study of CO2injection and N2flooding atthe Ishikari coalfield CO2storage pilot project,Japan[J]. International Journal of Greenhouse GasControl,2008,2(1):47-57.
    [98]中联煤层气有限责任公司.中国煤层气勘探开发技术研究[M].北京:石油工业出版社,2007:197-272.
    [99]方志明.混合气体驱替煤层气技术的机理及试验研究[D].武汉:中国科学院武汉岩土力学研究所,2009:90-95.
    [100] Wong, S., Law, D., Deng, X., Robinson, J., Kadatz, B., Gunter, W.D., Ye, J., Feng, S., Fan, Z.Enhanced coalbed methane-micro-pilot test at South Qinshui, Shanxi, China[C]. Proceedings of the8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway, June19-22,2006.
    [101] Yamaguchi, S., Ohga, K., Fujioka, M., Nako, M., Muto, S. Field experiment of Japan CO2geosequestration in coal seams project (JCOP)[C]. Proceedings of the8th International Conferenceon Greenhouse Gas Control Technologies, Trondheim, Norway, June19-22,2006.
    [102] Bergen, F. V.,Pagnier, H., Krzystolik, P. Field experiment of CO2-ECBM in the Upper Silesian Basinof Poland[C]. Proceedings of the8th International Conference on Greenhouse Gas ControlTechnologies, Trondheim, Norway, June19-22,2006.
    [103] Reeves, S.R. The Coal-Seq project: key results fromfield, laboratory, and modeling studies[C].Proceedings of the7th International Conference on Greenhouse Gas Control Technologies,Vancouver, Canada, September5-9,2004.
    [104] Litynski, J.T., Plasynski, S., Mcllvried, H. G., Mahoney, C., Srivastava, R.D. The United Statesdepartment of energy 's Regional Carbon Sequestration Partnerships Program Validation Phase[J].Environment International,2008,34:127-138.
    [105] Wycherley, H., Fleet, A., Shaw, H. Some observations on the origins of large volumes of carbondioxide accumulations in sedimentary basins[J]. Marine and Petroleum Geology,1999,16(6):489-494
    [106] Gilfillan, S.M.V., Ballentine, C.J., Holland, G., Blagburn, D., Lollar, B.S., Stevens, S., Schoell, M.,Cassidy, M. The noble gas geochemistry of natural CO2gas reservoirs from the Colorado Plateauand Rocky Mountain provinces, USA[J]. Geochimica et Cosmochimica Acta,2008,72(4):1174-1198.
    [107] White, C.M., Smith, D.H., Jones, K.L., Goodman, A.L., Jikich, S.A., LaCount, R.B., DuBose, S.B.,Ozdemir, E., Morsi, B.I., Schroeder, K.T. Sequestration of carbon dioxide in coal with enhancedcoalbed methane recoverys-a review[J]. Energy and Fuel,2005,19(3):659-724.
    [108] Busch, A, Gensterblum,Y. CBM and CO2-ECBM related sorption processes in coal: A review[J].International Journal of Coal Geology,2011,87(2):49-71.
    [109] Yamaguchi, S., Ohga, K., Fujioka, M., Muto, S. Prospect of CO2sequestration in the Ishikara coalfield, Japan[C].7th International Conference on Greenhouse Gas Control Technology, Vancouver,Canada.2004.
    [110] Sharma, S., Cook, P., Berly, T., Anderson, C. Australia’s first geosequestration demonstrationproject-the CO2CRC Otway Basin Pilot Project [J]. APPEA J,2007,47,257-268.
    [111]顾惕人.表面化学[M].北京:科学出版社,2001.
    [112]陈新志,蔡振云.化工热力学[M].北京:化学工业出版社,2002.
    [113]蔡炳心.基础物理化学[M].北京:科学出版社,2001.
    [114]陈昌国.煤的物理化学结构和吸附(解吸)机理的研究[D].重庆:重庆大学,1995.
    [115]桑树勋,秦勇,傅雪海.陆相盆地煤层气地质—以准格尔吐哈盆地为例[M].徐州:中国矿业大学出版社,2001.
    [116] Yang, R.T., Saunders, J.T. Adsorption of gases on coals and heated-treated coals at elevatedtemperature and pressure[J]. Fuel.1985,64:616-620.
    [117] Brunauer, S., Deming, L.S. Deming, W.E. Teller,E. On a theory of the van der waals adsorption ofgases[J].J.Am.Chem.Soc,1940,62(7):1723-1732.
    [118]周来.深部煤层处置CO2多物理耦合过程的实验与模拟[D].徐州:中国矿业大学,2009.
    [119]周军平. CH4、CO2、N2及其多元气体在煤层中的吸附-运移机理研究[D].重庆:重庆大学,2010.
    [120] Brown, E.T., Hoek, E. Technical note trends in relationships between measured in-situ stress anddepth[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.,1978,15(4):211-215.
    [121] Zhu, J. Multicomponent multiphase flow in porous media with temperature variation oradsorption.[D.]. Stanford University,2003. Online at http://pangea.stanford.edu/ERE/pdf/pereports/PhD/Zhu03.pdf.
    [122] Mazumder, S., Wolf, K. H., Wolf, P.H. Laboratory experiments on environmental friendly means toimprove coalbed methane production by carbon dioxide/flue gas injection[J]. Transportin PorousMedia.2008,75(1):63-92.
    [123] Crank, J.The Mathematics of Diffusion. Oxford University Press, Oxford, U.K.,1958, pp.85-87.
    [124]王勇刚,文志刚,陈玲.特低渗透油藏水驱油效率影响因素研究[J].石油天然气学报,2009,31(4):284-288.
    [125]郭平,苑志旺,易敏,杜建芬,骆鑫.低渗透压油藏真实岩心薄片微观水驱试验研究[J].石油天然气学报,2009,31(4):100-105.
    [126]黄翠,郑西来,栾熙明,李永霞.咸淡水驱替过程中含水介质渗透性变化的试验研究[J].水文地质工程地质,2009,(6):21-25.
    [127]谢勇强.低阶煤煤层气吸附与解吸机理实验研究[D].西安:西安科技大学,2006.
    [128]陈诵英,孙予罕,丁云杰等著.吸附与催化[M].郑州:河南科学技术出版社,2001.8:4-6.
    [129] Oscik. J. Adsorption [M]. Warszawa Poland: PWN-Polish Scientific Publishers.1979.
    [130] Gregg S. J, Sing K S W. Adsorption Surface Area and Porosity.2nd ed.[M]. London: AcademicPress,1982.
    [131] Scarlett B, ed. Power Surface Area and Porosity.2nd ed.[M]. London: Chapman and Hall Ltd.,1984.
    [132]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].煤炭工业出版社,2000:27-30.
    [133]叶振华.化工吸附分离过程[M],北京:中国石化出版社,1992,50-172.
    [134]夏雅君.工程传质学[M],北京:机械工业出版社,1985,33-100.
    [135] REEVES, S.R. The Coal-Seq project: key results from field, laboratory, and modeling studies[C]Proceedings of7th Conference on Greenhouse Gas Control Technologies (GHGT7). Oxford:Elsevier Ltd.,2004.
    [136]中仿科技公司.有限元法多物理场建模与分析[M].北京:人民交通出版社,2006.
    [137]李伟.海石湾井田CO2成藏演化机制及防治技术研究[D].徐州:中国矿业大学,2011.
    [138]杨晓勇,刘德良,张交东等.郯庐断裂带南段双山韧-脆性剪切带物质迁移与CO2释放研究[J].地质学报,2002,76(3):335-346.
    [139] Hildenbrand, A. Krooss, B.M. CO2migration processes in argillaceous rocks: pressure-drivenvolume flow and diffusion[J]. Journal of Geochemical Exploration,2003(78-79):169-172.
    [140]卫平生,张虎权,陈启林等.民和盆地多种能源矿产共存成藏机理[M].北京:石油工业出版社,2007:131~141.
    [141]邱春海.海石湾煤矿地温分布规律及热害的地质成因分析[J].江苏煤炭,1997,2:42-44.
    [142]郑希民,王多云,李凤杰等.兰州-民和断陷盆地地热地质条件分析及热储概念模型[J].西北地震学报,2003,25(3):215-220.
    [143] Wu, D.M., Cheng, Y.P. The experimental study of the impact on supercritical CO2from CH4composition in coal[C]. Underground coal operators’ conference. University of Wollongong,2011.
    [144]李兆兴,陶明信,徐永昌等.窑街煤田碳酸盐与突出气体的同位素组成特征[J].沉积学报,1992,10(1):93-101.
    [145] Dubinin, M.M. The potential theory of adsorption of gases and vapors for adsorbents withenergetically nonuniform surfaces[J]. Chemical Review,1960,60:235-241.
    [146] Dubinin, M.M. and Astakhov, V.A. Description of Adsorption Equilibria of Vapors on Zeolites overWide Ranges of Temperature and Pressure[J]. Advances in Chemistry,1971,102:69-85.
    [147] Saghafi, A. Potential for ECBM and CO2storage in mixed gas Australian coals[J]. InternationalJournal of Coal Geology,2010,82:240-251.
    [148] Smith, J.M., Pallaser, R., Rigby, D. Mechanisms for coalbed methane formation[C]. Symposium onCoalbed Methane Research and Development in Australia, Vol.1, Townsville, Australia,1992:63-74.
    [149] Rice, D.D., Kotarba, M. Origin of upper carboniferous coalbed gases, lower upper Silesian coalbasins, Poland[C]. Proceedings of the1993International Coalbed Methane Symposium, UniversityAlabama, Tuscaloosa,1993:649-658.
    [150]马东民,谢勇强,温兴宏.煤层气储层渗透率的影响因素[J].西安科技大学学报,2005,(6):123-129
    [151]琚宜文.构造煤结构演化与储层物性特征及其作用机理[D].徐州:中国矿业大学,2002.
    [152]俞启香.矿井瓦斯防治[M].中国矿业大学出版社,1992,1-19
    [153] Can,H., Niandi, S. P., Walker, P. L. Nature of porosity in American coals[J]. Fuel,1972,51:272-277.
    [154]郝琦.煤的微观孔隙形态特征及其成因探讨[J].煤炭学报,1987,4:51-57.
    [155]朱兴珊.煤层孔隙特征对抽放煤层气的影响[J].中国煤层气,1996,1:37-39.
    [156]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-45.
    [157] Mastalerz, M., Drobniak, A., Rupp, J. Meso-and micropore characteristics of coal lithotypes:Implication for CO2adsorption[J]. Energy&Fuels,2008,22(6):4049-4061
    [158] Liu, C.J., Wang, G.X., Sang, S.X., Rudolph, V. Changes in pore structure of anthracite coalassociated with CO2sequestration process[J]. Fuel,2010,89(10):2665-2672.
    [159] Mazumder, S., Hemert, P.V., Bruining, J., Wolf, K.H.A.A., Drabe, K. In situ CO2-coal reactions inview of carbon dioxide storage in deep unminable coal seams[J]. Fuel,2006,85(12-13):1904-1912.
    [160] Goodman, A.L., Campus, L.M., Schroeder, K.T. Direct evidence of carbon dioxiede sorption onArgonne premium coal using attenuated total reflectance-fourier ransform infrared spectroscopy[J].Energy&Fuels,2005,19(2):471-476
    [161] Mastalerz, M., Goodman, A., Chirdon, D. Coal Lithotypes before, during, and after Exposure to CO2:Insights from Direct Fourier Transform Infrared Investigation[J]. Energy&Fuels,2012,26(6):3586-3591.
    [162] Orrego, J.A., Hernández, R.C., Ospino, E.M. Structural study of colombian coal by fourier transforminfrared spectroscopy coupled to attenuated total reflectance (FTIR-ATR)[J]. REVISTAMEXICANA DE FíSICA,2010,56(3):251-254
    [163] Kolak, J.J., Burruss, R.C. Geochemical investigation of the potential for mobilizing non-methanehydrocarbons during carbon dioxide storage in deep coal beds[J]. Energy and Fuels,2006,20(2):566-574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700