用户名: 密码: 验证码:
三元高性能工程塑料合金PEEK/PEI/PES结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过合金化改性获得优异综合性能的塑料合金在近些年倍受关注。由于高性能工程塑料聚醚醚酮(PEEK)在力学性能、热稳定性、电绝缘性及化学稳定性等方面具有突出的优势,但其价格昂贵,且玻璃化温度明显低于耐高温的无定形塑料如聚醚酰亚胺(PEI)、聚醚砜(PES),因此对PEEK合金化改性成为研究热点,如分别采用PEI或PES与PEEK共混,获得PEI/PEEK或PES/PEEK等二元合金,提高其高温刚性,降低成本。然而,至今未见涉足PEEK/PEI/PES三元合金。本文选择PEEK/PEI/PES的质量百分比分别为:70/30/0、70/0/30、70/25/5、65/30/5、60/30/10、60/35/5、60/10/30,采取370℃左右高温双螺杆挤出成型工艺制备塑料合金的片材和粒料试样,粒料再经热压模塑成型制备板材试样。采用SEM、XPS、FTIR-ATR、DSC、电子拉力试验机、滑动摩擦磨损试验机等检测手段对三元合金粒料、片材和板材试样进行微观结构分析、热性能、力学性能、摩擦磨损性能等进行测试分析,探讨三元合金组成对材料结构及各项性能的影响规律和作用机理。
     微观结构分析表明,在三元合金中PEEK、PEI、PES达到较均匀分散,呈现微观分相,宏观均匀分散的相形态结构。而PEEK与PES合金化时,分相较为明显。质量百分比60/30/10的三元合金表面XPS分析表明在极小区域内同时存在三种合金组分,显示三组分分散均匀。FTIR与FTIR-ATR显示三元合金中三组分PEEK、PEI、PES的各基团间存在相互作用,尤其亚胺环羰基红外吸收峰的变化证明因PES的加入,使三元合金中PEEK与PEI相互作用和无相互作用的区域同时存在。DSC分析进一步证明三元合金具有单一玻璃化转变温度,PEEK、PEI、PES三组分均匀分散且相容,Tg高于纯PEEK约20℃左右。PEI和PES两种非晶态组份的加入,使得三元合金在降温过程的结晶温度低于纯PEEK约6-8℃,结晶度增大,质量百分比为60/30/10的三元合金中PEEK结晶度达到最大值37.76%,比纯PEEK的结晶度提高约4.1%。模压成型的热处理过程对三元合金材料的热稳定性影响较小。
     PEI、PES的加入对其拉伸强度、断裂伸长率有一定的影响,质量百分比为60/30/10的三元合金片材试样拉伸强度达到最高值90MPa,高于纯PEEK,断裂伸长率低于纯PEEK。合金片材试样在158℃和178℃下的168h热老化对其拉伸强度影响较小,而对断裂伸长率影响明显。三元合金板材试样的拉伸强度均大于纯PES,小于纯PEI,多数高于纯PEEK,其断裂伸长率均大于纯PEEK,质量百分比为60/30/10的拉伸强度达到最高值108.1MPa。合金板材试样的弯曲强度和弯曲模量均随PEEK含量降低而下降,但均大于纯PES。另外,三元合金板材试样的硬度高于纯PES和纯PEI。因此,三元合金中PEEK组分对材料刚性贡献较大,而PEI和PES对材料抗破化能力的贡献突出。
     二元、三元合金的磨合期约为40-50min,短于纯PEEK的90min。合金稳态期的摩擦系数大于纯PEEK。三元合金板材的磨损率均低于纯PES和PEI,仅为其1/4-1/6,但高于纯PEEK的磨损率,磨损机理主要为粘着磨损。当PES含量不变时,随PEI的增大三元合金板材的磨损率增大。PES的加入使三元合金板材在对磨钢环表面形成的转移膜易于脱落,导致磨损率增大,说明PES和PEI两种非晶态组分不利于三元合金的耐磨性。
     三元合金板材试样耐浓硫酸特性较之纯PEEK有一定程度的改善。质量百分比70/25/5的三元合金对丙酮的耐腐蚀性能较突出,对氯仿、N,N’-二甲基甲酰胺的耐腐蚀性能表现良好,未发生腐蚀。试剂的极性对合金材料腐蚀影响不明显。浓H2SO4腐蚀过程对材料的热稳定有影响,而丙酮、氯仿的腐蚀过程影响不大,其热分解温度基本不变。在三元合金中由于PES的加入,使得合金片材试样的氧指数下降,质量百分比70/30/0的OI值大于纯PEEK,达37.1%,而三元合金中PEI组分的增加提高材料的阻燃性能。质量百分比60/30/10三元合金板材试样的体积电阻率达到3.72×10~(17)·cm,显著高于纯PEEK、纯PES,与纯PEI的体积电阻率相当。
     综合分析三元合金各项性能,质量百分比60/30/10配方材料综合性能较突出。
It is well concerned by people that plastic alloys with excellent comprehensiveperformance could be obtained by alloying modification in the recent years. Poly(ether ether ketone)(PEEK) is one kind of high-performance engineering plastics,which has prominent advantages in mechanical strength, thermal stability, electricalinsulativity and chemical stability. But high price and significantly lower glasstransition temperature than some high heat-resistant amorphous plastics such as poly(ether imide)(PEI) and poly (ether sulphone)(PES), so PEEK were improved byalloying modification, which has become one of research hotspots. Blend of PEI, PESand PEEK, such as were used to improve their high-temperature rigidity and reducecosts. However, at present, the research on PEEK/PEI/PES ternary alloy hadn’t beenreported. In the paper, the particles and sheets of PEEK/PEI/PES alloys were preparedsuccessfully with high temperature twin-screw extrusion molding at370℃in massratios of70/30/0,70/0/30,70/25/5,65/30/5,60/30/10,60/35/5and60/10/30. Inaddition, the plates of PEEK/PEI/PES alloys were also prepared successfully withthermal compression molding. Some properties of particles, sheets and plates werecharacterized and analyzed by means of scanning electron microscope(SEM), x-rayphotoelectron spectroscopy(XPS), attenuated total reflection flourier transformedinfrared spectroscopy (FTIR-ATR), differential scanning calorimetry (DSC), universaltensile machine, friction and wear tester respectively, such as the microstructure,thermal properties, mechanical properties, friction and wear properties and so on.
     Microstructure analysis showed that PEI and PES can be well-balanced dispersedin PEEK matrix, so it was exhibited that there is morphology with macroscopicuniformly dispersion and microscopic phase separation. PEEK and PES has a lowercompatibility. The XPS analysis of mass ratio of60/30/10particle specimen showsthere is a presence of there components, and the three components is dispersed evenlyin the tiny area of the surface of the specimen tested. The FTIR and FTIR-ATRanalysis indicated that there is a certain interaction between the three components, and there are some regions in the alloys with interaction and without interaction betweenPEEK and PEI when PES was increased, which can be proved especially by thechange of infrared absorption peak carbonyl group of imide ring. DSC results indicatedthat the ternary alloys PEEK/PEI/PES have a good compatibility and only a singleglass transition temperature that is higher than that of pure PEEK about20℃, AddingPEI and PES can make crystallization temperature lower than that of pure PEEK about6-8℃, and the crystallinity can be increased, such as mass ratio of60/30/10particlespecimen is the largest, namely37.76%, which is higher than the crystallinity of purePEEK about4.1%. There is a little influence on the thermal stability of the ternaryalloy materials for the heat treatment process of thermal compression molding,
     There are some influences on the tensile strength and elongation at break, such asthe tensile strength of mass ratio of60/30/10sheet specimen has the maximum value,namely90MPa, which is higher than that of pure PEEK, and the elongation at break islower than that of pure PEEK. Its results showed that the tensile strength of the sheetspecimens is less affected after158℃and178℃heat aging for168h, and theelongation at break were influenced obviously. The tensile strength of alloy platespecimens are higher than that of pure PES, and lower than that of PEI, the majority ofalloy plate specimens are higher than pure PEEK, such as the tensile strength of massratio of60/30/10plate specimen has the maximum value, namely108.1MPa, but theelongation at break of ternary alloy plate specimens are higher that of pure PEEK.Flexural strength and flexural modulus of plates lowers along with PEEK contentreducing in the ternary alloys, which is higher than that of pure PES. In addition, thehardness of ternary alloys is higher than that of pure PEI and pure PES. So PEEK hasthe larger contribution to the rigid properties of the ternary alloys, and PEI and PEShave the larger contribution to the break-resistant capacity of the ternary alloys.
     The binary alloy and ternary alloys reach the steady wear stage about40-50min,which is shorter than that of pure PEEK. The friction coefficients of alloys in thesteady wear stage are higher than that of pure PEEK. The wear rate of alloy plates is lower than pure PES and PEI, and is1/4-1/6of that of pure PES and PEI, but which ishigher than pure PEEK. Alloys wear mechanism is mainly adhesive wear. Adding PEIcan increase the wear rate of alloy plates when PES contents cannot be changed. Inaddition, it can be observed that adding PES can cause to fall the transferred film off inthe friction process, and results in increasing wear and the specific wear rates, so PEIand PES that are the amorphous component is not conducive to the ternary alloy wearresistance.
     The concentrated H2SO4resistance of alloy plates had been improved by alloyingin a certain extent. The acetone resistance of mass ratio of70/25/5is preferably, inaddition, the chloroform and N, N dimethyl formamide resistance of mass ratio of70/25/5is also preferably, and the polarity of the reagent has a limit influence onreagent resistance of plastics alloy materials. TGA results of ally plate specimenscorroded by concentrated H2SO4showed that there are some influences on the thermalstability of alloy materials, but TGA results of ally plate specimens corroded byacetone or chloroform showed that there are a little influence on the thermal stability ofalloy materials, and its thermal decomposition temperature basically remain unchanged.Adding PES can decrease oxygen index of alloy sheet specimens, the oxygen index(OI) of mass ratio of70/30/0is37.1%, which is higher than that of pure PEEK. Withthe increasing of PEI, the flame retardancy of alloys would be improved. The volumeresistivity of mass ratio of60/30/10is3.72×1017·cm, which is higher than that ofpure PEEK and pure PEI obviously, and the volume resistivity of alloy plates reachesthe order of magnitude for volume resistivity of pure PEI.
     The comprehensive properties of mass ratio of60/30/10formula materials aremore outstanding when the properties of ternary alloys were analyzedcomprehensively.
引文
[1]郭强,田爱国,陈志刚.高性能工程塑料聚醚醚酮特性和应用的研究[J].工程塑料应用,2001,29(12):19-21.
    [2]田爱国,郭强.聚醚醚酮及其复合材料的特性与应用研究进展[J].工程塑料应用,2002,30(2):47-49.
    [3]王喜梅,齐贵亮,蔡江涛,张玉龙.PEEK改性研究进展[J].工程塑料应用,2009,37(2):80.
    [4]刘爱萍,付华,刘圣华,许昌玲,任德亮.不锈钢纤维/碳纤维混杂增强聚醚醚酮基摩擦材料的制备与性能[J].机械工程材料,2007,31(2):36-38.
    [5]李铁骑,章明秋,曾汉民.碳纤维/聚醚醚酮复合材料界面的强相互作用[J].材料研究学报,1999,13(6):606-612.
    [6]钟明强,益小苏, O. Jacobs.短碳纤维增强注塑聚醚醚酮复合材料微观结构与力学性能研究[J].复合材料学报,2002,19(1):12-16.
    [7] B. Alexander, H. Markus, D. Günter. Effect of hot water immersion on the performance ofcarbon reinforcedunidirectional poly(etheretherketone)(PEEK) composites: Stress ruptureunder end-loaded bending [J]. Composites PartA: Applied Science and Manufacturing,2007,38(2):407-426.
    [8]邓杰,李辅安,刘建超.玻璃纤维增强PEEK复合材料成型工艺研究[J].高科技纤维与应用,2004,29(3):28-31.
    [9] Z. Rasheva, G. Zhang, T. h. Burkhart. A correlation between the tribological and mechanicalproperties of short carbon fibers reinforced PEEK materials with different fiber orientations[J]. Tribology International,2010,(43):1430-1437.
    [10] J. P. Davim, R. Cardoso. Effect of the reinforcement (carbon or glass fibres) on friction andwear behaviour of the PEEK against steel surface at a long dry sliding [J]. Wear,2009,266(7):795-799.
    [11] M. Sumer, H. Unal, A.Mimaroglu. Evaluation of tribological behavior of PEEK andglassfiber reinforced PEEKcomposite under dry sliding and water lubricated conditions [J].Wear,2008,265:1061-1065.
    [12] I. Ravadits, A. Toth, G. Marosi. Organosilicon surface layer on polyolefins to achieveimproved flame retardance through an oxygen barrier effect [J]. Polymer DegradationStability,2001,74:419-422.
    [13] J.R. Ebdon, B. J. Hun, M. S. Jones. Chemical modification of polymers to improve flameretardance. The influence of silicon-containing groups [J]. Polymer Degradation Stability,1996,54:395-400.
    [14] P. Patel, T. R. Hull. Investigation of the thermal decomposition and flammability of PEEKand its carbon and glassfibre composites [J]. Polymer Degradation Stability,2011,96:12-22.
    [13] G. Y. Xie, G. S. Zhuang, G. X. Sui, R. Yang. Tribological behavior of PEEK/PTFEcomposites reinforced with potassium titanate whiskers [J]. Wear,2010,268(3):424-430.
    [16] G. S. Zhuang, G. X. Sui, H. Meng,Z. S. Sun, R. Yang. Mechanical properties of potassiumtitanate whiskers reinforced poly(etheretherketone) composites using different compoundingprocesses [J]. Composites Science and Technology,2007,67(6):1172-1181.
    [17]李志方.碳酸钙晶须增强PEEK复合材料的摩擦学性能研究[D].福州大学硕士论文,2006,36-43.
    [18]林有希,高诚辉,李志方.晶须CaCO3和PTFE填充聚醚醚酮复合材料的摩擦学性能[J].热处理学报,2006,27(4):20-23,31.
    [19] R. K. Goyal, Y. S. Negi, A. N. Tiwari, High performance polymer composites on PEEKreinforced with aluminum oxide [J]. Journal of Applied Polymer Science,2006,100(6):4623-4631.
    [20] B. Zhou, X. B. Ji, S. Ye, L. F. Wang, Z. H. Jiang. Mechanical and thermal properties ofpoly(etheretherketone) reinforced with CaCO3[J]. European Polymer Journal,2004,40(10):2357-2363.
    [21] G. Zhang, H. Liao, H. Li, C. Mateus, J. M. Bordes, C. Coddet. On dry sliding friction andwear behaviour of PEEK and PEEK/SiC-composite coatings [J]. Wear,2006,260(6):594–600.
    [22] J. V. Voort, S. Bahadur. The growth and bonding of transfer film and the role of CuS andPTFE in the tribologieal behavior of PEEK [J]. Wear,1995,181-183(1):212-221.
    [23] Y. C. Han, S. Sehmitt, K. Friedrieh. Microfriction of various phases in a carbon fiber,polytetrafluoroethylene, graphite and polyetheretherketone composite blend as measured byatomic force microscopy [J]. Tribology Intemational,1998,31(12):715-725.
    [24]龙春光,张厚安. konol/G/MoS2/PEEK复合材料的力学性能[J].功能材料,2003,34(5):44-49.
    [25] Q. H. Wang, Q. J. Xue, H. W. Liu, W. C. Shen, J. F. Xu. The effect of particle size ofnanometer ZrO2on the tribological behavior of PEEK [J]. Wear,1996,198(1):216-219.
    [26] Q. H. Wang, J. F. Xu, W. C. Shen, Q. J. Xue. The effect of nanometer SiC filler on thetribological behavior of PEEK [J]. Wear,1997,209(1):316-321.
    [27] H. B. Qiao, Q. Guo, A. G. Tian, G. L. Pan, L. B. Xu. A study on friction and wearcharacteristics of nanometer Al2O3/PEEK composites under the dry sliding condition [J].Tribology International,2007,40(1):105-110.
    [28] G. L. Pan, Q. Guo, A. G. Tian, Z. Q. He. Mechanical behaviors of Al2O3nanoparticlesreinforced polyetheretherketone [J]. Materials Science and Engineering: A,2008,492(1):383-391.
    [29] M. C. Kuo, C. M. Tsai, J. C. Huang. PEEK composites reinforced by nano-sized SiO2andAl2O3particulates [J]. Materials Chemistry and Physics,2005,90(1):185-195.
    [30] Y. H. Lai, M. C. Kuo, J. C. Huang. On the PEEK composites reinforced by surface modifiednano-silica [J]. Materials Science and Engineering: A,2007,458(122):158-169.
    [31]彭旭东,马红玉,雷毅.纳米Al2O3和聚四氟乙烯填充聚醚醚酮基复合材料摩擦学特性研究[J].石油大学学报(自然科学版),2004,28(2):68-74.
    [32]赵焱,张淑玲,张春峰,周福贵,王贵宾. PEEK/PEI/OMMT三元复合材料制备与性能研究[J].武汉理工大学学报,2009,31(21):33-36
    [33] E. P. Giannelis. Polymer Layered Silicate Nanocomposites [J]. Advanced Materials,1996,(8):29-30.
    [34]陈祥宝,张宝艳,刑丽英.先进树脂基复合材料技术发展及应用现状[J].中国材料进展,2009,28(6):.1-4.
    [35]崔小明.特种工程塑料聚醚醚酮的开发与应用[J].工程塑料应用,2004,32(10):63-66.
    [36]吴忠文.特种工程塑料聚醚砜、聚醚醚酮树脂国内外研究、开发、生产现状[J].化工新型材料,2002,30(6):15.
    [37]张露,张雯,张凯.热塑性聚醚酰亚胺[J].绝缘材料,2001,200(3):25-28.
    [38]周坤鲁,岳艳梅.聚醚酰亚胺的特性、加工及应用[J].机电元件,2003,23(1):22-25.
    [39]王新威,胡祖明,刘兆峰.聚醚酰亚胺的性能、聚合与纺丝研究[J].材料导报,2007,21(5):408-412.
    [40]石安福,龚云表.工程塑料手册[M].上海:上海科学技术出版社,2003,869-880,781-787,.719-727.
    [41]文胜,龚春丽,郑根稳,周毅,管蓉.聚醚酰亚胺的磺化与热性能[J].高分子材料科学与工程,2009,25(4):85-88
    [42] Q. P. Guo, L. W. Qiu, M. X. Ding, Z. L. Feng. Tensile properties of blends of poly(ethersulphone) with a poly(ether imide)[J]. European Polymer Journal,1992,28(9):1045-1047.
    [43]余若冰,周持兴,俞炜. TLC/PEI共混体系的流变特性与结构关系的研究[J].高等学校化学学报,2004,25(11):2140-2143.
    [44]陈桂娥,许振良,施亚钧.湿法纺制PEI/PES中空纤维气体分离共混膜[J].华东理工大学学报,1999,25(2):202-204.
    [45] M. J. Jenkins. Relaxation behaviour in blends of PEEK and PEI [J]. Polymer,2000,41:6803–6812.
    [46]黄锐,王勇,林旭.特种工程塑料聚醚砜[J].塑料科技,1994,(1):52-55.
    [47]马海松.聚醚砜材料的性能及其在汽车上的应用[J].汽车工艺与材料,2005,(11):35-37.
    [48]宋来洲,孟春江.聚醚砜-聚丙烯腈共混膜的研究[J].膜科学与技术,2005,(2):34-37.
    [49]曾汉民,杨晨.聚苯硫醚及其聚醚砜共混物结晶形态的研究[J].高分子学报,1989(4):409-414.
    [50]曾振辉,董声雄,陈锦展,龚琦,李晓.聚醚型/聚酯型聚氨酯与聚醚砜共混膜的性能研究[J].福州大学学报(自然科学版),2005,33(3):406-408.
    [51] A. Saleem, L. Frormann, A. Iqbal. High Performance Thermoplastic Composites: Study onthe Mechanical, Thermal, and Electrical Resistivity Properties of Carbon Fiber-ReinforcedPolyetheretherketone and Polyethersulphone [J]. Polymer Composites,2007,28(6):785-796.
    [52] L. A. Vtracki. Polymer alloys and blends: thermodynamics and theology [M]. HanserPublishers,1989,170-175.
    [53]姜胶东.聚合物共混I:聚合物共混物的制备方法[J].高分子通报,1993,(2):113-117.
    [54]黄锐.塑料成型工艺学[M].北京:中国轻工业出版社,2007,86.
    [55]胡浚.塑料压制成型[M].北京:化学工业出版社,2005,1-5,119-123,243.
    [56]杜仕国.聚合物共混相容性研究进展[J].现代化工,1994,(5):20-24.
    [57]杨宏.聚合物共混界面[J].北京化工学院学报,1987,14(1):72.
    [58]吴培熙,张留城.聚合物共混改性[M].北京:中国轻工业出版社,1997,14-18
    [59] H. Gerard, J. S. Higgins. The effect of shear flow on the mesoscopic structure of partiallymiscible polymer blends [J]. Physical chemistry chemical physics,1999,(1):3059-3064.
    [60] G. Meier, B. Momper, E.W. Fisher. Critical behavior in a binary polymer blend as studied bystatic and dynamic light scattering [J]. Journal of Chemical Physics,1992,97:5884-5897.
    [61] T. McNally, P. McShane, G. M. Nally, W. R. Murphy, M. Cook, A. Miller. Rheology, phasemorphology, mechanical, impact and thermal properties of polypropylene/metallocenecatalysed ethylene1-octene copolymer blends [J]. Polymer,2002,43(13):3785-3793.
    [62] H. Wang, K. Shimizu, E. K. Hobbie, Z. G. Wang, J. C. Meredith, A. Karim. Phase diagramof a nearly isorefractive polyolefin blend [J]. Macromolecules,2002,35:1072-1078.
    [63] J. Sharma, N. Clarke. Miscibility determination of a lower critical solution temperaturepolymer blend by rheology [J]. Journal of Physical Chemistry B,2004,108(35):13220-13230.
    [64]何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版社,2006,94,185,211.
    [65]殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社,2001,433,567,612.
    [66]张俐娜,薛奇,莫志深,金熹高.高分子物理现代研究方法[M].武汉:武汉大学出版社,2003,279.
    [67]何平笙,杨海洋,朱平平,瞿保均.分子物理实验[M].合肥:中国科技大学出版社,2002,24.
    [68]来育梅,程茹,章刚,王伟,黄培. PEEK/PEI共混物的相容性和结晶行为研究[J].塑料工业,2006,34(6):40-42.
    [69] P. T. Rajagopalan, L. D. Kandpal, A. K. Tewary, R. P. Singh, K. N. Pandey, G. N. Mathur.Thermal Behaviour of Polyetherimide PEEK Blends [J]. Journal of Thermal Analysis,1997,49(1):143-147.
    [70] J. E. Harris, L. M. Robeson. Miscible blends of poly(aryl ether ketone)s and polyetherimides[J]. Journal of Applied Polymer Science,1988,35(7):1877-1891.
    [71] M. Frigione, C. Naddeo, D. Acierno. Crystallization Behavior and Mechanical Properties ofPoly(Ary1Ether Ether Ketone)/Poly(Ether Imide) Blends [J]. Polymer Engineering andScience,1996,36(16):2119-2128.
    [72] A. Arzak, J. I. Eguiazábal a, J. Nazábal. Mechanical performance of directly injection--molded PEEK/PEI blends at room and high temperature [J]. Journal of MacromolecularScience, Part B,1997,36(2):233–246.
    [73] J. H. Yoo, N. S. Eiss. Tribological behaviour of blends of Poly(etheretheketone) andPoly(etherimide)[J]. Wear,1993,162:418-425.
    [74] J. Hanchi, N. S. Eiss. The tribological behavior of blends of poly(etheretherketone)(PEEK)and poly(etherimide)(PEI) at elevated temperatures [J]. Tribology Transactions,1994,37(4):494-504.
    [75] B. H. Stuart, B. Briseoe, J. Srateh. Hardness studies of Poly(etheretherketone)[J]. Polymer,1996,37:3819-3824.
    [76] B. H. Stuart. A Fourier transform Raman spectroscopy study of the crystallisation behaviourof a poly(ether ether ketone)/poly(ethersulphone) blend [J]. Spectrochimica Acta Part A,1997,53:107-110.
    [77] B. Nandan, L. D Kandpal, G. N. Mathu. Poly(etheretherketone)/Poly(arylethersulfone)Blends: Thermal and Compatibility Aspects [J]. Journal of Polymer Science: Part B: PolymerPhysics,2002,40:1407-1424.
    [78] B. Nandan, L. D. Kandpal, G. N. Mathur. Glass transition behaviour of poly(etheretherketone)/poly(arylethersulphone) blends: dynamic mechanical and dielectric relaxation studies[J]. Polymer,2003,44:1267–1279.
    [79] B. Nandan, L. D. Kandpal, G. N. Mathur. Crystallization and Melting Behavior ofpoly(etheretherketone)/Poly(arylethersulfone) Blends [J]. Journal of Applied Polymer Science,2003,90:2906–2918.
    [80] B. Nandan, L. D Kandpal, G. N Mathur. Poly(etheretherketone)/Poly(arylethersulfone)Blends: Relationships Between Morphology and Mechanical Properties [J]. Journal ofApplied Polymer Science,2003,90:2887–2905.
    [81] B. Nandan, L. D. Kandpal, G. N. Mathur. Poly(etheretherketone)/Poly(arylethersulfone)Blends: Melt Rheological Behavior [J]. Journal of Polymer Science: Part B: Polymer Physics,2004,42:1548–1563.
    [82]杨杰,闫文学.军工新材料—聚苯硫醚(PPS)介绍[J].材料工程,2006,(8):66.
    [83] R. C. Zhang, Y. Xu, Z. Y. Lu, M. Min, Y. Gao, Y. G. Huang, A. Lu. Investigation on theCrystallization Behavior of Poly(etheretherketone)/Poly(phenylenesulfide) Blends [J]. Journalof Applied Polymer Science,2008,108:1829–1836.
    [84] K. C. Mai, Z. Mei. R. Xu, H. M. Zeng. Effect of High-Performance Polymers onCrystallization and Multiple Melting Behavior of Poly(phenylenesulfide)[J]. Journal ofApplied Polymer Science,1998,69:637–644.
    [85]梅震,方鲲,麦堪成,许家瑞,曾汉民.熔融共混PPS/PEEK中PPS组分的结晶行为[J].工程塑料应用.1996,24(2):1-3.
    [86]陈晓媛,王港,芦艾,余雪江.聚醚醚酮/聚苯硫醚共混体系的相容性和力学性能研究[J].工程塑料应用,2007,35(2):13-15.
    [87]张振夹.聚四氟乙烯的性能、加工及其在封密上的应用[J].陕西化工,1994,(1):6-11.
    [88] B. Jayashree, S. Sukanta, A. Ghosh. Influence of PTFE content in PEEK–PTFE blends onmechanical properties and tribo-performance in various wear modes [J]. Wear,2005,258:1536–1542.
    [89] L. David, W. Burris, S. Gregory. A low friction and ultra low wear rate PEEK/PTFEcomposite [J]. Wear,2006,261:410–418.
    [90] B. J. Briscoe, L. H. Yao, T. A. Stolarski. The friction and wear of PTFE-PEEK composites:an initial appraisal of the optimum composition [J]. Wear,1986,108:357-374.
    [91] N. S. Eiss, J. Hanchi. Tribological behavior of poly(etheretherketone), a thermotropic liquidcrystalline polymer and in situ composites based on their blends under dry sliding conditionsat elevated temperatures [J]. Wear,1996,200(17):105-121.
    [92]阮汝祥,姜振华,王贵宾,张丽梅,马荣堂,吴忠文.聚醚醚酮/聚醚醚酮酮共混体系的熔融和等温结晶行为[J].高等学校化学学报,2000,21(7):1130-1133.
    [93] S. Bicakci, M. Cakmak. Phase behaviour of ternary blends of poly(ethylenenaphthalate),poly(etherimide)and poly(etheretherketone)[J]. Polymer,1998,39(17):4001-4010.
    [94] E. S. B. Rosario, D. G. Baird. Miscibility and mechanical properties of poly(etherimide)/poly (etheretherketone)/liquid crystalline polymer ternary blends [J]. Polymer,1992,33:5233-5244.
    [95] R. K. Goyal, Y. S. Negi, A. N. Tiwari. Preparation of high performance composites based onaluminum nitride/poly(etheretherketone) and their properties [J]. European Polymer Journal,2005,41(9):2034-2044.
    [96]黄红英,尹齐和.傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展[J].中山大学研究生学刊(自然科学、医学版),2011,32(1):20-30.
    [97]李玉芳.特种工程塑料聚醚醚酮(PEEK)的开发与应用[J].国外塑料,2004,22(11):38-41.
    [98]徐兆瑜.聚醚醚酮树脂[J].四川化工与腐蚀控,2003,6(2):40.
    [99]郝章来,吴丽君.聚醚醚酮的生产应用及发展前景[J].化工新型材料,2004,32(4):43-44.
    [100]张鹏.聚醚醚酮双重熔融行为、耐溶剂性及溶剂诱导结晶的研究[D].吉林大学博士论文,2011,81-127.
    [101]毛晓峰.聚醚砜和聚醚醚酮[J].化工新型材料,1986,(8):9-10.
    [102]陶国源.聚醚酰亚胺(PEI)的性能、加工及应用[J].塑料制造,2006,(7):38.
    [103] GB/T2406.2-2009/ISO4589-2:1996塑料燃烧性能测试方法-氧指数法[S].
    [104]曾灵,黄庆平,毛四发,韦淇峰.阻燃纤维板的生产技术[J].中国人造板,2009,(10):14-15.
    [105]伊晓东,郭建平,孙海珍,时海燕,王水菊,万惠霖. X射线光电子能谱仪样品前处理装置的设计及应用[J].分析仪器,2008,(5):8-13.
    [106]张晓勇,郝团伟,吴宝国,王端军,黄贞益.南钢转炉厂硅钙线的XPS分析[J].安徽工业大学学报(自然科学版),2010,27(4):349-352.
    [107]张华安,包德才,任东文,孙林,王为,马小军.微胶囊膜表面化学组成的XPS分析[J].化学通报,2006,(8):586-590.
    [108]陈建兵,王武生,王宇.聚含氟丙烯酸酯-聚氨酯三嵌段共聚物水基分散体的合成及膜结构[J].应用化学,2006,23(2):198-203.
    [109]潘纯华,张卫红,陈芬,陈细女,林少琨. ATR红外光谱法在高分子材料表面成份分析上的应用[J].广州化工,2000,28(3):34-36.
    [110]江艳,沈怡,武培怡. ATR-FTIR光谱技术在聚合物膜研究中的应用[J].化学进展,2007,19(1):173-185.
    [111]方林,黄红海. ATR-FTIR光谱技术在高聚物研究中的应用[J].化学工程师,2008,(3):33-36.
    [112] J. Chen, J. A. Gardella, J. Quantitative. ATR-FTIR Analysis of Surface Segregation ofPolymer Blends of Polystyrene/Poly(dimethyl siloxane)-co-polystyrene [J]. AppliedSpectroscopy,1998,52:361.
    [113]肖长发.用FTIR-ATR研究纤维素/聚乙烯醇共混物的表面性质[J].光谱学与光谱分析,1991,11(6):4.
    [114]陈晓红,张倩芝,张卫红,谢方艳.多重衰减全反射-红外光谱法在复合材料表面分析中的应用[J].光散射学报,2007,19(2):158-162.
    [115]黄红英,尹齐和.傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展[J].中山大学研究生学刊(自然科学、医学版),2011,32(1):20-30.
    [116]徐琳,王乃岩,霸书红,王云龙.傅里叶变换衰减全反射红外光谱法的应用与进展[J].光谱学与光谱分析,2004,24(3):317-319.
    [117] G. Crevecoeur, G. Groeninckx. Binary Blends of Poly (etheretherketone) and Poly(etherimide) Miscibility, Crystallization Behavior and Semicrystalline Morphology [J].Macromolecules,1991,(24):1190-1195.
    [118]刘杰,何嘉松.引入离子基团改善聚苯乙烯和热致液晶聚合物的相容性、热性能和形态[J].高分子学报,1998,(2):196.
    [119] L. A. Wood. Glass transition temperatures of copolymers [J]. Journal of Applied PolymerScience,1958,28(117):319-330.
    [120] Z. Ni. The Preparation, Compatibility and Structure of PEEK-PES Blends [J]. Polymers forAdvanced Technologies,1994,(5):612-614.
    [121]付宏刚,刘忠义,邵延文,倪卓. DSC法研究聚醚砜-聚醚醚酮共混物的相容性和热性[J].化学与粘合,1994,(1):20-24.
    [122] J. Sandler, P. Werner, M. S. P. Shaffer, V. Demchuk, V. Altst dt, A. H. Windle. Carbon--Nanofibre reinforced poly(etheretherketone) composites [J]. Composites Part A: AppliedScience and Manufacturing2002,33(8):1033-1039.
    [123] D. J. Blundell, B. N. Osborn. The morphology of poly(aryletheretherketone)[J]. Polymer,1983,(25):953-958.
    [124] G. Zhang, H. Yu, C. Zhang, H. Liao, C. Coddet. Temperature dependence of the tribologicalmechanisms of amorphous PEEK (polyetheretherketone) under dry sliding conditions [J].Acta Materialia,2008,56(10):2182-2190.
    [125] Y. J. Yamamoto, T. Takashima. Friction and wear of water lubricated PEEK and PPSsliding contacts [J]. Wear,2002,253:820-826.
    [126]郭强,温诗铸,罗唯力.高分子材料抗微动磨损的转移膜机理[J].自然科学进展—国家重点实验室通讯,1996,6(5):596-601.
    [127]龙春光,戴文利,陈平.聚醚醚酮复合材料的转移膜研究[J].润滑与密封,2005,(3):16-18.
    [128] R. K. Goyal, A. N. Tiwari, U. P. Mulik, Y. S. Negi. Study on Microhardness, DynamicMechanical, and Tribological Properties of PEEK/Al2O3Composites [J]. Journal of AppliedPolymer Science,2008,110:3379-3387.
    [129] Q. H. Wang, Q. J. Xue, W. M. Liu, J. M. Chen. Effect of Nanometer SiC Filler on theTribological Behavior of PEEK under Distilled Water Lubrication [J]. Journal of AppliedPolymer Science,2000,78(3):609-614.
    [130]牛利,张万金,吕慧娟,蒋大振.聚醚砜、聚醚醚酮的微波磺化研究[J].高等学校化学学报,1995,16(1):119-120.
    [131]文胜,龚春丽,郑根稳,周毅,管蓉.聚醚酰亚胺的磺化与热性能[J].高分子材料科学与工程,2009,25(4):85-87.
    [132]井蒙蒙,刘继纯,刘翠云,刘红宇.高分子材料的阻燃方法[J].中国塑料,2012,26(2):13-19.
    [133] S. Y. Lu, I. Hamerton. Recent developments in the chemistry of halogenfree flame retardantpolymers [J]. Progress in polymer science,2002,27(8):1661-1712.
    [134] G. J. Gueskens, L. Gielens. D. Geshef, R. Delotur. The electrical conductivity of Polymerblends Filled with carbon-black [J]. European Polymer Journal,1987,23:993.
    [135]吴鸿飞.气相生长碳纤维填充多相聚合物体系相结构、结晶与电性能的研究[D].浙江工业大学硕士论文,2006,14.
    [136] H. Tang, Z. Y. Liu, J. H. Piao, X. F. Chen, Y. X. Lou, S. H. Li. Electrical behavior of carbonblack-filled Polymer composites:Eeffet of interaction bewteen filler and matrix [J]. Journal ofApplied Polymer Science,2003,51(7):1159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700