用户名: 密码: 验证码:
高聚物成型工艺的系统优化设计及其并行计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注塑制品已经广泛的应用于通信产品、医疗器械、航空航天等高精尖领域中。而塑料产品的质量如制品的收缩、翘曲、残余应力、熔接线等以及生产过程中的功耗是模具和工艺设计中要考虑的主要指标。传统的模具设计方法主要依照设计者的经验以及反复试模来完成,不但成本很高,耗时长,而且靠试模来优化模具设计也是不现实的。结合计算机模拟技术与优化方法来提高制品质量是当前模具设计研究中的主流方向。然而由于高聚物成型过程复杂,过程参数众多,同时考虑众多的设计参数来对目标函数进行优化无论从精度还是效率都是对优化算法极大的挑战,本文针对高聚物成型优化设计存在的上述问题展开如下工作:
     发展了一种高聚物成型优化设计的系统优化模型。通过引入了系统工程理念,根据各个工艺参数与模具设计对制品质量的影响模式,将优化问题划分为4个子系统:填充子系统、冷却子系统、保压子系统和系统层优化,每个子系统有着各自的目标函数与设计变量。与传统的成型工艺优化模型相比,系统优化模型综合考虑了众多成型工艺参数,在系统层内设置主要优化指标,如减少制品翘曲、提高填充率等;在子系统中根据注塑制品的特殊要求兼顾优化其它指标,如残余应力、注射压力和功耗等。数值算例表明该优化模型可以全面的提高制品的质量。基于各子系统模型的特点,设计了分级优化策略,将原有的高维优化问题划分为若干低维优化问题,填充、冷却和保压三个子系统的目标函数分析仅需调用模拟程序的一个分析子模块,因而大大的提高了优化效率。
     针对高聚物成型优化特点,发展了相应的优化算法,其中包括改进的高斯过程代理模型加点准则和浇口位置的代理模型优化算法。
     基于高斯过程的代理模型优化算法是当前用于求解一类隐函数优化问题的主要手段。在代理模型算法中,如何平衡全局搜索与局部搜索是一个主要的研究方向。本文在期望提高(EI:Expected Improvement)加点准则中引入了权积分函数,发展了一种可以灵活控制搜索尺度的单点加点准则,权积分期望提高(Weighting-Integral Expected Improvement, WIEI)。然后,通过定义等价优化问题,将具有不同搜索尺度的WIEI函数凝聚在一起得到了具有不同搜索尺度特征的新加点准则,该准则可以根据目标函数的复杂程度来自动选择搜索尺度。
     针对复杂几何制品的浇口位置优化问题,通过引入流长的概念,建立了浇口位置的高斯过程代理模型,并结合上述加点准则发展了可以适应任何复杂几何制件的浇口位置黑箱优化算法。数值算例表明本文提出的优化算法均具有较高的优化效率和稳定性。
     为适应大规模计算的需要,将并行计算技术应用到高聚物成型优化中,分别在优化算法级别和模拟级别上提出了相应的并行算法。
     在优化算法级别上,提出了一种并行的代理模型优化算法,通过在单点加点准则中引入交互信息的概念构造惩罚函数,得到了可以同时考虑单个样本的适应度以及样本总体信息量的多点加点准则。另外针对高斯过程模型在处理大规模样本时所存在的计算困难,提出了一种区域分解优化策略,首先通过主成分分析的方法将样本空间划分为若干子空间。然后,在每个子空间内以及距离邻近该空间的区域选择样本建立优化模型并结合多点加点准则来搜索新的样本点。
     为克服注塑填充区域随时间变化的困难,提出了一种高聚物填充过程的并行模拟算法。首先基于聚类的思想设计了填充过程的区域分解算法将计算区域划分为若干子区域,通过定义负载平衡模型和边界控制模型来提高并行效率和降低通信量。在区域分解的基础上,各个子区域可以并行的完成控制方程的组集过程。然后,通过对节点的分类,设计一个超松弛迭代算法来求解有限元方程控制方程。
     本文工作得到国家自然科学基金重大项目《高聚物成型加工与模具设计中的关键力学和工程问题》(No.10590354)和《国家重点基础研究发展规划》项目“高聚物成型模拟及模具设计制造中的关键问题研究”中“高聚物成型工艺和模具设计优化”课题(No.2012CB025905)的资助。
Plastic injection molding (PIM) has been widely used in high-tech industries, such as the3C (Computer, Communication, and Consumer-Electronics), automotive and medicinal industries. The quality issues of the product (the shrinkage, the warpage, the residual stress and the weld lines) and the energy cost of the productive process are the main concerns in the design of the PIM process. The traditional ways of mold design and selecting the processing parameters are mainly depended on the experience of the designer and engineers. The designing process may be very expensive and time consuming. Optimizing the mold design and molding process with computer aided engineering (CAE) technology has been proved as an effective way to improve the quality of products. However, because of the complexity of the molding process and the design parameters, considering all the design parameters simultaneously in the optimization problem often involves huge computational effort and lead to a highly demand for the optimizing method.
     A system-based optimization model of injection process is proposed. The optimization of the mold and molding process is divided into4sub-systems:the filling sub-system, the cooling sub-system, the packing-subsystem and the system-level problem. Each sub-system has its own objective and design parameters, and objectives of the first three sub-systems can be evaluated by only one sub-model of the simulation program. A coupling optimization strategy is used to solve this system-based model. Comparing with the traditional models, the system-based model is able to consider more design parameters and objectives. The numerical results show that the system-based model has much higher computing efficiency.
     A modified Gaussian process surrogate-model based optimization method (GPSBOM) is developed to solve the optimization problem in each sub-system, in which a new infill sample criteria (ISC) and a Gaussian process (GP) model for the gate location optimization problem are also involved.
     The balancing between the global exploration and local exploitation has been a main concern in GPSBOM. A weighting function is introduced to improve the "expected improvement (EI)" method, and a new ISC named weighting-integral expected improvement (WIEI) is proposed. The WIEI provides a high flexibility to control the search scope. By defining an equivalent optimization problem, the WIEI functions with different search scopes are condensed into one ISC which is able to select a proper search scope based on the complexity of the optimization problem.
     For the gate location optimization problem, the "flow path" is introduced to calculate the correlation model between different locations. With this correlation model, the GP surrogate-model of the gate location can be established. The ISC mentioned above can be used in this GP model in the GPSBOM. This proposed gate location optimization method has three advantages:the objectives can be selected based on the demand, it can be applicable to the gate location design with the complexity of the product's geometry, and can be solved by GPSBOM efficiently.
     The parallel computing methods for the optimization process are also studied, that a parallel GPSBOM is developed, and the simulation of filling process is also parallelized.
     By introducing the concept of "mutual information", a parallel ISC named EI&MI is developed. The EI&MI considers both the El value of each new sample and the total information of them all. Because that establishing the GP model with a large number of samples may lead to huge computational effort, a domain decomposition optimization strategy is proposed in which the design space is divided into several sub-spaces by primary component analysis method. Then in each sub-space the GP model is established based on the inner and neighboring samples, and the new samples can be searched based on the EI&MI. The numerical results show that the proposed parallel optimization method is able to solve the very complex problem efficiently.
     The parallel computing method of filling process is studied. First, based on the cluster method, a domain decomposition algorithm is developed to divide the computation domain into several sub-domains. A domain decomposition model of both "load balance" and "boundary control" is proposed to improve the parallel efficiency and reduce the communication amount. The system equations of each sub-domain can be assembled parallelized. Then by classifying the nodes, a parallel successive over relaxation (SOR) algorithm is developed to solve the system equations. Numerical results show that the method gives a high efficiency, and it is suitable for numerically simulating the injection molding filling process.
     The author gratefully acknowledges financial support for this work from the Major program (No.10590354) and the National Natural Science Foundation of China and the National Basic Research Program of China (No.2012CB025905).
引文
[1]. Das I, Dennis J E. Normal-boundary intersection:A new method for generating the Pareto surface in nonlinear multicriteria Optimization problems [J]. SIAM Journal on Optimization 1998 8(3):631-657.
    [2]. Renato D S., Motta S M B., Afonso, Paulo R M L. A modified NBI and NC method for the solution of N-multiobjective Optimization problems [J]. Structure and Multidisciolinary Optimization 2012 46 (2):239-259.
    [3]. Messac A., Ismail-Yahaya A., Mattson C A. The normalized normal constraint method for generating the Pareto frontier [J]. Structure and Multidisciolinary Optimization,2003,25(2):86-98.
    [4]. Messac A., Mattson C A. Normal constraint method with guarantee of even representation of complete Pareto frontier [J]. AIAA Journal,2004,42(10): 2101-2011.
    [5]. Mueller-Gritschneder D., Graeb H., Schlichtmann U. A successive approach to compute the bounded pareto front of practical multiobjective optimization problems [J]. SIAM Journal on Optimization 2009,20(2):915-934.
    [6]. Miettinen K. Nonlinear Multiobjective Optimization [M]. Springer,1998:
    [7]. Cochrane J L., Zeleny M. Multiple Criteria Decision Making [M]. Columbia: University of South Carolina Press,1973:
    [8]. Kailash L. Fuzzy goal programming approach to multi objective quadratic programming problem [J]. Proceedings of the National Academy of Sciences India Section A-physical Sciences 2012,82(4):317-322
    [9]. Messac A. Physical programming:effective optimization for computational design [C]. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Salt Lake City, UT, USA,1996.
    [10]. Eghbal H., Abu B S. Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method [J]. Materials and Design,2012,42 62-71.
    [11]. Yang S C, Tsai FC, Mao T F;. Optimization of injection molding parameters for plastic part using Taguchi-TOPSIS method [J]. Advanced Materials Research,2012, 421:440-443
    [12]. Li J Q., Li D. Q., Guo Z. Y., et al. Single gate Optimization for plastic injection mold [J]. Journal of Zhejiang University-Science A,2007,8(7):1077-1083.
    [13]. Pandelidis I., Zou Q. Optimization of Injection-Molding Design.1. Gate Location Optimization [J]. Polymer Engineering and Science,1990,30(15):873-882.
    [14]. Lin J C. Optimum cooling system design of a free-form injection mold using an abductive network [J]. Journal of Materials Processing Technology 2002,120: 226-236.
    [15]. Mathur R., Advani S G., Fink B K. A real-coded hybrid genetic algorithm to determine optimal resin injection locations in the resin transfer molding process [J]. Cmes-Computer Modeling in Engineering & Sciences,2003,4(5):587-601.
    [16]. Park C H., Lee W I., Han W S., et al. Simultaneous Optimization of composite structures considering mechanical performance and manufacturing cost [J]. Composite Structures,2004,65(1):117-127.
    [17]. Deng Y M, Zheng D, Sun B, et al. Injection molding Optimization for minimizing the defects of weld lines [J]. Polymer-Plastics Technology and Engineering,2008, 47(9):943-952.
    [18]. Ratle F., Achim V., Trochu F. Evolutionary operators for optimal gate location in liquid composite moulding [J]. Applied Soft Computing,2009,9(2):817-823.
    [19]. Lam Y C., Zhai L Y., Tai K., et al. An evolutionary approach for cooling system Optimization in plastic injection moulding [J]. International Journal of Production Research,2004,42(10):2047-2061.
    [20]. Meissner M, Schmuker M., Schneider G. Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training [J]. BMC Bioinformatics 2006 7
    [21]. Bratton D., Blackwell T. A Simplified Recombinant PSO [J]. Journal of Artificial Evolution & Applications,2008,654184 (10 pp.).
    [22]. Pedersen M E H. Chipperfield A J. Simplifying Particle Swarm Optimization [J]. Applied Soft Computing,2010 10(2):618-628.
    [23]. Maciel R S., Rosa M, Miranda V, et al.. Multi-objective evolutionary particle swarm Optimization in the assessment of the impact of distributed generation [J]. Electric Power Systems Research 2012,89:100-108.
    [24]. Fukushima M., Hedar A R. Tabu Search directed by direct search methods for nonlinear global Optimization [J]. European Journal of Operational Research,2006 170(2):329-49.
    [25]. Gutmann H M. A radial basis function method for global Optimization [J]. Journal of Global Optimization,2001,19:201-227.
    [26]. Buhmann M D. Radial Basis Functions:Theory and Implementations [M]. Cambridge University Press,2003:
    [27]. Sobester A., Leary S J., Keane A J. On the design of Optimization strategies based on global response surface approximation models [J]. Journal of Global Optimization,2005,33(1):31-59.
    [28]. Holmstrm K. An adaptive radial basis algorithm (ARBF) for expensive black-box global Optimization [J]. Journal of Global Optimization,2008,41:447-464.
    [29]. Kitayama S., Arakawa M., Yamazaki K. Sequential Approximate Optimization using Radial Basis Function network for engineering Optimization [J]. Optimization and Engineering,2011 12(4):535-557.
    [30]. Levin D. The approximation power of moving least squares [J]. Mathematics of Computation,1998,67:1517-1531.
    [31]. Piotr B., Hakim N., Alain R., et al. Moving least squares response surface approximation:Formulation and metal forming applications [J]. Computers and Structures,2005,83:17-18.
    [32]. Song C Y., Lee J., Choung J M. Reliability-based design Optimization of an FPSO riser support using moving least squares response surface meta-models [J]. Ocean Engineering,2011 38(2-3):304-318.
    [33]. Cho J Y., Oh M H. Sequential Approximate Optimization Procedure based on Sample-reusable Moving Least Squares Meta-model and its Application to Design Optimizations [J]. Cmes-Computer Modeling in Engineering & Sciences,2010 66(3): 187-213.
    [34]. Taf lanidis A A. Stochastic subset Optimization incorporating moving least squares response surface methodologies for stochastic sampling [J]. Advances in Engineering Software,2012,44 (1):3-14.
    [35]. Cognitron F K.. A self-organizing multilayered neural network [J]. Biological Cybernetics,1975,20(3-4):121-136.
    [36]. HOPFIELD J. Neural networks and physical systems with emergent collective computational abilities [J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 1982 79(8):2554-2558.
    [37]. Hinton G E., Osindero S., Teh Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation 2006,18(7):1527-1554.
    [38]. Shi H Z,. Xie S M,. Wang X C. A warpage Optimization method for injection molding using artificial neural network with parametric sampling evaluation strategy [J]. International Journal of Advanced Manufacturing Technology 2012,
    [39]. Shi H Z., Gao Y H., Wang X C. Optimization of injection molding process parameters using integrated artificial neural network model and expected improvement function method [J]. International Journal of Advanced Manufacturing Technology, 2010,48(9-12):955-962.
    [40]. Farshi B., Gheshmi S. Miandoabchi E. Optimization of injection molding process parameters using sequential simplex algorithm [J]. Materials & Design,2011, 32(1):414-423.
    [41]. Robinson G K. That BLUP is a good thing:the estimation of random effects [J]. Statistical Science,1991,6(1):15-32.
    [42]. Sakata S., Ashida F., Zako M. Structural optimization using Kriging approximation [J]. Computer Methods in Applied Mechanics and Engineering,2003,192:923-939.
    [43]. Sakata S., Ashida F., Zako M. An efficient algorithm for Kriging approximation and optimization with large scale sampling data [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:385-404.
    [44]. Simpson T W., Lin D K J., Chen W. Sampling strategies for computer experiments: design and analysis. [J]. Journal of Reliability and Safety,2001,2(3):209-240.
    [45]. 曹鸿钧,段宝岩.基于kriging模型的后优化研究[J].机械设计与研究,2004,20(5):10-13.
    [46]. 高月华.基于kriging代理模型的优化设计方法及其在注塑成型中的应用[D].大连:大连理工大学,2009.
    [47]. 王晓峰,席光,王尚锦.Kriging与响应面方法在气动优化设计中的应用[J].用.工程热物理学报26(3):423-425.,2005,26(3):423-425.
    [48]. 张崎.基于kriging方法的机构可靠性分析及优化设计[D].大连:大连理工大学,2005.
    [49]. 张柱国,姚卫星,刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法[J].南京航空航天大学学报,2008,40(4):892-901.
    [50]. Hennig P., Schuler C J. Entropy Search for Information-Efficient Global Optimization [J]. Journal of Machine Learning Research 2012,13:1809-1837.
    [51]. Jones D R., Schonlau M., Welch W J. Efficient Global Optimization of Expensive Black-Box Functions [J]. Journal of Global Optimization 1998,13(4):445-492.
    [52]. Sasena M J., Papalambros P., Goovaerts P. Exploration of metamodeling sampling criteria for constrained global Optimization [J]. Engineering Optimization,2002, 34(3):263-278.
    [53]. Bursztyn D., Steinberg D M. Comparison of designs for computer experiments. [J]. Journal of Statistical Planning and Inference 2006,136:1103-1119.
    [54]. Chen V., Tsui K L., Barton R., et al. A review on design, modeling and applications of computer experiments. [J]. IEE Transactions 2006;,38:273-291.
    [55]. Jank W, Shmueli G. Modelling concurrency of events in on-line auctions via spatiotemporal semiparametric models. [J]. Applied Statistics 2007,56(1-27.
    [56]. Johnson M E., Moore L M.,Ylvisaker D. Minimax and maximin distance designs [J]. Journal ofStatistical Planning and Inference,1990,26:131-148.
    [57]. Liefvendahl M., Stocki R. A study on algorithms for Optimization of Latin hypercubes [J]. Journal of Statistical Planning and Inference,2006,136: 3231-3247.
    [58]. Roux W., Stander N., Gunther F., Mullerschon H. Stochastic analysis of highly non-Linear structures. [J]. International Journal for Numerical Methods in Engineering,2006,65(1221-1242.
    [59]. McKay M D., Beckman R J., Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output froma computer code. [J]. Technometrics,1979,21(2):239-245.
    [60]. Fang K T., Li R., Sudjianto A. Design and Modeling for Computer Experiments. [M]. Taylor & Francis Group:Boca Raton,2006:
    [61]. Welch W J., Buck R J., Sacks J., et al. Screening, predicting, and computer experiments.; [J]. Technometrics 1992,34(1):15-25.
    [62]. Mease D., Bingham D. Latin hyperrectangle sampling for computer experiments. [J]. Technometrics 2006,48(4):467-477.
    [63]. Tyre A., Kerr G D., Tenhumberg B., et al. Identifying mechanistic models of spatial behaviour using pattern-based modelling:An example from lizard home ranges. [J]. Ecological Modeling 2007,208:307-316.
    [64]. Storlie C B., Helton J C. Multiple predictor smoothing methods for sensitivity analysis:Example results. [J]. Reliability Engineering and System Safety 2008, 93:55-77.
    [65]. Bayarri M J., Berger J 0., Paulo R, et al. A framework for validation of computer models. [J]. Technometrics 2007,49(2):138-154.
    [66]. Wang Y., Fang K T. A note on uniform distribution and experimental design. [J]. KeXue TongBao 1981,26:485-489.
    [67]. Fang K T. The uniform design:Application of number-theoretic methods in experimental design. [J]. Acta Mathematicae Applicatae Sinica 1980,3:363-372.
    [68]. Shewry M C., Wynn H P. Maximum entropy sampling. [J]. Journal of Applied Statistics 1987,14(898-914.
    [69]. Ko C W., Lee J., Queyranne M. An exact algorithm for maximum entropy sampling. [J]. Operations Research Letters,1995,43:684-691.
    [70]. Sacks J., Welch W J., Mitchell T J. Design and analysis of computer experiments. [J]. Statistical Science 1989,4(4):409-423.
    [71]. Zhai M., Xie Y.. A study of gate location Optimization of plastic injection molding using sequential linear programming [J]. International Journal of Advanced Manufacturing Technology,2010,49(1-4):97-103.
    [72]. Zhai M. Optimal Design of Gate Location in Injection Molding Based on Feasible Space [J]. Kgk-Kautschuk Gummi Kunststoffe,2011,64(6):40-43.
    [73]. Henz B J., Tamma K K., Mohan R V. Process modeling of composites by resin transfer molding-Sensitivity analysis for non-isothermal considerations [J]. International Journal of Numerical Methods for Heat & Fluid Flow,2005,15(7): 631-653.
    [74]. Shen C Y., Yu X R., Li Q., et al. Gate location Optimization in injection molding by using modified hill-climbing algorithm [J]. Polymer-Plastics Technology and Engineering,2004,43 (3):649-659.
    [75]. Gaido T., Bhagavatula N., Castro J. M., et al. Evaluation of alternative injection strategies with variability consideration in injection molding [J]. Journal of Polymer Engineering,2007,27(8):547-563.
    [76]. Zhai M., Lam Y. C., Au C. K., et al. Automated selection of gate location for plastic injection molding processing [J]. Polymer-Plastics Technology and Engineering,2005,44(2):229-242.
    [77]. Zhai M., Shen C Y. An Optimization scheme based on flow resistance to locate optimum gate of complex part [J]. Journal of Reinforced Plastics and Composites,2005, 24(15):1559-1566.
    [78]. Tang L Q., Chassapis C., Manoochehri S. Optimal cooling system design for multi-cavity injection molding [J]. Finite Elements in Analysis and Design,1997, 26(3):229-251.
    [79]. Park S J., Kwon T H. Optimal cooling system design for the injection molding process [J]. Polymer Engineering and Science,1998,38(9):1450-1462.
    [80]. Yu D Q.,Wang X C. Wang Y. A Two-level Decomposition Method for Cooling System Optimization in Injection Molding [J]. International Polymer Processing,2008, 23(5):439-446.
    [81]. Zhang Y L., Lu C D., Jiang S F., et al. Optimization Design of Cooling Channels Layout in Injection Mould for CPU Fan [J]. Light Industry Machinery,2010,28(1): 21-4.
    [82]. Park H S., Dang X P. Optimization of conformal cooling channels with array of baffles for plastic injection mold [J]. International Journal of Precision Engineering and Manufacturing,2010 11(6):879-90.
    [83]. Wang G L., Zhao G Q., Li H P. Research on Optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm Optimization [J]. Expert Systems with Applications 2011,38(6):6705-6719
    [84]. Matsumori T, Yamazaki K. Design improvement of cooling channel layout for plastic injection moulding [J]. Engineering Optimization 2011 43 (8):891-909.
    [85]. Ren L., Zhang W X. Optimization Design of Heterogeneous Injection Mold Cooling System [C].3rd International Conference on Mechanical and Electronics Engineering (ICMEE 2011). Hefei, PRC 2011.
    [86]. Schmidt F., Pirc N., Mongeau M. Efficient mold cooling Optimization by using model reduction [J]. International Journal of Material Forming 2011 4(1):73-82.
    [87]. Li C G., Li C L., Liu Y L., et al. A new C-space method to automate the layout design of injection mould cooling system [J]. Computer-Aided Design,2012,44: 811-823.
    [88]. Choi J H., Choi S H., Park D. Design Optimization of an injection mold for minimizing temperature deviation [J]. International Journal of Automotive Technology 2012,13(2):273-277
    [89]. Huang Z Y. The Optimal Design of Injection Mold Cooling [J]. Advanced Materials Research,2012,490-495(2647-2651.
    [90]. Fernandes C., Pontes A J., Viana J C. Using Multi-objective Evolutionary Algorithms for Optimization of the Cooling System in Polymer Injection Molding [J]. International Polymer Processing 2012 27 (2):213-223.
    [91]. Rhee B 0., Park C S., Chang H K. Automatic Generation of Optimum Cooling Circuit for Large Injection Molded Parts [J]. International Journal of Precision Engineering and Manufacturing 2010 11(3):439-44.
    [92]. Gao Y H., Wang X C. An effective warpage Optimization method in injection molding based on the Kriging model [J]. International Journal of Advanced Manufacturing Technology,2008,37(9-10):953-960.
    [93]. Gao Y H., Turng L S., Wang X C. Adaptive Geometry and Process Optimization for Injection Molding Using the Kriging Surrogate Model Trained by Numerical Simulation [J]. ADVANCES IN POLYMER TECHNOLOGY 2008,27 (1):1-16
    [94]. Gao Y H., Wang X C. Surrogate-based process Optimization for reducing warpage in injection molding [J]. Journal of Materials Processing Technology 2009,209(3): 1302-1309
    [95]. Chuang M T., Yang Y K., Hsiao Y H. Modeling and Optimization of Injection Molding Process Parameters for Thin-Shell Plastic Parts [J]. Polymer-Plastics Technology and Engineering,2009,48(7):745-753.
    [96]. Zhang Y., Deng Y M., Sun B S. Injection Molding Warpage Optimization Based on a Mode-Pursuing Sampling Method [J]. Polymer-Plastics Technology and Engineering, 2009,48(7):767-774.
    [97]. Altan M., Yurci M E. Optimization of Residual Stresses in the Surface Regions of Injection Moldings [J]. Polymer-Plastics Technology and Engineering,2010, 49(1):32-37.
    [98]. Chen W L., Huang C Y., Hung C W. Optimization of plastic injection molding process by dual response surface method with non-linear programming [J]. Engineering Computations,2010,27(7-8):951-966.
    [99]. Li C., Wang F L., Chang Y Q., et al. A modified global optimization method based on surrogate model and its application in packing profile optimization of injection molding process [J]. International Journal of Advanced Manufacturing Technology,2010,48(5-8):505-511.
    [100]. Li X J., Ouyang J., Yang B X., Jiang T. Warpage optimization in injection molding using MPSO-HNN and MPSO algorithm [J]. Polymer-Plastics Technology and Engineering,2010,49(12):1247-1256.
    [101]. Kamaruddin S., Khan Z A., Foong S H. Quality characteristic improvement of an injection moulding product made from blends plastic by optimizing the injection moulding parameters using Taguchi method [J]. International Journal of Plastics Technology,2010 14(2):152-66.
    [102]. Yin F., Mao H J., Hua L., et al.. Back propagation neural network modeling for warpage prediction and Optimization of plastic products during injection molding [J]. Materials & Design,2011 32 (4):1844-50.
    [103]. Sun B S., Deng Y M., Gu B., et al. Optimization of process parameters for warpage minimization on injection molding thin-walled parts [J]. Applied Mechanics and Materials,2012,101-102:525-529.
    [104]. 郝勇,范军晖.系统工程方法与应用[M].北京:科学出版社,2007:1-25.
    [105]. Kodiyalam S. Evaluation of methods for multidisciplinary design optimization (MDO), phase I [R]. Morrisville, North Carolina
    [106]. Kodiyalam S., Sobieszczanski S J. Multidisciplinary design Optimization-some formal methods, framework requirements, and application to vehicle design [J]. International Journal of Vehicle Design,2001,25(1-2):3-22.
    [107]. Alexandrov N M., Lewis R M. Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design [J]. AIAA Journal 2002 40(2): 301-309.
    [108]. Kodiyalam S., Sobieszczanski S J. Bilevel integrated system synthesis with response surfaces [J]. AIAA Journal 2000,38(8):1479-1485.
    [109]. Sobieszczanski S J., Altus T D., Phillips M. Bilevel integrated system synthesis for concurrent and distributed processing [J]. AIAA Journal,2003 41(10): 1996-2003.
    [110]. 王利霞.基于数值模拟的注塑成型工艺优化及制品质量控制研究[D].郑州:郑州大学,2004.
    [111]. Box E P., Draper N R. Empirical model building and response surfaces [M]. New York:Wiley,1987
    [112]. Lukaszyk S. A new concept of probability metric and its applications in approximation of scattered data sets [J]. Computational Mechanics,33, (4): 299-304.
    [113]. David G., Rodolphe L R., Laurent C. Kriging is well-suited to parallelize Optimization. [M]. Springer,2009:131-162.
    [114]. Janis J. Rodophe L R., David G. Parallel expected improvement for global Optimization:summary, bounds and speed up [R]. Saint-Etienne:Ecole Nationale Sup erieure des Mines de Saint-Etienne.
    [115]. Ai M Y., He Y Z., Liu S. Some new classes of orthogonal Latin hypercube designs [J]. Journal of Statistical Planning and Inference 2012 142(10):2809-2818.
    [116]. Georgiou S D., Stylianou S. Block-circulant matrices for constructing optimal Latin hypercube designs [J]. Journal of Statistical Planning and Inference,2011, 141(1933-1943.
    [117]. Xiong F., Xiong Y., Chen, W., et al. Optimizing Latin hypercube design for sequential sampling of computer experiments [J]. Engineering Optimization,2009, 41(8):793-810.
    [118]. Narayanan A., Toropov V V., Wood A S. Simultaneous model building and validation with uniform designs of experiments [J]. Engineering Optimization,2007,39(5): 497-512.
    [119]. Kreisselmeier G., Steinhauser R. Systematic Control Design by Optimizing a Vector Performance Index [C]. Proceedings of IFAC Symposium on Computer Aided Design of Control Systems. Zurich, Switzerland,1979
    [120]. 安然余德启,王希诚.注塑模具浇口位置的演化设计方法[J].计算力学学报,2008,25:654-659.
    [121]. Yu L Y, Lee L J, Loelling L W. Flow and heat transfer simulation of injection molding with microstructures [J]. Polymer Engineering and Science,2004,44(10): 1866-1875.
    [122]. Kauzlaric D, Greiner A, Kirvink J G. Modelling micro-rheological effects in mircro injection moulding iwth dissipative partical dynamics [J]. NSTI-Nanotech,2004, 2(454-457.
    [123]. Barkhordari M., Etemad S G. Numerical study of slip flow transfer of non-newtonian fluids in circular microchannels [J]. International Journal of Heat and Fluid Flow,2007,28(1027-1033.
    [124]. 刘莹.基于微流控芯片的微结构制品注塑成型工艺技术研究[D].大连:大连理工大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700