用户名: 密码: 验证码:
SUZ-4分子筛可控合成及其催化应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油发动机汽车尾气中NOx的排放对大气环境产生了严重的污染,而选择催化还原法(SCR)是消除上述NOx的有效途径。大量研究表明,具有较多强B酸中心的分子筛对于烃选择催化还原NOx (HC-SCR)及氢气选择催化还原NOx (H2-SCR)是较优的催化剂载体。因此,具有更强B酸位的新型分子筛被预期可成为更有效的HC-SCR及H2-SCR反应的催化剂载体。目前,分子筛的合成大都在以有机大分子为模板剂的条件下进行。这些有机分子的加入不仅增加了沸石分子筛的合成成本,还对环境造成了严重的污染。因此,人们亟需得到B酸性更强的分子筛及其在成本低廉,环境友好条件下的合成路线。
     本论文对具有强B酸位的微孔硅铝沸石SUZ-4分子筛的合成进行了深入研究,利用晶种法实现了在不外加有机模板剂的条件下合成该分子筛。通过对该合成系统中各参数的详细研究,不仅缩短了晶化时间,降低了晶化温度,还提出了一条可实现SUZ-4分子筛形貌及硅铝比可控的绿色合成路线。另外,本论文还研究了具有不同形貌的HSUZ-4分子筛负载Pt所得催化剂对H2-SCR反应催化活性的差异,建立了载体的形貌结构与催化剂催化性能之间的构效关系。主要研究结果如下:
     1.优化了制备SUZ-4晶种胶的晶化时间。研究提出,在系统晶化曲线上,晶体生长阶段与Ostwald成熟阶段的交叉转折点所对应的时间应为制备晶种胶的最佳晶化时间。在该时间点上所得的晶种胶中几乎不含有无定形物质,且所含的SUZ-4微晶数量最多。在初始凝胶组成为7.9KOH:1.0Al2O3:21.2SiO2:498.6H2O,晶化温度为150℃,转速为20rpm的条件下,利用在上述最佳晶化时间点所得到的晶种胶(S16),首次成功合成出了纳米纤维状的SUZ-4分子筛。
     2.通过XRD、SEM及TEM对晶种法合成SUZ-4分子筛系统的晶化过程进行了监测。提出并论证了,S16晶种在晶化初期阶段(≤3h)的大量溶解是该纳米纤维SUZ-4分子筛形成的关键步骤。HR-TEM的分析确认了,SUZ-4分子筛是沿着骨架低密度的轴向方向,即c-轴方向进行生长的。
     3.以S16为晶种,在无模板剂的条件下,实现了SUZ-4分子筛的硅铝比及形貌的可控以及该分子筛在较短时间内、较低温度下的合成。研究发现,通过简单地调节凝胶中Al的投料量及K+浓度,可使合成得到SUZ-4分子筛的SiO2/Al2O3比在10.6到20之间可控;增加凝胶中H20量,Al量以及K+浓度,可有利于纳米纤维状SUZ-4分子筛的形成;通过减少系统中水的含量,可将合成100%SUZ-4分子筛所需的时间有效地缩短至12h(文献中报道的至少需要96h);组成为7.9KOH:1.0Al2O3:21.2SiO2:498.6H2O的初始凝胶可在90℃下生成纯SUZ-4分子筛(文献中报道的至少需要150℃)。
     4.对Na+可否作为SUZ-4分子筛孔道内的平衡阳离子作了深入探讨。研究提出,在有晶种存在的条件下,无论系统中Na+含量的多寡,它都无法充当SUZ-4分子筛孔道的平衡阳离子;该离子的存在并不影响系统生成SUZ-4分子筛相的选择性以及最终产品的形貌。
     5.首次将Pt/HSUZ-4催化剂用于H2-SCR反应。在相同Pt担载量的条件下(0.1wt.%),纳米纤维HSUZ-4分子筛载Pt催化剂的活性显著高于相应的棒状分子筛载Pt催化剂。研究发现,对于利用等体积浸渍法制备的Pt/HSUZ-4催化剂,纳米纤维HSUZ-4分子筛较长的十元环孔道及其外表面上较多的B酸位使Pt更易以较高活性的Pt纳米颗粒的形式较均匀地分散在该载体的外表面上;当棒状HSUZ-4为载体时,较多Pt以非活性的Pt离子的形式进入该载体孔道内,而在其外表面上的Pt颗粒因以团聚态的形式存在而活性较差。
     6.首次提出,通过吸附NOx和红外光谱测定,可用1652cm-1处的吸收峰识别位于HSUZ-4分子筛孔道中的过渡金属阳离子。
Environmental pollution caused by the nitrogen oxides being contained in diesel vehicle exhaust has been serious, and selective catalytic reduction of NOx (SCR) has been believed to be the effective way to remove the NOx under the lean-burn condition. It has been found that, the zeolite with large population of Bronsted acids in strong acidic is the superior support for the selective catalytic reduction of NOx by hydrocarbons (HC-SCR) or by hydrogen (H2-SCR). Hence, the novel zeolite with much more Bronsted acids in stronger acidic is expected to be a better support for the HC-SCR and H2-SCR reactions. Until now, for the zeolite synthesis, organic molecules have had to be used as template, at the expense of high cost and serious environmental pollution. Thus, strategies to synthesize the zeolite with stronger Bronsted acid sites in an economical and environmental-friendly way are urgently desired.
     In this thesis, the microporous SUZ-4zeolite with strong Bronsted acids was synthesized with the assistance of seed slurry under the template-free condition. Based on the systematic investigation on the parameters of the synthesis system, we not only shortened the crystallization time, reduced the crystallization temperature, but also provided a route to synthesize the SUZ-4zeolite with controllable morphology and SiO2/Al2O3ratio. Furthermore, HSUZ-4zeolites with different morphology were used as the catalyst supports for loading Pt in H2-SCR reaction, and the catalytic performances of the catalysts were well associated with their support morphology. The main work and findings are as follows:
     1. The crystallization time for preparing SUZ-4seed slurry was optimized. It was found that, the crystallization time at the turning point of the crystal growth stage and the Ostwald ripening stage on the crystallization curve was optimum. The seed slurry being obtained at the time contained almost no amorphous material, but the most population of SUZ-4crystallites. With the assistance of the seed slurry (S16), the nanofibrous SUZ-4zeolite was firstly synthesized from the initial gel with7.9KOH:1.0Al2O3:21.2SiO2:498.6H2O at150℃, under the rotation of20rpm.
     2. The crystallization process of the SUZ-4synthesis seeded by S16was monitored by XRD, SEM and TEM. The seed dissolution at the early stage (≤3h) of the crystallization process was proposed to be the key step for the formation of the nanofibrous SUZ-4zeolite. The orientation of the nanofibrous SUZ-4zeolite to be along c-axis was identified by HR-TEM.
     3. With the assistance of S16, the synthesis of SUZ-4zeolite with controllable morphology and SiO2/Al2O3ratio and the synthesis of SUZ-4zeolite in a shorter time or at a lower temperature were realized under the template-free condition. It was found that, by simply regulating the Al content and the K+concentration in the initial gel, the SiO2/Al2O3ratio of the obtained SUZ-4zeolite can be manipulated in the range of10.6-20; the initial gel with larger H2O content, larger Al content and higher K+concentration was favorable for the nanofibrous SUZ-4zeolite formation; by decreasing the H2O content in the initial gel, the crystallization time for obtaining the100%SUZ-4zeolite can be effectively shortened to12h (it is at least96h reported in literature); from the initial gel of7.9KOH:1.0Al2O3:21.2SiO2:498.6H2O, the crystallization temperature for obtaining pure SUZ-4zeolite can be lowered to90℃(it is at least150℃reported in literature).
     4. Whether Na+in the initial gel can act as balanced ions in the channels of SUZ-4zeolite or not was investigated. It was found that, with the assistance of seed, no matter how much the Na+existing in the gel, it can not incorporate into the SUZ-4framework as the balanced ions; the existence of Na+did not influence the SUZ-4zeolite synthesis.
     5. Pt/HSUZ-4catalyst was firstly used in H2-SCR reaction. With the same Pt loading (0.1wt.%), the catalyst of nanofibrous HSUZ-4zeolite supporting Pt (Pt/NF) exhibited much higher activity than the corresponding catalyst of rod-like HSUZ-4supporting Pt (Pt/ROD). It was found that, for the Pt/HSUZ-4catalysts prepared by impregnation, in the case of Pt/NF, Pt primarily presents as more active Pt nanoparticles well dispersing on the external surface of the support, due to the longer10-ring channels and the much more Bronsted acids on the external surface of the support; whereas in the case of Pt/ROD, more Pt presents as inactive Pt ions locating in the support channels, and less Pt exists as aggregated particles on the external surface of the support, which were less acive for the reaction.
     6. It is firstly proposed that, after the catalyst adsorbed NOx, the FTIR absorption band at1652cm-1can be used to identify the transition metal ions in SUZ-4zeolite channels.
引文
[1]吴忠标.大气污染控制技术[M].北京:化学工业出版社,2002.
    [2]徐锦江,彭天杰.排气净化催化剂的制备和应用[J].环境污染治理技术与设备,1980,7:35-40.
    [3]Fu L, Hao J, He D. Assessme of vehicular pollution in China [J]. Journal of the Air & Waste Management Association,2001,51(5):658-668.
    [4]王长会.现状和治理技术的发展及标准介绍[J].机械工业标准化与质量,2008,3:20-21.
    [5]张松涛.柴油机NOx催化器的实验研究[D]:(硕士学位论文).大连:大连理工大学,2005.
    [6]国家环保局.机动车排放污染防治技术政策[J].环境保护,1999,10:6-9.
    [7]杨健敏.BJ483欧Π柴油机开发研究[D]:(硕士学位论文).济南:山东大学,2005.
    [8]刘龚俊.内燃机的排放与控制[M].北京:机械工业出版社,2002.
    [9]Parvulescu V I, Grange P, Delmon B. Catalytic removal of NO [J]. Catalysis Today, 1998,46:233-316.
    [10]Taylor K C. Nitric-oxide catalysis in automotive exhaust systems [J]. Catalysis Review, 1993,35:457-481.
    [11]张改莲,戚慧心.汽车排气污染物的形成及危害[J].生物学通报,2000,35:17-18.
    [12]孙锦余.利用氮氧化物控制技术治理大气污染[J].节能,2004,5:41-44.
    [13]Matthey A P W J, Matthey R a J, Matthey P G B J, et al. The Development and Performance of the Compact SCR-Trap System:A 4-Way Diesel Emission Control System [J]. SAE Technical Papers,2003:2007-24-0103.
    [14]Tamaru K, Mills G A. Catalysts for Control of Exhaust Emissions [J]. Catalysis Today, 1994,22:349-360.
    [15]邢娜.乙炔在ZSM-5和ferrierite基催化剂上选择还原氮氧化物的机理研究[D]:(博士学位论文).辽宁:大连理工大学,2009.
    [16]Iwamoto M. Proceedings of the meeting of catalytic technology for removal of nitrogen monoxide [C]. Tokyo:Catalysis Society of Japan,1990,17.
    [17]Held W, Koning A, Rihter T, et al. Catalytic nitrogen oxide(NOx) reduction in net oxidizing exhaust gas [J]. Applied Catalysis B:Environmental,1993,2(2):257.
    [18]Li Y, Armor J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen [J]. Applied Catalysis B:Environmental,1992,1:L31-L40.
    [19]Li Y, Armor J N. Catalytic reduction of NOx using methane in the presence of oxygen [P]. US, invention, US5149512.1992.
    [20]Nishizaka Y, Misono M. Essential Role of Acidity in the Catalytic Reduction of Nitrogen Monoxide by Methane in the Presence of Oxygen over Palladium-Loaded Zeolites [J]. Chemistry Letters,1994,23:2237-2240.
    [21]Li Y, Armor J N. Selective Catalytic Reduction of NO with Methane on Gallium Catalysts [J]. Journal of Catalysis,1994,145:1-9.
    [22]Li N, Wang A, Li L, et al. NO reduction by CH4 in the presence of excess O2 over Pd/sulfated alumina catalysts [J]. Applied Catalysis B:Environmental,2004,50:1-7.
    [23]Li N, Wang A, Zheng M, et al. Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane [J]. Journal of Catalysis,2004,225:307-315.
    [24]Li N, Wang A, Wang X, et al. NO reduction by CH4 in the presence of excess O2 over Mn/sulfated zirconia catalysts [J]. Applied Catalysis B:Environmental, 2004,48:259-265.
    [25]Wan Y, Ma J, Wang Z, et al. Selective catalytic reduction of NO over Cu-Al-MCM-41 [J]. Journal of Catalysis,2004,227:242-252.
    [26]Wan Y, Ma J, Wang Z, et al. On the mechanism of selective catalytic reduction of NO by propylene over Cu-Al-MCM-41 [J]. Applied Catalysis B:Environmental, 2005,59:235-242.
    [27]Satsuma A, Shimizu K. In situ FT/IR study of selective catalytic reduction of NO over alumina-based catalysts [J]. Progress in Energy and Combusttion Science, 2003,29:71-84.
    [28]Wang X, Xu Y, Yu S, et al. The first study of SCR of NOx by acetylene in excess oxygen [J]. Catalysis Letters,2005,103:101-108.
    [29]徐岩.乙炔为还原剂在Ce基催化剂上选择催化还原NOx的研究[D]:(硕士学位论文).辽宁:大连理工大学,2005.
    [30]Ingelsten H H, Skoglundh M, Fridell E. Influence of the support acidity of Pt/aluminum-silicate catalysts on the continuous reduction of NO under lean conditions [J]. Applied Catalysis B:Environmental,2003,41 (3):287-300.
    [31]Ingelsten H H, Hildesson A, Fridell E, et al. The influence of surface acidity on NO2 reduction by propane under lean conditions [J]. Journal of Molecular Catalysis A: Chemical,2004,209(1-2):199-207.
    [32]Ingelsten H H, Zhao D, Palmqvist A, et al. Mechanistic study of the influence of surface acidity on lean NO2 reduction by propane in HZSM-5 [J]. Journal of Catalysis, 2005,232:68-79.
    [33]Shi C, Cheng M, Qu Z, et al. On the selective catalytic reduction of NOx with methane over Ag-ZSM-5 catalyst [J]. Applied Catalysis B:Environmental,2002,36:173-182.
    [34]Gerlach T, Schiitze F W, Baerns M. An FTIR Study on the Mechanism of the Reaction between Nitrogen Dioxide and Propene over Acidic Mordenites [J]. Journal of Catalysis, 1999,185:131-137.
    [35]Martens J A, Cauvel A, Francis A, et al. NOx abatement in exhaust from lean-burn combustion engines by reduction of NO2 over silver-containing zeolite catalysts [J]. Angewandte Chemie International Edition,1998,37:1901-1903.
    [36]Yu Q, Wang X, Xing N et al. The role of protons in the NO reduction by acetylene over ZSM-5 [J]. Journal of Catalysis,2007,245:124-132.
    [37]于青.Pt/分子筛催化剂上氢气选择催化还原NO的研究[D]:(博士学位论文).天津:南开大学,2010.
    [38]Wu P, Liu Y, Zhang F, et al. Influences of mesoporous structure on the NO+H2+O2 low temperature reaction over Pt/Si-MCM-41 catalyst [J]. Acta Physico-Chimica Sinica, 2008,24:369-374.
    [39]Shibata J, Hashimoto M, Shimizu K, et al. Factors controlling activity and selectivity for SCR of NO by hydrogen over supported platinum catalysts [J]. Journal of Physical Chemistry B,2004,108:18327-18335.
    [40]Yu Q, Richter M, Kong F, et al. Selective catalytic reduction of NO by hydrogen over Pt/ZSM-35 [J]. Catalysis Today,2010,158:452-458.
    [41]Wu P, Li L, Yu Q, et al. Study on Pt/Al-MCM-41 for NO selective reduction by hydrogen [J]. Catalysis Today,2010,158:228-234.
    [42]刘运霞,武鹏,吕宝成等.不同硅铝比MCM-41对富氧条件下H2-SCR肖除NOx的影响[C].第十一届全国青年催化会,青岛,2007:233-234.
    [43]谢彬.无有机模板晶种法合成沸石催化材料[D]:(博士学位论文).吉林:吉林大学,2010.
    [44]单志超.沸石分子筛的形貌控制与催化吸附功能的研究[D]:(博士学位论文).吉林:吉林大学,2011.
    [45]Meier W M. Molecular Sieves:Zeolites Structure [M]. London:Society of Chemical Industry,1968.
    [46]Meier W M, Olson, D H. Atlas of Zeolite Structure Types (2nd Rev.) [C]. London: Butterworths,1987.
    [47]Smith J V. Topochemistry of Zeolites and Related Materials.1. Topology and Geometry [J]. Chemical Reviews,1988,88:149-182.
    [48]Baerlocher C, Meier W M, Olson D H. Atlas of Zeolite Framework Types [M]. Elsevier,2001.
    [49]李彩今LTA、NaY、EMT沸石的生成机理NMR研究[D]:(硕士学位论文).吉林:吉林大学,2009.
    [50]McCusker L B, Liebau F, Engelhardt G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous material with inorganic hosts (IUPAC Recommendations 2001) [J]. Microporous and mesoporous material, 2003,58:3-13.
    [51]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004,43-44.
    [52]李乃霞.多级孔道丝光沸石分子筛的合成与表征[D]:(硕士学位论文).辽宁:大连理工大学,2009.
    [53]于素霞.多级孔道结构ZSM-5沸石分子筛的合成及催化应用[D]:(硕士学位论文).辽宁:大连理工大学,2009.
    [54]Haag W O, Lago R M, Weisz P B. The active site of acidic aluminosilicate catalysts [J]. Nature,1934,309:589-591.
    [55]王桂茹,王安杰,刘靖等.催化剂与催化作用[M].大连:大连理工大学出版社,2006.
    [56]Holmberg B A, Wang H, Yan Y. High silica zeolite Y nanocrystals by dealumination and direct synthesis [J]. Microporous and Mesoporous Materials,2004,74:189-198.
    [57]Jin L, Hu H, Zhu S, Ma B. An improved dealumination method for adjusting acidity of HZSM-5 [J]. Catalysis Today,2010,149:207-211.
    [58]Marques J P, Gener I, Lopes J M, et al. n-Heptane cracking on dealuminated HBEA zeolites [J]. Catalysis Today,2005,107-108:726-733.
    [59]Zhu X, Liu S, Song Y, et al. Post-treatment with ammonium hexafluorosilicate:An effective way to synthesize high silica MCM-22 zeolite [J]. Catalysis Communications, 2005,6:742-746.
    [60]Bouizi Y, Paillaud J L, Simon L, et al. Seeded Synthesis of Very High Silica Zeolite A [J]. Chemistry of Materials,2007,19:652-654.
    [61]Holmberg B A, Wang H, Yan Y. High silica zeolite Y nanocrystals by dealumination and direct synthesis [J]. Microporous and Mesoporous Materials,2004,74:189-198.
    [62]Xu Q, Gong Y, Xu W, et al. Synthesis of high-silica EU-1 zeolite in the presence of hexamethonium ions:A seeded approach for inhibiting ZSM-48 [J]. Journal of Colloid and Interface Science,2011,358:252-260.
    [63]任利敏.沸石分子筛材料合成新路线的探索[D]:(博士学位论文).吉林:吉林大学,2012.
    [64]陶莉.分子自组装合成新型催化材料及其在绿色化学中的应用[D]:(博士学位论文).长沙:湖南大学,2009.
    [65]廖湘洲.新型分子筛催化材料的合成及表征[D]:(博士学位论文).吉林:吉林大学,2009.
    [66]Kosanovic C, Jelic T A, Bronic J, et al. Chemically controlled particulate properties of zeolites:Towards the face-less particles of zeolite A. Part 1. Influence of the batch molar ratio [SiO2/Al2O3]b on the size and shape of zeolite A crystals [J]. Microporous and Mesoporous Materials,2011,137:72-82.
    [67]Bosnar S, Bronic J, Brlek D,et al. Chemically controlled particulate properties of zeolites: Towards the face-less particles of zeolite A.2. Influence of aluminosilicate batch concentration and alkalinity of the reaction mixture (hydrogel) on the size and shape of zeolite A crystals [J]. Microporous and Mesoporous Materials,2011,142:389-397.
    [68]Selbin J, Mason R B. Preparation of gallium-containing molecular sieves [J]. Journal of Inorganic and Nuclear Chemistry,1961,20:222-228.
    [69]Fahlke B, Starke P, Seefeld V, et al. On the intermediates in zeolite Y synthesis [J]. Zeolites,1987,7:209-213.
    [70]Joshi P N, Kotasthane A N, Shiralkar V P. Crystallization kinetics of zeolite-LTL [J]. Zeolites,1990,10:598-602.
    [71]Bodart P, Nagy J B, Deroijane E G, et al. Study of mordernite crystallization:Synthesis procedure from pyrex autoclaves [J]. Applied Catalysis,1984,12:359-371.
    [72]陈晓欣.微波溶剂热条件下分子筛Silicalite-1的晶貌控制[D]:(博士学位论文).吉林:吉林大学,2008.
    [73]Barrer R M, Denny P J. Hydrothermal chemistry of the silicates. Part Ⅸ. Nitrogenous aluminosilicates [J] Journal of the Chemical Society,1961,201:971-982.
    [74]Barrer R M. Syntheses and Reactions of Mordenite [J]. Journal of Chemistry Society, 1948,10:2158-2163.
    [75]Barrer R M, Bayntham J W, Bultitude F W, et al. Hydrothermal Chemistry of the Silicates. Part Ⅷ. Low-Temperature Crystal Growth of Aluminosilicates, and of Some Gallium and Germanium Analogues [J]. Journal of the Chemical Society, 1959,81:195-208.
    [76]Yang P, Deng T, Zhao D, et al. Hierarchically Ordered Oxides [J]. Science,1998, 282:2244-2246.
    [77]Lebeau B, Fowler C E, Mann S,et al. Synthesis of hierarchically ordered dye-functionalised mesoporous silica with macroporous architecture by dual templating [J]. Journal of Materials Chemistry,2000,10:2105-2108.
    [78]Kuang D, Brezesinski T, Smarsly B. Hierarchical Porous Silica Materials with a Trimodal Pore System Uing Surfactant Templates [J]. Journal of the American Chemial Society,2004,126:10534-10535.
    [79]徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成[M].吉林:吉林大学出版社,1987.
    [80]谢彬.无有机模板晶种法合成沸石催化材料[D]:(博士学位论文).吉林:吉林大学,2010.
    [81]宋江伟.沸石分子筛的无模板合成以及多孔沸石粒子的组装与催化性能研究[D]:(博士学位论文).吉林:吉林大学,2008.
    [82]谢在库.新结构高性能多孔催化材料[M].北京:中国石化出版社,2009.
    [83]Shiralkar V P, Clearfield A. Synthesis of the molecular sieve ZSM-5 without the aid of templates [J]. Zeolites,1989,9:363-370.
    [84]Narlta E, Sato K, Yatabe N,et al. Industrial & Engineering Chemistry Product Research and Development,1985,24:507-512.
    [85]Kamimura Y, Itabashi K, Okubo T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and "Green MTW" from sodium aluminosilicate gel systems [J]. Microporous and Mesoporous Materials,2012,147:149-156.
    [86]Kamimura Y, Chaikittisilp W, Itabashi K, et al. Critical Factors in the Seed-Assisted Synthesis of Zeolite Beta and "Green Beta" from OSDA-Free Na+-Aluminosilicate Gels [J]. Chemistry-An Asian Journal,2010,5:2182-2191.
    [87]李赫晅,项寿鹤,吴德明,刘月婷,张晓森,刘述铨.ZSM-5沸石分子筛合成的研究[J].高等学校化学学报,1981,2:517-519.
    [88]Zhou Q, Li B Z, Qiu S L,et al. Synthesis of low Si Al beta-zeolite by using nucleation gel [J]. Chemical Journal of Chinese Universities-Chinese,1999,20:693-695
    [89]Zhou Q, Qiu S L, Pang W Q. Studies on the crystallization mechanism of beta zeolite synthesized with nucleation gel [J]. Chemical Journal of Chinese Universities-Chinese, 2000,21:1-4.
    [90]张海燕,杨承广,孟祥举,肖丰收.无有机模板条件下晶种导向合成微孔分子筛晶体材料[J].化学学报,2012,70:2387-2392.
    [91]Bessel, S. Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts [J]. Applied Catalysis A:General,1995,126:235-244.
    [92]Ocelli M L, Innes R A, Pollack S S, et al. Quaternary ammonium cation effects on the crystallization of offretite-erionite type zeolites:Part 1. Synthesis and catalytic properties [J]. Zeolites,1987,7:265-271.
    [93]Rubin M K, Rosinski E J, Plank C J. U.S. Patent 4 086 186,2003.
    [94]Vartuli J C, Kennedy G J, Yoon B A, et al. Zeolite syntheses using diamines:evidence for in situ directing agent modification [J]. Microporous Mesoporous Materials, 2000,38:247-254.
    [95]Wu Z, Song J, Ji Y, et al. Organic Template-Free Synthesis of ZSM-34 Zeolite from an Assistance of Zeolite L Seeds Solution [J]. Chemistry of Materials,2008,20:357-359.
    [96]Yashiki A, Honda K, Fujimoto A, et al. Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals [J]. Journal of Crystal Growth, 2011,325:96-100.
    [97]Xie B, Zhang H, Yang C, Liu S, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates [J]. Chemical Communications, 2011,47:3945-3947.
    [98]方云明.多级孔道沸石分子筛的合成、表征及催化应用[D]:(博士学位论文).大连:大连理工大学,2007.
    [99]Kamimura Y, Tanahashi S, Itabashi K, et al. Crystallization Behavior of Zeolite Beta in OSDA-Free, Seed-Assisted Synthesis [J]. The Journal of Physics and Chemical C, 2011,115:744-750.
    [100]Xie B, Song J, Ren L, et al. Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite [J]. Chemistry of Materials,2008,20:4533-4535.
    [101]Schmachtl M, Kim T J, Grill W, et al. Ultrasonic monitoring of zeolite synthesis in real time [J]. Ultrasonics,2000,38:809-812.
    [102]Bang J H, Suslick K S. Applications of Ultrasound to the Synthesis of Nanostructured Materials [J]. Advanced Materials,2010,22:1039-1059.
    [103]Suslick K S. The chemistry of ultrasound [M]. Chicago:The Yearbook of Science and the Future, Encyclopaedia Britannica,1994.
    [104]钟声亮,张迈生,苏锵.超细4A分子筛的超声波低温快速合成[J].高等学校化学学报,2005,26:1603-1606.
    [105]闰明涛,吴刚.超声波合成介孔分子筛[J].无机化学学报,2004,20:219-223.
    [106]Price G J. Ultrasonically enhanced polymer synthesis [J]. Ultrasonic Sonochemistry, 1996,3:229-238.
    [107]Price G J, Hearn M P, Wallace E N K, et al. Ultrasonically assisted synthesis and degradation of poly(dimethyl siloxane) [J]. Polymer,1996,37:2303-2308.
    [108]Amara N, Ratsimba B, Wilhelm A M, et al. Crystallization of potash alum:effect of power ultrasound [J]. Ultrasonic Sonochemistry,2001,8:265-270.
    [109]Andac □, Tatlier M, Sirkecioglu A, et al. Effects of ultrasound on zeolite A synthesis [J]. Microporous and Mesoporous Materials,2005,79:225-233.
    [110]Belviso C, Cavalcante F, Fiore S. Ultrasonic waves induce rapid zeolite synthesis in a seawater solution [J]. Ultrasonics Sonochemistry,2013,20:32-36.
    [111]Wang B, Wu J, Yuan Z Y, et al. Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure [J]. Ultrasonics Sonochemistry,2008,15:334-338.
    [112]Csicsery S M. Shape-selective catalysis in zeolites [J]. Zeolites,1984,4:202-213.
    [113]Weitkamp J, Puppe L. Catalysis and Zeolites:Fundamentals and Applications [M].1st ed. Berlin:Springer,1999.
    [114]Wojciechowski B W, Corma A. Catalytic Cracking:Catalysis, Chemistry, and Kinetics [M]. New York:Dekker,1986.
    [115]Lai Z, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrance for organic vapor separation [J]. Science,2003,300:456-460.
    [116]Wang K, Wang X. Comparison of catalytic performances on nanoscale HZSM-5 and microscale HZSM-5 [J]. Microporous and Mesoporous Materials,2008,112:187-192.
    [117]Seo Y, Cho K, Jung Y, et al. Characterization of the Surface Acidity of MFI Zeolite Nanosheets by 31P NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin [J]. ACS Catalysis,2013,3:713-720.
    [118]Bhat S D, Niphadkar P S, Gaydhankar T R, et al. High temperature hydrothermal crystallization, morphology and yield control of zeolite type K-LTL [J]. Microporous and Mesoporous Materials,2004,76:81-89.
    [119]韩仲琦,粉体技术与水泥工业[J].硅酸盐通报,1995,05:44-49.
    [120]王亚明,黄若华,洪少波.作为催化剂的超微粒子的制备及应用[J].化学通报,1996,5:20-22.
    [121]冯丽娟,赵宇靖,陈诵英.超细粒子催化剂[J].石油化工,1991,9:633-639.
    [122]李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995,6:29-34.
    [123]王永睿.纳米p分子筛制备、改性及催化性能初探[D]:(博士学位论文).北京:石油化工科学研究院,2000.
    [124]DiRenzo F. Zeolites as tailor-made catalysts:Control of the crystal size [J]. Catalysis Today,1998,41:37-40.
    [125]Coker E N, Jansen J C, DiRenzo F,et al. Zeolite ZSM-5 synthesized in space:catalysts with reduced external surface activity [J]. Microporous and Mesopoprous Materials, 2001,46:223-236.
    [126]晃自胜,闵恩泽.超微分子筛的合成、表征及应用展望.内部资料,1998.
    [127]许迪欧.多级孔纳米分子筛的制备与性质研究[D]:(博士学位论文).吉林:吉林大学,2011.
    [128]Mintova S, Olson N H, Bein T. Eleetron Mieroseopy Reveals the Nueleation Meehanism of Zeolite Y from Preeursor Colloids [J]. Angewandte Chemie International Edition,1999,38:3201-3204.
    [129]Holmberg B A,Wang H, Norbeck J M, et al. Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide [J]. Microporous and Mesoporous Materials,2003,59:13-28.
    [130]Mintova S, Olson N H, Valtehev V, et al. Mechanism of Zeolite A Nanoerystal Growth from Colloids at Room Temperature [J]. Seience,1999,283:958-960.
    [131]Tosheva L, Valtehev V P. Nanozeolites:Synthesis, Crystallization Mechanism, and Applications [J]. Chemistry of Materials,2005,17:2494-251.
    [132]Serrano D P, Aguado J, Escola J M,et al. Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds [J]. Chemistry of Materials,2006,18:2462-2464.
    [133]Vuong G T, Do T O. A New Route for the Synthesis of Uniform Nanozeolites with Hydrophobic External Surface in Organic Solvent Medium [J]. Journal of the American Chemical Society,2007,129:3810-3811.
    [134]Madsen C, Jacobsen C J H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis [J]. Chemical Communications,1999,673-674.
    [135]Schmidt I, Madsen C, Jacobsen C J H. Confined Space Synthesis. A Novel Route to Nanosized Zeolites [J]. Inorganic Chemistry,2000,39:2279-2283.
    [136]Jacobsen C J H, Madsen C, Janssens T V W, et al. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy [J]. Microporous and Mesoporous Materials, 2000,39:393-401.
    [137]Choi M, Na K, Kim J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts [J]. Nature,2009,461:10.
    [138]Na K, Choi M, Park W, Sakamoto Y, et al. Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness [J]. Journal of the American Chemical Society, 2010,132,4169-4177.
    [139]Diaz I, Kokkoli E,Terasaki O, et al. Surface Structure of Zeolite (MFI) Crystals [J]. Chemistry of Materials,2004,16:5226-5232.
    [140]Bonilla G, Diaz I, Tsapatsis M, et al. Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents [J]. Chemistry of Materials,2004,16:5697-5705.
    [141]Hwang Y K, Chang J S, Park S E, et al. Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications [J]. Angewandte Chemie International Edition,2005,44,556-560.
    [142]Zhang L, Xie S, Xin W, et al. Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis [J]. Materials Research Bulletin,2011,46:894-900.
    [143]Larlus O, Valtchev V P. Crystal Morphology Control of LTL-Type Zeolite Crystals [J]. Chemistry of Materials,2004,16:3381-3389.
    [144]Gomez A G, Silveira G, Doana H, et al. A facile method to tune zeolite L crystals with low aspect ratio [J]. Chemical Communications,2011,47:5876-5878.
    [145]Barri S A. Cyrastlline (meatllo) silieates and germinates-SUZ-4:U.S. Patent 5 [P].1992, 118,483.
    [146]蒋山.SUZ-4分子筛上二甲醚制备的研究[D]:(博士学位论文).辽宁:大连理工大学,2004.
    [147]Paik W C, Shin C H, Hong S B. Synthesis of zeolites P1 and SUZ-4 through a synergy of organic N,N,N,N',N',N'-Hexaethylpentanediammonium and inorganic cations [J]. Chemical Communications,2000,1609-1610.
    [148]Lawton S L, Bennett J M, Schlenker J L, et al. Synthesis and Proposed Framework Topology of Zeolite SUZ-4 [J]. Chemical Communications,1993,895-896.
    [149]Asensi M A, Camblor M A, Martinez A. Zeolite SUZ-4:reproducible synthesis, physicochemical characterization and catalytic evaluation for the skeletal isomerization of n-butenes [J]. Microporous and Mesoporous Materials,1999,28:427-436.
    [150]Gujar A C, Moye A A, Coghill P A, et al. Raman investigation of the SUZ-4 zeolite [J]. Microporous and Mesoporous Materials,2005,78:131-137.
    [151]Gujar A C, Price G L. Synthesis of SUZ-4 in the K+/TEA+system [J]. Microporous and Mesoporous Materials,2002,54:201-205.
    [152]Paik W C, Shin C H, Lee J M, et al. Host-Guest Interactions in P1, SUZ-4, and ZSM-57 Zeolites Containing N,N,N,N',N',N',-Hexaethylpentanediammonium Ion as a Guest Molecule [J]. The Journal of Physical Chemistry B,2001,105:9994-10000.
    [153]Zhang W, Wu Y, Gu J, et al. Organotemplate-free route for synthesizing SUZ-4 zeolite under static hydrothermal condition [J]. Materials Research Bulletin, 2011,46:1451-1454.
    [154]Worathanakul P, Kongkachuichay P. New SUZ-4 Zeolite Membrane from Sol-Gel Technique [J]. International Journal of Chemical and Biological Engineering, 2008,1:131-135.
    [155]Worathanakul P, Trisuwan D, Phatruk A, et al. Effect of sol-gel synthesis parameters and Cu loading on the physicochemical properties of a new SUZ-4 zeolite [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,377:187-194.
    [156]Zholobenko V L, Lukyanov D B, Dwyer J, et al. Ferrierite and SUZ-4 Zeolite: Characterization of Acid Sites [J]. The Journal of Physical Chemistry B, 1998,102:2715-2721.
    [157]Choo H, Hong S B, Kevan L. Comparative ESR and Catalytic Studies of Ethylene Dimerization on Pd(Ⅱ)-Exchanged Clinoptilolite, Mordenite, Ferrierite, and SUZ-4 [J]. The Journal of Physical Chemistry B,2001,105:7730-7738.
    [158]Subbiah A, Cho B K, Blint R J, et al. NOx reduction over metal-ion exchanged novel zeolite under lean conditions:activity and hydrothermal stability [J]. Applied Catalysis B:Environmental,2003,42:155-178.
    [159]Katada N, Suzuki K, Noda T, et al. Ammonia IRMS-TPD Characterization of Br(?)nsted Acid Sites in Medium-pore Zeolites with Different Framework Topologies [J]. Topic Catalysis,2010,53:664-671.
    [160]Lippens B C, Boer J H. Studies on pore systems in catalysts:The t method [J]. Journal of Catalysis,1965,4:319.
    [161]Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers [J]. Journal of the American Chemical Society,1938,60:309-319.
    [162]Lukyanov D B, Zholobenko V L, Dwyer J, et al. On the Structural, Acidic and Catalytic Properties of Zeolite SUZ-4 [J]. The Journal of Physical Chemistry B, 1999,103:197-202.
    [163]Xue Z, Zhang T, Ma J, et al. Accessibility and catalysis of acidic sites in hierarchical ZSM-5 prepared by silanization [J]. Microporous and Mesoporous Materials, 2012,151:271-276.
    [164]Cejka J, Centi G, Pariente J P, et al. Zeolite-based materials for novel catalytic applications:Opportunities, perspectives and open problems [J]. Catalysis Today, 2012,179:2-15.
    [165]Cejka J, Corma A, Zones S. Zeolites and Catalysis:Synthesis, Reactions and Applications [M]. Weinheim:Wiley-VCH,2010.
    [166]Ivanova S, Louis B, Ledoux M J, et al. Autoassembly of Nanofibrous Zeolite Crystals via Silicon Carbide Substrate Self-Transformation [J]. Journal of the American Chemical Society,2007,129:3383-3391.
    [167]Corma A, Martinez S V, Schnoeveld E. Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite:Catalytic Behaviour and Kinetic Mechanism [J]. Journal of Catalysis,2000,192:163-173.
    [168]Roth W J, Shvets O V, Shamzhy M, et al. Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture [J]. Journal of the American Chemical Society,2011,133:6130-6133.
    [169]Valtchev V P, Bozhilov K N, Evidences for Zeolite Nucleation at the Solid-Liquid Interface of Gel Cavities [J]. Journal of the American Chemical Society, 2005,127:16171-16177.
    [170]刘萍,陈长春,申希海等.沉淀法合成ZnO纳米粒子热处理温度的研究[J].电子元件与材料,2009,28:20-34.
    [171]Drews T O, Tsapatsis M. Progress in manipulating zeolite morphology and related applications [J]. Current Opinion in Colloid & Interface Science,2005,10:233-238.
    [172]祝振奇,周建,刘桂珍等.毫米级氧化锌晶体的微波合成研究[J].武汉理工大学学报,2009,31:12-15.
    [173]Zhang L, Laak A N C, Jongh P E, et al. Synthesis of large mordenite crystals with different aspect ratios [J]. Microporous and Mesoporous Materials,2009,126:115-124.
    [174]Pan Y, Ju M, Yao J, et al. Preparation of uniform nano-sized zeolite A crystals in microstructured reactors using manipulated organic template-free synthesis solutions [J]. Chemical Communications,2009,7233-7235.
    [175]Ren N, Yang Z J, Lv X C, et al. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology [J]. Microporous and Mesoporous Materials,2010,131:103-114.
    [176]Sekar C, Paulraj S, Kanchana P, et al. Effect of rotation of feed and seed rods on the quality of Nao.75Co02 single crystal grown by traveling solvent floating zone method [J]. Materials Research Bulletin,2011,46:675-681.
    [177]Reddy E S, Babu N H, Shi Y, et al. Effect of size, morphology and crystallinity of seed crystal on the nucleation and growth of single grain Y-Ba-Cu-O [J]. Journal of the European Ceramic Society,2005,25:2935-2938.
    [178]Mochida I, Eguchi S, Hironaka M, et al. The effects of seeding in the synthesis of zeolite MCM-22 in the presence of hexamethyleneimine [J]. Zeolites,1997,18:142-151.
    [179]Honda K, Yashiki A, Itakura M, et al. Influence of seeding on FAU-*BEA interzeolite conversions [J]. Microporous and Mesoporous Materials,2011,142:161-167.
    [180]Majano G, Darwiche A, Mintova S, et al. Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals [J]. Industrial and Engineering Chemistry Research, 2009,48,7084-7091.
    [181]Zhang H, Guo Q, Ren L, et al. Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units [J]. Journal of Materials Chemistry,2011,21:9494-9497.
    [182]International Zeolite Association, Database of Zeolite Structures, http://www.iza-structure.org/databases.
    [183]Rhea B, Lobo A J W, Lewis D W, et al. Modifying the Crystal Habit of Zeolite L by Addition of an Organic Space Filler [J]. The Journal of Physical Chemistry C, 2010,114:18240-18246.
    [184]Tiscornia I, Valencia S, Corma A, et al. Preparation of ITQ-29 (Al-free zeolite A) membranes [J]. Microporous Mesoporous Materials,2008,110:303-309.
    [185]Larlus O, Mintova S, Wilson S T, et al. A powerful structure-directing agent for the synthesis of nanosized Al-and high-silica zeolite Beta in alkaline medium [J]. Microporous and Mesoporous Materials,2011,142:17-25.
    [186]Giiray I, Warzywod J, Bac N, et al. Synthesis of zeolite MCM-22 under rotating and static conditions [J]. Microporous and Mesoporous Materials,1999,31:241-251.
    [187]Ding L, Zheng Y, Zhang Z, et al. Effect of agitation on the synthesis of zeolite beta and its synthesis mechanism in absence of alkali cations [J]. Microporous and Mesoporous Materials,2006,94:1-8.
    [188]Koo J B, Jiang N, Saravanamurugan S, et al. Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating [J]. Journal of Catalysis, 2010,276:327-334.
    [189]周继红.合成分子筛母液及其利用研究[J].现代化工,2010,30(2):19-24
    [190]李广战,黄可龙,孟春玲等.NaY晶化母液制备13X型沸石的技术研究[J].轻金属,2005,10:21-23.
    [191]Liu C, Gao X, Ma Y, et al. Study on the mechanism of zeolite Y formation in the process of liquor recycling [J]. Microporous and Mesoporous Materials,1998,25:1-6.
    [192]马晓飞.Y分子筛对烃选择催化还原NOx性能缺陷的研究[D]:(硕士学位论文).辽宁:大连理工大学,2009.
    [193]于珊珊Ce-HY与MoO3/HZSM-5催化剂上乙炔选择催化还原NOx的研究[D]:(硕士学位论文).辽宁:大连理工大学,2006.
    [194]Costa C N, Efstathiou A M. Transient Isotopic Kinetic Study of the NO/H2/O2 (Lean de-NOx) Reaction on Pt/SiO2 and Pt/La-Ce-Mn-O Catalysts [J]. The Journal of Physical Chemistry B,2004,108:2620-2630.
    [195]Costa C N, Savva P G, Andronikou C, et al. An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 [J]. Journal of Catalysis,2002,209:456-471.
    [196]Kim J, Kim W, Seo Y, et al. N-Heptane hydroisomerization over Pt/MFI zeolite nanosheets:Effects of zeolite crystal thickness and platinum location [J]. Journal of Catalysis,2013,301:187-197.
    [197]董玉林,杨孔章.2,6-二甲基吡啶在Y型分子筛的Bronsted和Lewis酸中心上的吸附动力学[J].催化学报,1994,15,225-228.
    [198]Oliviero L, Vimont A, Lavalley J C, et al.2,6-Dimethylpyridine as a probe of the strength of Brasted acid sites:study on zeolites. Application to alumina [J]. Physical Chemistry Chemical Physics,2005,7:1861-1869.
    [199]Savva P G, Efstathiou A M. The influence of reaction temperature on the chemical structure and surface concentration of active NOx in H2-SCR over Pt/MgO-CeO2: SSITKA-DRIFTS and transient mass spectrometry studies [J]. Journal of Catalysis, 2008,257:324-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700