用户名: 密码: 验证码:
玉米芯“一步法”制取糠醛清洁生产工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过60余年的发展,我国已成为全世界最大的糠醛生产和出口国。然而,高污染、高能耗、低产率等问题长期制约着糠醛产业的健康发展。长期生产实践表明,在我国,每生产一吨糠醛排放COD>18000mg/L的废水约20吨、消耗洁净蒸汽超过20吨,同时糠醛渣燃烧产生大量二氧化硫,而实际糠醛产率仅为理论值的30-50%。近年来对于糠醛废水的治理虽已取得较大进展,闭循环式的废水蒸发回用工艺在绝大多数糠醛厂被普遍采用,然而由于制约废水处理效率的污垢问题长期无法解决,从而使得废水实际处理率远远低于设计水平。随着国家对环保要求的日益严格、同业竞争的日益加剧及各类生产成本的不断上升,糠醛生产企业面临严峻的生存困境。
     本文首先对植物纤维水解方面的研究及糠醛生产现状、研究进展进行了总结。然后结合当前生产实践对糠醛生产的整体物流与能流进行了分析与讨论,重点讨论了糠醛产率、醛汽中糠醛含量(或糠醛生成速率)、锅炉热效率以及蒸发器热效率对当前糠醛生产体系物质与能量平衡的影响,从而确立了本文的研究路线。
     由于含乙酸的废水回用生产是当前糠醛生产中的必经之路,同时也是本文研究的基本前提,因而乙酸“酸汽”的使用贯穿全文。在此基础上,本文系统地分析了废水中乙酸的来源及产量,对乙酸“酸汽”催化玉米芯水解制取糠醛的可行性进行了另析,重点研究了糠醛在含乙酸蒸汽中自身降解损失动力学,为全文研究中催化剂乙酸“(?)气”的合理使用奠定基础。然后运用动力学方程计算出生产中糠醛在气相中降解损失率(?)占实际生产中糠醛理论产率的4.5%,约占糠醛总损失的10%。进一步表明糠醛生产(?)的主要损失发生在液相反应体系,因此加快糠醛从液相中的分离是提升糠醛产率的关(?)
     针对单一乙酸酸汽催化玉米芯水解制取糠醛时所需温度较高、反应速率较低、能耗大、废水产量高的问题,进一步研究了路易斯酸催化剂FeCl3、AICl3在糠醛(?)取中的应用。首先从纯戊糖催化脱水动力学以及糠醛在路易斯酸催化条件下降解的动力学研究出发,并对戊糖脱水生成糠醛最高产率进行了模型化分析,通过比较确立了获(?)糠醛最高产率的三因素参数模型,进一步明确了戊糖脱水制取糠醛反应体系中的反应(?)程。通过与H2SO4(?)(?)较两种不同路易斯酸FeCl3、AICl3的催化选择性及动力学参数,结果表明,后者能使戊糖脱水速率常数增大10倍以上,同时糠醛产率也达到70%以上(Al(?)3催化)。在此基础上,进一步研究了采用FeCl3和“酸汽”协同催化玉米芯水解制取糠(?)的催化效果。通过对水解残渣微观结构的观察,发现采用FeCl3催化玉米芯水解时,(?)料颗粒的破碎、微观纤维结构的破坏明显加剧,这将有效增大物料内部及物料之间的(?)道,从而致使体系内传质、扩散效率的提升。基于此,进一步的与研究表明,由于原料被破碎后导致的颗粒物料孔隙率降低、压降增大而促使床层扰动而获得了传质的强化和表面更新速度的加快。此外,通过对AICl3对催化戊糖及玉米芯的单因素影响试验结果的考察,发现AlCl3在催化戊糖及玉米芯制取糠醛方面具有比FeCl3更高的选择性,更有利于提升糠醛产率,这为制取糠醛选择催化剂方面提供了新的方向。
     为了进一步提高糠醛实际产率,从强化蒸馏分离与强化蒸汽气提两个反面进行了糠醛分离的研究。结果表明:不同价态阳离子对糠醛-水二元体系组分分离的作用效果与离子强度正相关,离子强度越高,“盐析”效果越显著,反之越低;一价阳离子对糠醛-水二元体系组分相对挥发度的作用效果可由Furter方程拟合,二价及三价阳离子对糠醛-水二元体系组分相对挥发度的作用效果较复杂,可由修正型Furter方程拟合。采用浓缩海水获得了与模拟海水极为接近的汽提效果,海水作为盐析剂时与纯NaCl(等浓度)作为盐析剂时获得了相似的盐析速率和糠醛回收率。但由于海盐(或模拟海水)中存在Ca2+及Mg2+,因此总体盐析效果高于等量纯NaCl。
     为了解决制约废水处理效率的蒸发器结垢问题,首先通过对取自糠醛厂的蒸发器污垢样品的特性及形成过程进行了分析和探讨,根据检测和分析结果对其形成机理做出了推断。进一步的模拟结垢试验表明,采用碱中和可消除糠醛废水蒸发过程换热管的结垢,但由于碱中和需碱量极大,这对于糠醛生产企业而言无法承受。进而本研究提出了采用絮凝法去除溶解木质素、悬浮碎屑以及部分单糖的废水预处理方法。结果表明可绝大程度上抑制污垢的生成,该方法成本低,且不影响废水中的乙酸。从长远角度来看,采用絮凝剂除去溶解木质素及悬浮碎屑一方面保持了废水中乙酸,另一方面成本较低,具有长远的推广价值。
     最后是前文所有研究的应用、优化与总结,并且提出了糠醛清洁生产的最优工艺。首先进行了以戊糖为原料、以NaCl作为盐析剂、以FeCl3为催化剂制取糠醛的研究,并获得相关反应动力学参数,结果表明盐析剂的存在能大幅提升糠醛产率;然后进行了采用氯盐为盐析剂、以FeCl3作为催化剂、以玉米芯为原料由一步法反应制取糠醛的研究,并获得了各因素对糠醛产率的影响范围。为了进一步获得糠醛生产最佳工艺参数,以富含氯盐的浓缩后海水作为盐析剂,采用响应面分析法,确立了海水浓缩倍数、FeCl3浓度、反应温度、乙酸浓度的最优化组合,对玉米芯一步法水解制取糠醛的整体工艺进行了优化,得到了影响糠醛产率的最佳组合条件,并获得了最高产率的模型;验证试验表明模型的拟合程度很好,试验误差较小,模型成立,可以用此模型对浓缩海水盐析-FeCl3-乙酸催化玉米芯生产糠醛的最佳工艺进行分析,同时也表明该模型能够代替真实试验的结果进行表征。最后,提出了糠醛清洁生产最佳工艺,采用该工艺可实现糠醛生产过程污染物近零排放,同时降低原料生产成本约38%,使糠醛产率提高至80%以上。
In the past60years, furfural industry in China has developed into the largest all over the world. However, development of furfural production in China has long been blocked by problems of high pollutants and high energy consumption. It was indicated that there about20t wastewater (COD>18000mg/L) generated and more than25t water steam was consumed to obtained1t furfural. In the recent years, the reuse of furfural wastewater by converting it into steam has been applied by most of the furfural plants in China. However, due to the fouling problem, the actual wastewater treatment efficiency could never reach the design index. Today, furfural plants have fallen into a hobble due to increasingly acute regulation and competition.
     General situation of furfural production and the research on hydrolysis of lignocellulose and furfural production were summarized firstly. Then, mass and energy balance in furfural production was analyzed and, factors such as furfural yield, furfural concentration in product vapor (or formation rate)、thermal efficiency of boiler and heat exchanger which affect the balance of the system was discussed in detail. It was indicated that any unilateral increasing could never satisfied the need of the running of the furfural production system and systemative method must be applied to promote the under-developed furfural production situation.
     Since the reuse of wastewater that was rich in acetic acid is an essential part of furfural production and a prerequisite of this research, the origin and output of acetic acid was analyzed at first. Then, furfural degradation kinetics in "acid steam" media was studied so as to confirm the feasibility of wastewater reuse. Then, a calculation that based on this furfural degradation kinetics indicated that there about4.5%of furfural potential yield (about10%of total furfural loss) decomposed in "acid steam" phase. Obviously, it could be inferred that most of the furfural loss was caused by its composed (or polymerized) in the liquid phase. Therefore, promotion in separating furfural from the liquid phase was the crucial step to reduce furfural loss.
     Aimed at lowering the reaction temperature and increasing furfural formation rate, Lewis acid FeCl3AICl3were applied in catalyzing the dehydration of xylose into furfural. Kinetics of furfural degradation and kinetics of xylose dehydration in Lewis acid media were studied. Additionally, calculated maximum furfural yields were obtained from a three factor model and the dehydration reaction mechanism of xylose was obtained consequently. Furfural selectivity and kinetics parameters indicated that the furfural yield exceeded70%when it was catalyzed by FeCl3or AlCl3and, the dehydration reaction rate of furfural was more than10times higher than that catalyzed by H2SO4. Consequently, FeCl3and "acid steam" co-catalyzed furfural production from corncob was mainly studied in chapter4. A SEM analyse indicated that the microscopic cellulose structure of hydrolyze residue was broken much more severe as FeCl3added and used as catalyst. Then, the micro channels in the particle open and the mass transfer efficiency, the diffuse efficiency in the liquid reaction increased. It was deduced that the mass transfer and the surface renewal could be promoted by reducing the porosity of particle materials layer and increasing pressure drop once the particle material was broken to the ground. In addition, s series contrast experiments indicated that AICl3was more effective for promoting furfural yield.
     Aimed at promoting the furfural separation from liquid phase and reducing its loss, both of enhancing methods on distillation separation and steam stripping were studied. Experiment results indicated that the enhancing effect of cation on the separation of furfural was depending on its ionic strength, high ionic strength causing high separation efficiency. Additionally, impact effects of one-valence cations on furfural separation from liquid phase could be fitted by Furter equation, but the effect of bivalent and trivalent cations only could be fitted by an amendatory Furter equation due to the complex affect mechanism. In order to save salt resource and production cost, concentrated seawater which rich in metal ions was used as salting out agents. Similar separation efficiencies were obtained when concentrated seawater and simulate seawater was used as salting out agent respectively. But it was also indicate that the furfural separation efficiency in the former was a litter higher due to the effect of Ca2+and Mg2+that contained in concentrated seawater.
     Fouling problems which severely hampered the evaporation and reuse of wastewater was studied. Firstly, the formation mechanism of fouling in heat exchange tubes was inferred and simulation experiments on the formation and eliminating f fouling for the evaporation of wastewater were conducted. The results indicated that there was almost no fouling formed when the wastewater was neutralized to alkalescence by adding NaOH or Na2CO3. Then, the formation mechanism of fouling could be inferred as following:Acetic acid catalyzed polymerization of dissolving lignin and residual furfural in the wastewater at high temperature. The polymeric substances thus forming and remaining in the heat exchange tubes. Consequently, fouling formed as polymeric substances was hydrothermal carbonized which catalyzed by acetic acid. Although fouling could be eliminated by adding sodium carbonate, few furfural manufactures would apply this method due to the high cost. Therefore, a flocculation method which aimed at removing large particles of dissolving lignin and floatable lignocellulose materials was applied. Simulation experiments results indicated that fouling also could be restrained as a certain cationic polyacrylamide flocculants was used. Therefore, pretreatment of furfural wastewater by flocculation was promising not only because of its simple and low cost, but also almost all of the acetic acid was remained.
     The last Chapter was the application, optimization, summary and perspective of all the previous fundamental research. There were three steps of research in this chapter. Firstly, xylose degradation kinetics in FeCl3catalyzed and NaCl salting out media was studied. The results indicated that furfural yield could only be promoted dramatically by salting out effect of NaCl. Secondly, furfural production from corncob catalyzed by FeCl3in chloride salting out media was studied, and the concentration range of catalyst and salting out agent, range of reaction temperature were obtained. Thirdly, in order to obtain maximum furfural yield, RSM method was used in optimizing all of the reaction parameters. The element of reaction temperature, FeCl3concentration, acetic acid concentration and concentrated ratio of seawater (or concentration of chlorine salts) optimizes combination was obtained. Furthermore, a maximum furfural yield model was obtained. Finally, an optimal furfural clean production process was establishede as almost all the pollutants could be avoided. Furthermore, the results indicated that the material cost could be reduced38%, and more than80%of the potential furfural yield could be obtained by this process.
引文
任鸿均.叁双串联水解工艺在糠醛生产中的应用.化工科技市场[J],2002(04)
    [1]Shi S., Guo H.J., Yin G.H. Synthesis of maleic acid from renewable resources:Catalytic oxidation of furfural in liquid media with dioxygen [J]. Catalysis Communications, Catalysis Communications, 2011,11:12731-733.
    [2]Mamman A-S., Hwang J.S. Furfural:Hemicellulose/xylose-derived biochemical [J]. Biofuels, Bioproducts and Biorefining,2008,2:438-454.
    [3]谢光辉,王晓玉,任兰天.中国作物秸秆资源评估研究现状[J].生物工程学报,2010,26(7):855-863.
    [4]韩鲁佳,闰巧娟,刘向阳等,中国农作物秸秆资源及其利用现状[J].农业工程报,2002,18(3):87-91.
    [5]张矢.植物原料水解工艺学[M].北京:中国林业出版社,1994
    [6]Torrie J. Extracellular β-D-mannase activity from Trichderma harzianum E58 [D]. Ph.D. Thesis, University of Ottawa,1991.
    [7]Wyman C.E. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals and powers [J]. Biotechnol Progress,2003,19:254-262.
    [8]Mamman A.S., Lee J.M., Kim Y.C. Furfural:Hemicellulose/xylosederived Biofuels [J]. Bioprod. Bioref.,2008,2:438-454.
    [9]Galbe M., Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production [J]. Adv Biochem Engin/Biotechnol.,2007,108:41-65.
    [10]Yang B., Wyman C.E. Pretreatment:the key to unlocking low-cost cellulosic ethanol [J]. Biofuels Bioprod Bioref.,2008,2:26-40.
    [11]Ghosh P., Singh A. Physico-chemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass [J]. Adv. Appl. Microbio.,1993,39:295-333.
    [12]Saddler J.N., Ramos L.P., Breuil C. Bioconversion of Forest and Agricultural Plant Wastes. C. A. B. International, London,1993,73.
    [13]Ramos L.P., Saddler J.N. Bioconversion of food residues:mechanisms involved in pretreating and hydrolyzing lignocellulosic materials in Enzymatic Conversion of Biomass for Fuels Production ed. by Himmel ME, Baker JD, Overend RP. ACS Symposium series 566, Washington,1994.325.
    [14]Zhenhu H., Zhiyou W. Enhancing enzymatic digestibility ofswitchgrass by microwave- assisted alkali pretreatment [J]. Biochem Eng J.,2008,38:369-378.
    [15]Rivers D.B., Emert G.H. Lignocellulosic pretreatment:a co MParison of wet and dry ball attrition [J]. Biotechnol Lett.,1987,9:365-367. technologies [J]. Bioresour Technol.,2005,96:1959-1966.
    [17]Chundawat S.P.S., Balan V. and Dale B.E. High-throughput microplate technique for enzymatic hydroysis of lignocellulosic biomass [J]. Biotechnol Bioeng.,2008,99:1281-1294.
    [18]Cadoche L., Lopez G.D. Assessment of size reduction as preliminary step in the production of ethanol from lignocellulosic wastes [J]. Biol Wastes,1989,30:153-157.
    [19]Schwald W., Breuil C., Brownell H.H., Chan M and Saddler J.N. Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentration [J]. Appl Biochem Biotechnol.,1989,20-21:29-44.
    [20]Ramos L.P., Breuil C and Saddler, J.N. Co MParison of steam pretreatment of Eucalyptus, Aspen, and Spruce wood chips and their enzymatic hydrolysis [J]. Appl Biochem Biotechnol.,1992, 34-35:37-48.
    [21]Brownell H.H., Saddler J.N. Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis [J]. Biotechnol Bioeng.,1987,29:228-235.
    [22]Carrasco F., Roy C. Kinetic study of dilute-acid prehydrolysis of xylan containing biomass [J]. Wood Sci Technol.,1992,26:189-208.
    [23]Schaffeld G. Pretratamiento del material lignocelulosico, in Ethanol delignocelulosicos technologia; perspectives. Servicio de publicacions intercambio cientifico da Universidade de Santiago de Compostela,1994, pp.35-60.
    [24]Rijkens B.A., Hydrolysis process for lignocellulosic materials CECD workshop cellulose programme. Braunschweig, Germany,1984.
    [25]Heitz M., Capek-Menard E, Koeberele P.G., Gagne J., Chornet E. Fractionation of populus tremuloides at the pilot plant scale:optimization of steam pretreatment conditions using STAKE II technology [J]. Bioresour Technol.,1991,35:23-32.
    [26]Biermann C.J., Schultz T.P., Mcginnis G.D. Rapid steam hydrolysis/extraction of mixed hardwood as a biomass pretreatment [J]. Wood Chem Technol.,1984,4:111-128.
    [27]Wright J.D. Ethanol from biomass by enzymatic hydrolysis [J]. Chem Eng Prog,1996,84:62-74.
    [28]Morjanoff P.J., Gray P.P. Optimization of steam explosion as method for increasing susceptibility of sugarcane baggasse to enzymatic saccharification [J]. Biotechnol Bioeng.,1987,29:733-741.
    [29]Ohgren K., Galbe M., Zacchi G. Optimization of steam pretreatment of SO2 impregnated corn stover for ethanol production [J]. Appl Biochem Biotechnol.,2005,121-124:1055-1067.
    [30]Evanick S.M, Bura R., Saddler J.N. Acid-catalysed steam pretreatment of Lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol [J]. Biotechnol Bioeng.,2007, 98:737-746.
    [3J]Mumen H.K., Balan V., Chundawat S.P.S., Bals B., Sousa L.D.C., Dale B.E. Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of miscanthus x gigantius to fermentable sugars [J]. Biotechnol Prog.,2007,23:846-850.
    [32]Mett H.T., Andres T., Hewnning J., Larsen J., Borge H.C., Anne B.T. Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of biocthanol and electricity [J]. Appl Biochem and Biotechnol.,2007,130:448-460.
    [33]Zheng Y., Lin H.M., Tsao G.T. Pretreatment of cellulose hydrolysis by CO2 explosion. Biotechnol Prog.,1998,14:890-896.
    [34]P Pan X., Xie D., Yu R.W., Lam D., Saddler J.N. Pretreatment of lodgepole pine killed by mountain pine beetle using ethanol organosolv process:fractionation and process optimization. Ind Eng Chem Res.,2007,46:2609-2617.
    [35]Ropars M., Marchal R., Pourquie J., Vandecasteele J.P. Large scale enzymatic hydrolysis of agricultural lignocellulosic biomass. Part 1:Pretreatment procedures [J]. Bioresour Technol.,1992, 42:197-204.
    [36]Fontana J.D., Ramos L.P., Deschamps F.C. Pretreated sugarcane bagasse as a model for cattle feeding [J]. Appl Biochem Biotechnol.,1995,51-52:105-116.
    [37]Niculae O., Adrian A., Liliana O. On the hydrolysis of cellulose acetate in toluene/acetic acid/water system [J]. European Polymer Journal.,2001,37:865-867.
    [38]Tsuda M., Aoyama M., Cho N.S. Steaming as pre-treatment for the enzymatic hydrolysis of bamboo grass culms [J]. Bioresour Technol.,1995,64:241-243.
    [39]Teresita M., Stephen J.M., Christopher W. Jone P.K. Switchgrass pretreatment and hydrolysis using low concentrations of formic acid [J]. Journal of Chemical Technology and Biotechnology,2011,86: 706-713.
    [40]Sudo K., Shimizu K., Ishii T., Fujii T and Nagasawa S. Enzymatic hydrolysis of woods, Part IX. Catalyzed steam explosion of softwood [J]. Holzforschung,1986,40:339-345.
    [41]Brennan A.H. Hoagland W., Schell D.J. High temperature acid hydrolysis of biomass using engineering scale plug flow reactor:result of low solid testing [J]. Biotechnol Bioeng Symp.,1986, 17:53-70.
    [42]Hinman N.D., Schell D.J., Riley C.J., Bergeron P.W., Walter P.J. Preliminary estimate of the cost of ethanol production for SSF technology [J]. Appl. Biochem. Biotechnol.,1992,34-35:639-649.
    [43]Kim S.B., Lee Y.Y. Kinetics in acid-catalyzed hydrolysis of hardwood hemicellulose [J]. Biotechnol Bioeng Symp.,1987,17:71-84.
    [44]Pessoa Jr. A., Mancilha I.M., Sato S. Acid hydrolysis of hemicellulose from sugarcane bagasse [J]. Braz J Chem Eng.,1997,14:291-297.
    [45]Rahman S.H.A., Choudhary J.P., Ahmad A.L., Kamaruddin A.H. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose [J]. Bioresour Technol., 2007,98:554-559.
    [46]Karimi K., Kheradmandinia S., Taherzadeh M.J. Conversion of rice straw to sugars by dilute-acid hydrolysis [J]. Biomass Bioenerg.,2006,30:247-253.
    [47]Grohmann K., Torget R., Himmel M. Optimization of dilute acid treatment of biomass [J]. Biotechnol Bioeng Symp.,1985,15:59-80.
    [48]Torget R., Weredene P., Himmel M., Grohmann K. Dilute acid pretreatment of short rotation woody and herbaceous crops [J]. Appl Biochem Biotechnol.,1990,24-25:115-126.
    [49]Torget R., Hsu T.A. Two temperature dilute-acid prehydrolysis of hardwood xylan using a percolation process [Jj. Appl Biochem Biotechnol.,1994,45-46:5-22.
    [50]Saha B.C., Bothast R.J. Pretreatment and enzymatic saccharification of corn fiber [J]. Appl Biochem Biotechnol.,1999,76:65-77.
    [51]Hughes E. E., Acree S. F. Quantitative formation of furfural from xylose [J]. Journal of Research of the National Bureau of Standards,1938,21:327-336.
    [52]Dunlop A P. Furfural formation and behavior [J]. Ind. Eng. Chem.1948,20:204-209.
    [53]Root D.F., Saeman J.F., Harris J.F., Neill W.K. Kinetics of the acid-catalyzed conversion of xylose to furfural [J]. Forest Products Journal,1959,9:158-165.
    [54]Zeitsch K.J. The Chemistry and Technology of Furfural and its Many Byproducts (Sugar Series 13) [M]. Elsevier Science, Amsterdam,2000.
    [55]Vazquez G., Antorrenta G., Gonzalez J., Freire S., Lopez S. Acetosolv pulping of pine wood. Kinetics modeling of lignin solubilization and condensation [J]. Bioresour Technol.,1997, 59:121-127.
    [56]Abad S., Santos V., Parajo J.C. Evaluation of Eucalyptus globulus wood processing in media made up of formic acid, water, and hydrogen peroxide for dissolving pulp production [J]. Ind. Eng. Chem. Res.,2001,40:413-419.
    [57]Mansilla H.D., Baeza J., Urzua S., G. Maturana, J., Duran N. Villasenor and N. Duran. Acid catalysed hydrolysis of rice huls:evaluation of furfural production [J]. Bioresour. Technol.,1998, 66:189-193.
    [58]史伟明,张楠.糠醛生产“三废”情况的调查[J],黑龙江环境通报,2002,26:57-58.
    [59]Brownlee H. J., Miner C. S. Process of Manufacturing Furfural [J]. Ind. Eng. Chem.,1948,40: 201-204.
    [60]Harris J.F., Baker A.J., Conner A.H., Jeffries T.W., Minor J.L. Two-stage, dilute sulfuric acid hydrolysis of wood:An investigation of fundamentals. Gen. Tech. Rep. FPL-45. Madison, WJ:U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 1985.73-76.
    [61]Dunning J.W., Lathrop E.C. Saccharification of Agricultural Residues [J]. Industrial and Engineering Chemistry,1945,37:24-29.
    [62]Singh A., Das K., Sharma D.K. Integrated Process for Production of Xylose, Furfural and Glucose from Bagasse by Two-step Acid Hydrolysis [J]. Journal of Chemical Technology and Biotechnology, 1984,23:257-262.
    [63]Sproull R.D., Bienkowski P. R., Tsao G. T. Production of Furfural from Corn Stover Hemi cellulose [J]. Biotechnology and Bioengineering Symposium,1985,15:561-577.
    [64]Xing R., Qi W., Huber GW. Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries [J]. Energy Environ. Sci.,2011,4,2193-2205.
    [65]Panicker P.K.N. Furfural-part Ⅲ-processes [J]. Chemical Age of India,1975,26:457-464.
    [66]Haque R., Chakrabarti R.K., Borgohain J.N. An Indigenous Technology for Production of Furfural [J]. Chemical Engineering World,1976,11:71-73.
    [67]Croenert H., Loeper D. New industrial paths in the continuous production of furfural [J]. Escher Wyss News,1969,42-43:69-77.
    [68]Harris J F. Process alternatives for furfural production [J]. Tappi Journal,1978,61:41-44.
    [69]Oronzio De Nora Impianti Elettrochemici. A continuous process for the production of furfural and acetic acid from pentosan-containing material [P], Italy Patent,774809.
    [70]Yemis O., Mazza G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction [J]. Bioresour. Technol.,2011,102:7371-7378.
    [71]Telleria I.A., Larreategui A., Requies J., Guemez M.B., Arias P.L. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Biores. Technol.,2011,102:7478-7485.
    [72]Mao L.Y., Li A.M. Wang. D.X. Investigation of Wastewater and Fume in the Production of Furfural [C].2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring,2011-CDCIEM.
    [73]Rushin M. S. Mathematical Modelling and Optimization of a Three Phase Autohydroly-sis Reactor [D], M. Sc. Thesis, University of Natal, Durban.1992.
    [74]Dias A.S, Pillinger M., Valente A.A. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts [J]. J. Catal.,2005,229:414-423.
    [75]Dias A.S., Lima Sr., Pillinger M. Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural [J]. Carbohydr. Res.,2006,341(18):2946-2953.
    [76]Dias A.S., Lima S., Brandao P. Liquid-phase dehydration of D-xylose over microporous and mesoporous niobium silicates [J]. Catal. Lett.,2006,108:179-186.
    [77]Moreau C., Durand R., Peyron D. Selective preparation of furfural from xylose over microporous solid acid catalysts [J]. Ind. Crop. Prod.,1998,7:95-99.
    [78]Lima S., Pillinger M., Valente A.A. Dehydration of d-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1) [J]. Catal. Commun.,2008,9:2144-2148.
    [79]Jing Q., Lu X.Y. Kinetics of Non-catalyzed Decomposition of D-xylose in High Temperature Liquid Water [J]. Chin. J. Chem. Eng.,2007,15(5):666-669.
    [80]Zhao H.B., Holladay J.E., Brown H., Zhang Z.C. liquid solvent-s convert sugars to 5-hydroxym-ethylfurfural [J]. Science,2007,316:1597-1600.
    [81]吕秀阳,迫田章义,铃木基之.纤维素在临界水中的分解动力学和产物分布[J],化工学报,2001,52(6):556-559.
    [82]庞斐,吕惠生,张敏华,业临界水/二氧化碳中纤维素降解制备5-轻甲基糠醛的机理及动力学[J],化学反应工程与工艺,2007,23(1):55-60.
    [83]Mansilla H.D., Baeza J., Urzua S. Acid-catalysed hydrolysis of rice hull:Evalu-ation of furfural production [J]. Bioresource Technology,1998,66:189-193.
    [84]Kim Y.C., Lee H.S. Selective synthesis of furfural from xylose with supercritical carb-on dioxide and solid acid catalyst [J]. Journal of Industrial and Engineering Chemistry,2001,7:424-429.
    [85]Vazquez M., Oliva M., Tellez-Luis S.J. Hydrolysis of sorghum straw using pho-sphoric acid: Evaluation of furfural production [J]. Bioresour. Technol.,2007,98:3053-3060.
    [86]Clark, J. H. Solid acids for green chemistry [J]. Acc. Chem. Res.,2002,35:791-797.
    [87]何源禄,金淳.西欧几家公司糠醛考察报告[J].生物质化学工程.1979(5):327-348.
    [88]王宗力.以过磷酸钙为催化剂的玉米芯制糠醛法[J].生物质化学工程.1976(Z1):85-88.
    [89]Yang W.D., Li P.L., Bo D.C., Chang H.Y. The optimization of formic acid hydrolysis of xylose in furfural production [J]. Carbohydrate Research,2012,357:53-61.
    [90]Zeitsch K.J. Furfural production needs chemical innovation [J]. Chem Innov.,2000,30:29.
    [91]Zeitsch K.J. Gaseous acid catalysis:An intriguing new process [J]. Chem. Innov.,2001,31:40-44.
    [92]Corma A. Inorganic sold acids and their use in acid-catalyzed hydrocarbon reactions [J]. Chem Rev., 1995,95:559-614.
    [93]Okuhara T. Water-tolerant solid acid catalysts [J]. Chem. Rev.,2002,102:3641-3666.
    [94]Xuejun Shi, Yulong Wua, Panpan Li, Huaifeng Yi, Mingde Yang, Gehua Wang. Catalytic conversion of xylose to furfural over the solid acid SO42-/ZrO2-Al2O3/SBA-15 catalysts [J]. Carbohydrate Research,2011,346:480-487.
    [95]Dias A.S., Lima S., Pillinger M., Valente A.A. Modified versions of sulfated zirconia as catalysts for the conversion of xylose to furfural [J]. Catalysis Lett.,2007,114:151-160.
    [96]Potapov G.P. Krupenskii V.I., Alieva M.I. Metalloporphyrins anchored to poly-meric supports as new catalysts for aldose dehydration [J]. React Kinet Catal Lett.,1985,28:331-337.
    [97]Moreau C., Belgacemb M.N., Gandini A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers [J]. Topics in Catalysis,2004,27:11-30.
    [98]Moreau C., Belgacemb M. N.,Gandini A. Selective preparation of furfural from xylose over microporous solid acid catalysts [J]. Industrial Crops and Products,1998,7:95-99.
    [99]Soko, T., Sugeta, T., Nakazawa, N. Kinetic Study of Furfural Formation Acco MPanying Supercritical Carbon Dioxide Extraction [J]. Journal of Chemical Engineering of Japan,1992,25: 372-377.
    [100]Kim Y.C., Lee H.S. Selective Synthesis of furfural from Xylose with Supercritical Carbon Dioxide and Solid Acid Catalyst. Journal of Industrial and Engineering Chemistry [J],2001,7:424-429.
    [101]Dias A.S., Pillinger M., Valente A.A. Liquid phase dehydration of D-xylose in the presence of Keggin-type heteropolyacids [J]. Appl Catal A.,2005.285:126-131.
    [102]Yan Y.J., Li, T.C., Ren Z.W., Li G.Z. A study on catalytic hydrolysis of peat [J]. Bioresour. Technol.,1996,57:269-273.
    [103]Yan Y.J., Xu, J., Li, G.Z., Yu, L.J. Study on hydrolysis of peat for preparation of xylose [J]. Acta Energiae Solaris Sin.,1998,19:289-293.
    [104]Nguyen Q.A., Tucker M.P. Dilute acid/metal salt hydrolysis of lignocellulosics [P]. US Patent 6423145.2002.
    [105]Liu C.G., Wyman C.E. The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover [J]. Ind. Eng. Chem. Res.,2004,43:2781-2788.
    [106]Liu L., Sun J.S., Cai C.Y., Wang S.H. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation [J]. Bioresour. Technol.,2009,100:5865-5871.
    [107]Gravitis J., Vedernikov N., Zanderson J., Kokorevics. A. Furfural and levoglucosan production from deciduous wood and agricultural wastes. In:Chemicals and Materials from Renewable Resources [J]. ACS Symposium series 784, Ed. JJ. Bozzel,2001. pp.110-122.
    [108]Marcotullio G. E., Krisanti, J. Giuntoli, W.J Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HC1 or FeC13 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues [J]. Bioresource Technology,2011,102: 5917-5923.
    [109]Hughes E. E., Acree S. F. Journal of Research of the National Bureau of Standards.1938,21: 327-336.
    [110]Franck E.U., Physik Z. Chemic, Neue Folge,1956,8:107-126.
    [111]Harris J.F., Saeman J.F., Locke E.G. Chemical conversion of wood residues. Part Ⅰ. Separation and utilization of hardwood hemicellulos [J]. Forest Prod J.,1958,8:248-252.
    [112]Kobayashi T., Sakai Y. Hydrolysis rate of pentosan of hardwood in dilute sulphuric acid [J]. Bull Agric Chem Soc Japan,1956,20:1-7.
    [113]Lee Y.Y., Lin C.M., Johnson T., Chambers R.P. Selective hydrolysis of hardwood hemicellulose by acids [J]. Biotech Bioeng Symp.,1979,8:75-88.
    [114]Conner A. Kinetic modeling of hardwood prehydrolysis Part Ⅰ:xylan removal by water prehydrolysis [J]. Wood Fiber Sci.,1984,16:268-277.
    [115]Kamiyama Y., Sakai Y. Rate of hydrolysis of xylo-oligosaccharides in dilute sulphuric acid [J]. Carbohyd. Res.,1979,73:151-158.
    [116]Conner A.H., Lorenz L.F. Kinetic modeling of hardwood prehydrolysis.Part-Ⅲ. Water and dilute acetic acid prehydrolysis of southern red oak wood and fiber [J]. Science,1986,18:248-256.
    [117]Maloney M.T., Chapman T.W. An engineering analysis of the production of xylose by dilute acid hydrolysis of hardwood hemicellulose [J]. Biotechnol Progress,1986,2:192-202.
    [118]Bryner L. C, Christensen L. M., Fulmer E. I. Hydrolysis of oat hulls with hydrochloric acid [J]. Ind. Eng. Chem.,1936,28:206-208.
    [119]Dunlop A.P. Furfural formation and behavior [J]. Ind. Eng. Chem.,1948:20,204-209.
    [120]Schoenemann K., Hofmann H. Chem. Ing. Techn.,1957,29:665-674.
    [121]薄德臣.以醋酸为催化剂由戊糖经反应萃取制取糠醛[D].天津:天津大学.2011.
    [122]马艳华.纤维素在近临界水中催化水解反应及动力学研究[D].上海:上海大学,2010.
    [123]Williams D.L., Dunlop A.P. Kinetics of-Furfural Destruction in Acidic Aqueous Media[J]. Ind. Eng. Chem.,1948,40:239-241.
    [124]Kadlec R H, Knight R L. Treatment wetlands [M]. Boca Raton:Lewis Publishers,1996:32-43.
    [125]彭举威,康春莉,崔玉波,等.表面流人工湿地处理糠醛生产废水的应用[J],吉林大学学报(地球科学版),2010,40(6):1419-1424.
    [126]Randall A., Richard R. Anaerobic treatment of a furfural-production wastewater, Waste Management,1993,13:309-315.
    [127]Li Z.S. A Review of the Study on Furfural Production Process. Gdchem[J]. GuangDong chenmistry, 2010,37:40-411.
    [128]吉林省环科环保技术有限公司.糠醛生产废水零排放的清洁生产方法[P].中华人民共和国国家知识产权局,200610017170.6
    [129]唐一林,江成真,高绍丰,等.一种糠醛生产废水的处理方法[P].济南圣泉集团股份有限公司,中华人民共和国国家知识产权局,200610044393.1.
    [130]高礼芳,徐红彬,张懿.玉米芯水解生产糠醛清洁工艺[M].环境科学研究.23.2010(7):924-929.
    [131]Parajo J.C., Alonso, J.L., Santos V. Kinetics of catalyzed organosolv processing of pine wood [J]. Ind. Eng. Chem. Res.,1995,34:4333-4342.
    [132]Davis J.L., Young R. A., Deodhar S.S. Organic pulping of wood. Ⅲ Acetic acid ulping of spruce [J]. Mokuzai Gakkaishi,1986,32,905-914
    [133]Nimz H.H. & Casten, R. Chemical processing of lignocellulosics [J]. Holz Roh und WerE,1986,44, 207-212.
    [134]Kin Z. The acetolysis of beech wood [J]. Tappi J.,1990,11:237-238.
    [135]Vazquez D., Lage M. A., Parajo J. C., Vazquez G. Fractionation of Eucalyptus wood in acetic acid media [J]. Biores. Technol.,1992,40:131-136.
    [136]Parajo J. C., Alonso J. L., Vazquez D. On the behaviour of lignin and hemicelluloses during the Acetosolv pulping of wood [J]. Biores. Technol.,1993,46:233-240.
    [137]Abad S., Alonso J. L., Santos V. and Paraja J. C. Furfural from wood in catalyzed acetic acid media: a mathematical assessment [J]. Bioresource Technology,1997,62:115-122.
    [138]杨会文,胡熙恩.紫外分光光度法检测盐酸中的乙酸[J].理化检验-化学分册,2001,37:411-412.
    [139]Francisco A., Riera R. A., Jose Coca. Production of furfural by acid hydrolysis of corncobs [J]. Journal of Chemical Technology and Biotechnology,1991,50:149-155.
    [140]Vercher E., Vazquez M. I., Andreu A. M. Isobaric Vapor-Liquid Equilibria for 1-Propanol+Water +Calcium Nitrate E. Vercher [J]. J. Chem. Eng. Data.,2001,46:1584-1588.
    [141]Lowry, T.M.J. The mechanism of catalysis by acids and bases [J]. J. Chem. Soc.,1927,129, 2554-2567.
    [142]Aronovsky S. I. and Gortner R. A. Ind. Eng. Chem.,1930,22:264-274.
    [143]乔小青.玉米桔秆半纤维素汽爆分离以及制备糠醛的研究[D].北京:北京化工大学,2009.
    [144]Jeoh T., Agblevor F.A. Characterizatio and fermentation of steam exploded cotton gin waste [J]. Biomass & Bioenegy,2001,21:109-120.
    [145]Jeoh T. Steam Explosion Pretreatment of Cotton Gin Waste for Fuel Ethanol Production [D]. Blacksburg:Virginia Tech University,1998.
    [146]Fang Z., Tomoaki M., Smith R. L. Liquefaction and Gasification of Cellulose with Na2CO3 and Ni in Subcritical Water at 350℃ [J]. Ind. Eng.Chem. Res.,2004,43:2454-2463.
    [147]Hashaikeh R., Fang Z., Butler I.S. Hydrothermal Dissolution of Willow in Hot Compressed Water as a Model for Biomass Conversion [J]. Fuel,2007,86:1614-1622.
    [148]阳瑞.糠醛渣综合利用新探索[D].广州:华南理工大学,2011.
    [149]Xu F., Sun J.X., Sun R.C., Fowler P., Baird M.S. Comparative study of organosolv lignins from wheat straw [J]. Industrial Crops and Products,2006,23:180-193.
    [150]Alexandre E. Alvaro L.M., Fernando W., Luiz P. R. Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion [J]. Bioresource Technology,2003,86:105-115.
    [151]Paraj6 J.C., Alonso J.L., Santos V. Development of a generalized phenomenological model describing the kinetics of the enzymatic hydrolysis of NaOH-treated pine wood [J]. Appl Biochem Biotechnol.,1996,56:289-299.
    [152]Grethlein H.E., Converse A.O. Common aspects of acid prehydrolysis and steam for pretreating wood [J]. Biores. Technol.,1991,36:77-82.
    [153]Liu C., Wyman C.E. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180℃ [J]. Carbohydr. Res.,2006,341:2550-2556.
    [154]Liu L., Sun J., Li M., Wang S., Pei H., Zhang J. Enhanced enzymatic hydrolysis and structural features of corn stover by FeC13 pretreatment [J]. Bioresour. Technol.,2009.100:5853-5858.
    [155]Marcotullio G., De Jong, W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions [J]. Green Chem.2010,12:1739-1746.
    [156]Cotton F., Wilkinson, G. Advanced Inorganic Chemistry,5th ed. Wiley-Interscience,1988.
    [157]Voigt B., Gbler A. Formation of pure haematite by hydrolysis of iron (Ⅲ) salt solutions under hydrothermal conditions [J]. Cryst. Res. Technol.,1986,21:1177-1183.
    [158]Nguyen Q.A., Tucker M.P. Dilute acid/metal salt hydrolysis oflignocellulosics. US Patent 6423145, 2002.
    [159]胡勇有,李宗峰,宁寻安,等.Al(Ⅲ)-Fe(Ⅲ)共存体系的水溶液化学特征[J].华南理工大学学报,1999,27(7).
    [160]Zhang L.X., Yu H.B., Wang P., Dong H., Peng X. Conversion of xylan, D-xylose and lignocellulosic biomass into furfural using A1C13 as catalyst in ionic liquid [J]. Bioresource Technology,2013,130:110-116.
    [161]Yang Y., Hu C.W., Mahdi M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using A1C13·6H2O catalyst in a biphasic solvent system [J]. Green Chem., 2012,14:509-513.
    [162]Kobayashi T. Research on the kinetics of wood saccharificatoin at lower temperatures with dilute and strong sulfuric acid, Forest Prod. Research Inst., Hokkaido, Japan; Saeman, J.F.,1945, Ind. Eng. Chem.,1952,37:43.
    [163]Wilson B.W. J. Australian Council Sci. Ind. Research.,1947,20:258.
    [164]Sako T., Sugeta T. Phase equilibria study of extraction and concentration of furfural producd in reactor using supercritical carbon dioxide [J]. J. Chem. Eng Jpn.,1991,24:449-455.
    [165]Leshkov Y.R., Barrett, C.J., Liu, Z.Y., Dumesic, J.A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature.2007,447,982-985.
    [166]Antal M.J., Leesomboon T., Mok W.S., Richards G.N. Mechanism of formation of 2-furaldehyde from D-xylose [J]. Carbohydr. Res.,1991,217,71-78.
    [167]Ma Y.H., Ji, W.Q., Zhu X., Tian L., Wan X.L. Effect of extremely low A1C13 on hydrolysis of cellulose in high temperature liquid water [J]. Biomass Bioenergy.2012,39:106-111.
    [168]W 斯塔姆,J J 摩尔根,汤鸿霄等.水化学[M].北京:科学出版社,1987:181.
    [169]Michell, A.J., Higgins, H.G. Conformation and intramolecular hydrogen bonding in glucose and xylose derivatives [J]. Tetrahedron.,1965,21:1109-1120.
    [170]Ren Q., Wu J., Zhang J., He J.S., Guo M.L. Synthesis of 1-allyl,3-methylimidazolium-based room-temperature ionic liquid and preliminary study of its dissolving cellulose [J].Acta. Polymerica. Sinica.2003,3:448-451.
    [171]Lam P.S., Sokhansanj, S., Jim L.C., Bi, X.T., Melin S. Kinetic modeling of pseudolignin formation in steam exploded woody biomass [C].8th World Congress of Chemical Engineering. Montreal Quebec,2009, pp.23-27.
    [172]Montane D., Salvado J., Torras C., Farriol, X. High-temperature dilute-acid hydrolysis of olive stones for furfural production [J]. Biomass Bioenergy,2002,22:295-304.
    [173]Ergun R. Fluid flow through packed columns [J]. Chem. Eng. Progr.1952,48:89-95.
    [174]Sangarunlert W., P. Piumsomboon, S. Ngamprasertsith. Furfural production by acid hydrolysis and supercritical [J]. Korean Journal of Chemical Engineering.2007,24:936-941.
    [175]D. R. Arnold and J. L. Buzzard, A novel process for furfural production [C]. Proceedings of South African Chemical Engineering Congress,2003.
    [176]Norbert Adolph Lange, John Aurie Dean. Lange's Handbook of Chemistry Version.
    [177]Furter W.F and Tbesis D. University of Toronto, Toronto, Canada,1958.
    [178]Johnson A J., Furter W F. Salt effect in vapor-liquid equilibrium, part Ⅱ [J]. Can. J. Chem. Eng. 1960,38:78.
    [179]Burns J. A., Furter, W. F., Salt effect in vapor-liquid equilibrium at fixed liquid composition [J]. Advan. Chem. Ser,1979,177:11.
    [180]Furter W F, Cook R A. Salt effect in distillation:A literature review I [J]. Int J. Heat Mass Transfer, 1967,10:23-26.
    [181]Philip J.C. Electrolyte solution theory:Hydration theory [J]. J Chem Soc.,1907,91:711-715.
    [182]黄子卿.电解质溶液理论导论[M].北京:科学出版社,1983年(修订版),151-183.
    [183]潘晓梅.关于盐效应及其在分离过程中的应用研究[D].天津:天津大学,2002年.
    [184]Cho J., Conner J. W. C., Huber G. W. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating [J]. Green Chem.,2010,12:1423-1429.
    [185]Chheda J.N., Roman-Leshkov Y., Dumesic J A., Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides [J]. Green Chem.2007, 9,342-350.
    [186]Stein T. Iron-catalyzed furfural production in biobased biphasic systems:from pure sugars to direct use of crude xylose effluents as feedstock [J]. ChemSusChem,2011,4(11):1592-1594.
    [187]McNcff C.V., McNeff, L.C., Yan, B., Nowlan, D.T. Continuous Production of 5-HMF from Simple and Complex Carbohydrates [J]. Fedie, Appl. Catal., A,2010,384,65-69.
    [188]Chang W X., Guan G F., Li X L., Yao H Q. Isobaric Vapor-Liquid Equilibria for Water+Acetic Acid+(n-Pentyl Acetate or Isopropyl Acetate [J]. J. Chem. Eng. Data.,2005,50:1129-1133.
    [189]Sunder M.S., Prasad D.H.L. Phase Equilibria of Water+Furfural and Dichloromethane+ n-Hexane [J]. Journal of Chemical & Engineering Data,2003,2:221-220.
    [190]Vila C. Recovery of lignin and furfural from acetic acid-water-HCl pulping liquors [J]. Bioresource Technology,2009,90:339-344.
    [191]Fele L., Grilc V. Separation of Furfural from Ternary Mixtures [J]. J. Chem. Eng. Data.,2003,48: 564-570.
    [192]Seaton W. In Acetic Acid and its Derivatives; Agreda, V., Zoeller, J., Eds. Dekker:New York,1993.
    [193]Marek J., Standart G. Vapor-Liquid Equilibria in Mixtures containing an Associating Substance. Ⅰ. Equilibrium Relationshipsfor Systems with an Associating Component [J]. Collect. Czech. Chem. Commun.,1954,19:1074-1084.
    [194]Marek J. Vapor-Liquid Equilibria in Mixtures containing an Associating Substance. Ⅱ. Binary Mixtures of Acetic Acid at Atmospheric Pressure[J]. Collect. Czech. Chem. Commun.,1955,20, 1490-1502.
    [195]Balaban A., Kuranov G., Smirnova N. Phase equilibria modeling in aqueous systems containing 2-propanol and calcium chloride and/or magnesium chloride [J]. Fluid Phase Equilibria,2002,197: 717-728.
    [196]Fawzi B., Sameer A., Jana S. Effect of trivalent, bivalent, and univalent cation inorganic salts on the isothermal vapor/liquid equilibria of propionic acid/water system [J]. Chemical Engineering and Processing:Process Intensification,2003,42:759-766.
    [197]Hashitani M., Hirata M., Yasuo H., Chem. Eng., Japan 32 1968 182-187.
    [198]Sun R.Y. Effect of Salt on Relative Volatility of Binary Solution [J]. Huagong Xuebao,1985,2: 204-213.
    [199]Sun R.Y., Zhang S L., L. Xu J. VLA data of alcohol-water-salt system [J]. Chemical engineering, 1993,21 59-63.
    [200]Jaques D., Furter W F., Ethanol-Water Saturated with Inorganic Salts [J]. Ind. Eng. Chem. Fundam. 1974,13:228-231.
    [201]Wu W.L., Zhang Y M., Lu X.H. Modification of the Furter equation and correlation of the vapor-liquid equilibrium for mixed-solvent electrolyte systems [J]. Fluid Phase Equilibria,1999, 154:301-31.
    [202]W.斯塔姆,J.J摩尔根,汤鸿霄等.水化学[M].北京:科学出版社,1987:182.
    [203]Ma Y.H., Ji W.Q., Zhu X., Tian L., Wan X.L. Effect of extremely low A1C13 on hydrolysis of cellulose in high temperature liquid water [J]. Biomass Bioenergy,2012.39:106-111.
    [204]胡勇有,李宗峰,宁寻安等.Al(Ⅲ)-Fe(Ⅲ)共存体系的水溶液化学特征[J].华南理工大学学报.1999,27:20-26.
    [205]Joan G., Lynam J.G., Lynam C.J., Wei Y. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass [J]. Bioresource Technology,2011,102:6192-6199.
    [206]Xiao L.P., Shi Z J., Xu F., Sun R.C. Hydrothermal carbonization of lignocellulosic biomass [J]. Bioresource Technology,2012,118:619-623.
    [207]Ball R., McIntosh A.C., Brindley J. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments [J]. Combustion Theoritical Model,2004,8: 281-291.
    [208]Xu F, Sun J.X., Sun R.C., Fowler P., Baird M.S. Parative study of organosolv lignins from wheat straw [J]. Industrial Crops and Products,2006,23:180-193.
    [209]陈方,陈嘉翔.桉木木素的付立叶变换红外光谱研究[J].纤维素科学与技术,1994,2:14-20.
    [210]Faix O., Bottcher J.H. Determination of phenolic hydroxyl group content in MWLs by FTIRspectroscopy applying partial-least square (PLS) and principal component regression (PCR) [J]. Holzforschung,1993,47:45-49.
    [211]Margaretha Akerholm. Ultrastructural aspect of pulp fibers as studied by dynamic FT-IR spectroscopy. STFI. Swedish Pulp and Paper Research Institute.
    [212]Moore D.F., Mesker R B. The measurement of rapid surface temperature fluctuations during nucleate boiling of water [J]. A.I.Ch E J.,1961,7:620-624.
    [213]Epstein N. Particle Deposition and its Mitigation. In:Bott T R, et al eds. Understanding Heat Exchanger Fouling and Its Mitigation [M]. New York:Begell House Inc.,1999,3-21.
    [214]Webb R.L., Kim N.H. Particulate fouling in enhanced tubes. In:Heat transfer equipment, Fundamentals and Design [J], Application and Operating Problems. New York:ASME,1989,108: 315-323.
    [215]Somerscales E.F.C., Ponteduro A.F. and Bergles A.E. Particulate Fouling of Heat Transfer Tubes Enhanced on Their Inner Surface [J]. Fouling and Enhancement Interaction, ASME HTD,164, 1991,164:17-28.
    [216]黄晓艳,王华,王辉涛.R245fa传热特性的试验研究[J].武汉理工大学学报,2011,3(3):1-5.
    [217]Gillies W.V. Fouling Science or art [D]. University of Surry, UK, March,1979
    [218]Schimmdl K. Blasenverdampfung a Heizwandobezflachen mit kunstlichen Dampfblase-nkeimstellen [J]. Chem. Ing. Tech.,1970,42:16.
    [219]Scott D. S.,Paterson L.,Piskorz J. and Radlein D. J. Anal. Appl. Pyrol.,2000,57:169-176.
    [220]Dobele G., Rossinskaja G., Dizhbitc T., Telysheva G., Meier D and Faix O. J. Anal. Appl. Pyrol., 2005,74:401-405.
    [221]Piskorz J., Scott D.S., Radlien D,. Composition of oils obtained by fast pyrolysis of different woods. In Pyrolysis Oils from Biomass:Producing Analysing and Upgrading. A. C. Soceity. Washington, DC,1998:167-178.
    [222]Boudou J.P., Begin D., Alain E., Furdin G., Mareche J.F., Albiniak A. Effects of FeCl3 (intercalated or not in graphite) on the pyrolysis of coal or coal tar pitch [J]. Fuel,1998,77:601-606.
    [223]Oliveira L.C., Pereira E., Guimaraes I.R., Vallone A., Pereira M., Mesquita J.P., Sapag K. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnC12 as activating agents [J]. J Hazard Mater,2009,165:87-94.
    [224]Muthanna J. A. Preparation of activated carbons from date stones by chemical activation method using FeCl3 and ZnCl2 as activating agents. Journal of Engineering,2011,17,1007-1022.
    [225]Philipp M., Grande, Pablo Domi'nguez de Maria. Enzymatic hydrolysis of microcrystalline cellulose in concentrated seawater [J]. Bioresource Technology,2012,104:799-802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700