用户名: 密码: 验证码:
湿热环境中环氧树脂力学性能和界面破坏机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树脂与固化剂交联形成的三维网状环氧树脂具有许多优良的热、力学性能,目前已经作为涂料、封装材料、交联剂等广泛应用于国防及民用工业的各个领域。湿热环境下环氧树脂膨胀、老化、力学性能下降及由此导致的界面开裂等问题日益凸显。本文采用分子动力学方法,考虑了温度、含湿量、交联度、应变率及界面粘结剂等的影响,对环氧树脂的力学性能及铜-环氧树脂界面破坏机理做了系统详细的研究,得到了一些富有学术价值的研究成果,对实际工程问题具有指导意义。
     由于环氧树脂结构的特殊性和重要性,本文首先提出一种新的建模方法,成功实现了环氧树脂的三维网状交联,在此基础上系统研究了环氧树脂玻璃转化温度、热膨胀系数和湿膨胀系数等材料参数,通过静态常应变方法研究了环氧树脂弹性模量、体积模量、剪切模量和泊松比等力学性能参数,分子动力学模拟结果与实验数据吻合较好。研究结果显示,交联度对环氧树脂的热、力学性能的研究有重要意义,以简单的树脂和固化剂共混体系代替交联环氧树脂必然会造成结果偏差;此外,环氧树脂体系所处环境的温度和湿度都会对其性能造成影响,尤其高温、高湿环境对环氧树脂热力学性能有着显著的影响。
     采用分子动力学方法系统研究了湿气在环氧树脂中的扩散问题,模拟结果表明,随着温度的升高,扩散系数增大;随聚合物中含水量增多及聚合物交联反应程度减小,扩散系数总体呈增大趋势,但同时也发现发生完全交联反应的环氧树脂所含环氧基数目与交联聚合物中所含水分子数目相同时,扩散系数急剧减小。
     通过分子动力学方法数值模拟,研究了环氧树脂拉伸、压缩时的力学性能,研究结果显示,环氧树脂抗压性能比抗拉性能好;温度升高和含湿量增大都弱化了聚合物的力学性能,高温、高湿环境影响尤其显著;交联度增大和应变率升高强化了聚合物的力学性能,常温下,交联度89%的环氧树脂弹性模量比不交联环氧树脂高2-3GPa。通过分子动力学模拟不仅得到了聚合物材料在高温和高应变率下的力学性能,还从分子能量的微观角度较好地表述了湿热环境中环氧树脂的拉伸和压缩变形过程,这一研究对环氧树脂的改性和性能设计具有重要指导意义。
     系统分析研究了电子封装中常见的铜-SAM-环氧树脂界面的相互作用能。通过比较,发现与环氧树脂形成化学键的自组装单分子膜SAMA能够提高界面相互作用能,而不与环氧树脂形成化学键的SAME则降低了界面相互作用能,树脂交联程度对基底与环氧树脂界面粘结性基本没有影响,但温度升高、湿气进入和金属氧化都不同程度地减弱了界面的相互作用能。这一研究成果为研究界面粘结剂的粘结作用及评价粘结效果提供了新的研究方法,为选择和设计粘结剂提供了理论依据。
     界面开裂作为一种典型的封装失效形式,极大地影响了电子封装的可靠性。本文采用分子动力学方法对受拉铜-SAM-环氧树脂的界面破坏进行了系统深入地研究。研究结果表明,树脂交联程度、温度及拉伸速率对受拉环氧树脂-铜界面可靠性影响较小;湿气进入会降低受拉体系的界面强度;高温条件下或湿气的进入都会降低含粘结剂受拉界面的强度;交联度增大加强了受拉铜-SAM-环氧树脂体系的界面可靠性。此外,通过比较铜-SAM-环氧树脂界面相互作用力随拉伸位移的变化趋势及界面破坏形态,揭示了含SAMA界面化学键为界面作用的主要因素,界面受拉过程中,因环氧树脂内部破坏而导致体系失效;含SAME界面间主要作用力为原子间非键力,界面受拉过程中,SAME中原子与环氧树脂原子距离逐渐增大,非键力逐渐减弱直至完全消失,界面失效。分子动力学模拟不仅为研究界面开裂失效这一复杂问题提供了新的方法,而且有助于从分子角度分析界面相互作用能变化的内在原因,对深刻理解界面的相互作用和界面开裂的内在机理具有重要意义。
Cross-linked epoxy resin is widely used as coatings, adhesives, composites, and so on inelectronics and aerospace industries because of the excellent thermal and mechanicalproperties. However, the weaker mechanical properties and interfacial delamination caused byexpansion and aging under hygrothermal conditions are also increasingly prominent. In thispaper, the molecular dynamics simulation was performed to study the mechanical propertiesof epoxy resin and the interface failure mechanism of epoxy-SAM-Cu considering the effectsof temperature, moisture content, cross-link conversion, strain rate and SAMs.
     Cross-linked epoxy resins exhibit much more complexity in molecular structure than thelinear homopolymers and copolymers,which poses significant difficulty to the experimentalcharacterization. In this regard, a new algorithm was thus developed for constructing themolecular model of polymeric network. Then the model was used to predict the thermal andmechanical properties. It was seen that glass transition temperatures, coefficients of thermaland moisture expansion, Young's modulus, bulk modulus, shear modulus and Poisson's ratioof the systems are in good agreement with experimental data. In addition, the simulationresults showed that the cross-link conversion, temperature and moisture content affect thethermal mechanical properties of epoxy resin significantly. So the effects of these factors areimportant to improve properties of epoxy resin.
     Molecular dynamics simulation was performed to study the moisture diffusion incross-linked epoxy resin, with the influence of temperature, water concentration and polymerconversion taken into account. The simulation results showed that the moisture diffusioncoefficients increase with the increase in the temperature. And generally, with the increasedmoisture concentration or decreased polymer conversion, the moisture diffusion coefficientsreduce. However, the moisture diffusion is strongly inhibited when the number of epoxygroups in completely reacted epoxy resins is equal to the number of water molecules.
     Molecular dynamics method was employed to investigate effects of moisture content,cross-link conversion, strain rate and temperature on the tensile and compressive deformationof epoxy resin. Simulation results showed that the compression performance of cross-linkedepoxy resin is better than its tensile performance. The mechanical properties of epoxy resindecrease obviously with increasing moisture content and temperature. However the highcross-link conversion and strain rate enhance the mechanical properties of resin. At roomtemperature, the Young's modulus of89%cross-linked epoxy resin is higher than that of non cross-linked resin about2-3GPa. This study obtained the mechanical properties at hightemperature and high strain rate and explained the deformation with the microscopicmolecular energy, providing a guide to the modification of epoxy resin.
     Due to poor adhesion, the Cu-epoxy interface under hot and humid conditions is a weakpart in electronics and aerospace industries. Molecular dynamics simulation was conducted toinvestigate the interfacial interaction energy of Cu-SAM-epoxy resin, which is widely used inelectronic packages, and the effects of temperature, moisture, crosslink conversion andoxidation degree. The results showed that interaction energy of Cu-SAM-epoxy resin isalmost independent of crosslink conversion of epoxy resin, while is weakened by increasingtemperature, moisture and oxidation. In addition, the simulation revealed that the covalentbonds between SAMA and epoxy enhance the interfacial adhesion of Cu-epoxy. However, thenon-bond interactions of SAME and epoxy resin weaken the interfacial adhesion. This paperprovided a new method for research and valuation the effects of SAM or other adhesive oninterfacial adhesion.
     Interfacial delamination is one of the typical failure modes in electronic packages. Toobtain good reliability of electronic packages, it is important to study the interface properties.Molecular dynamics simulations of opening mode loading of interfaces are proposed to studysuch interfaces resulting in traction-separation relations that have been used to characterizethe failure process of the interfaces. The results showed that the cross-link conversion,temperature and tensile rate have less effect on the strength of epoxy-Cu interface. But themoisture reduces the interface tensile strength. For the epoxy-SAM-Cu interface, both thehigh temperature and high moisture content reduce the tensile strength, while the highcross-link conversion increases interface reliability. In addition, the interaction force versusdisplacement curve and the interfacial failure mode for epoxy-SAM-Cu system showed thatthe covalent bonds are the main interaction force between cross-linked epoxy and SAMA,while the non-bond interaction is mainly for the interface of epoxy-SAME.
引文
[1]黄志雄,彭永利,秦岩等.热固性树脂复合材料及其应用[M].北京:化学工业出版社,2007
    [2] Nicholson J.W. The chemistry of polymers[M].北京:中国纺织出版社2005
    [3] Alder B., Wainwright T. Phase transition for a hard sphere system[J]. The Journal ofChemical Physics,1957,27(5):1208-1209
    [4]朱宇,陆小华,丁皓等.分子模拟在化工应用中的若干问题及思考[J].化工学报,2004,55(8):1213-1223
    [5] Westmoreland P.R., Kollman P.A., Chaka A.M., et al. Applications of molecular andmaterials modeling [M]. Baltimore; Loyola Coll Baltimore MD International TechologyResearch Inst.2002
    [6]马学军.分子模拟的原理及方法概述[J].科技信息,2009,19:99-99
    [7]樊康旗,贾建援.经典分子动力学模拟的主要技术[J].微纳电子技术,2005,3(2):133-138
    [8]文玉华,朱如曾,周富信等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73
    [9]张立红,张军.分子动力学模拟方法及其误差分析[J].青岛大学学报(自然科学版),2003,16(2):24-28
    [10] Beeman D. Some multistep methods for use in molecular dynamics calculations[J].Journal Of Computational Physics,1976,20(2):130-139
    [11] Gear C.W. Numerical initial value problems in ordinary differential equations[M]. NJ:Prentice Hall PTR,1971
    [12] Rahman A. Correlations in the motion of atoms in liquid Argon[J]. Physical Review,1964,136:405-411
    [13] Verlet L. Computer "experiments" on classical fluids. I. Thermodynamical properties ofLennard-Jones molecules[J]. Physical Review,1967,159(1):98-103
    [14] Swope W.C., Andersen H.C., Berens P.H., et al. A computer simulation method for thecalculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters[J]. The Journal of Chemical Physics,1982,76(1):637-649
    [15] Hockney R. The potential calculation and some applications[J]. Methods in Journal ofComputational Physics,1970,9:136-211
    [16] Frenkel D., Smit B.分子模拟:从算法到应用[M].北京:化学工业出版社,2002
    [17] Hoffmann K.H., Schreiber M. Computational physics: selected methods, simpleexercises, serious applications[M]. Berlin: Springer,1996
    [18] Berendsen H., Postma J., van Gunsteren W., et al. Molecular dynamics with coupling toan external bath[J]. Journal of Chemical Physics,1984,81(8):3684-3690
    [19] NOSE S. A unified formulation of the constant temperature molecular dynamicsmethods[J]. The Journal of Chemical Physics,1984,81(1):511-519
    [20] Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions[J]. PhysicalReview A,1985,31(3):1695-1702
    [21] Andersen H.C. Molecular dynamics simulations at constant pressure and/ortemperature[J]. Journal Of Chemical Physics,1980,72:2384-2393
    [22] Andersen H.C. RATTLE: A “Velocity” version of the SHAKE algorithm for moleculardynamics calculations[J]. Journal Of Computational Physics,1983,52(1):24-34
    [23]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007
    [24] Sun H. Ab initio calculations and force field development for computer simulation ofpolysilanes[J]. Macromolecules,1995,28(3):701-712
    [25] Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds[J]. Journal of PhysicalChemistry B,1998,102(38):7338-7364
    [26] Dauber‐Osguthorpe P., Roberts V.A., Osguthorpe D.J., et al. Structure and energetics ofligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system[J]. Proteins: Structure, Function, and Bioinformatics,1988,4(1):31-47
    [27] Mayo S.L., Olafson B.D., Goddard W.A. DREIDING: a generic force field for molecularsimulations[J]. Journal of Physical Chemistry,1990,94(26):8897-8909
    [28] Rappé A.K., Casewit C.J., Colwell K., et al. UFF, a full periodic table force field formolecular mechanics and molecular dynamics simulations[J]. Journal Of The AmericanChemical Society,1992,114(25):10024-10035
    [29] Rigby D., Sun H., Eichinger B. Computer simulations of poly (ethylene oxide): Forcefield, PVT diagram and cyclization behaviour[J]. Polymer International,1997,44(3):311-330
    [30] Tack J.L., Ford D.M. Thermodynamic and mechanical properties of epoxy resin DGEBFcrosslinked with DETDA by molecular dynamics[J]. Journal of Molecular Graphics andModelling,2008,26(8):1269-1275
    [31]吴超富.交联环氧树脂的分子模拟研究[D].长沙;湖南大学,2007
    [32] Bharadwaj R.K., Boyd R.H. Small molecule penetrant diffusion in aromatic polyesters: amolecular dynamics simulation study[J]. Polymer,1999,40(15):4229-4236
    [33] Henry D.J., Evans E., Yarovsky I. A molecular dynamics study of siloxane diffusion in apolyester-melamine solution[J]. Polymer,2007,48(7):2179-2185
    [34] Karanikas S., Economou I.G. Molecular simulation of structure, thermodynamic andtransport properties of polyacrylonitrile, polystyrene and their alternating copolymers inhigh temperatures[J]. European Polymer Journal,2011,47(4):735-745
    [35] Liu Q.L., Huang Y. Transport behavior of oxygen and nitrogen throughorganasilicon-containing polystyrenes by molecular simulation[J]. Journal of PhysicalChemistry B,2006,110(35):17375-17382
    [36] Lu C., Ni S., Chen W., et al. A molecular modeling study on small molecule gastransportation in poly (chloro-p-xylylene)[J]. Computational Materials Science,2010,49(1): S65-S69
    [37] Mozaffari F., Eslami H., Moghadasi J. Molecular dynamics simulation of diffusion andpermeation of gases in polystyrene[J]. Polymer,2010,51(1):300-307
    [38] Pavel D., Shanks R. Molecular dynamics simulation of diffusion of O2and CO2inblends of amorphous poly(ethylene terephthalate) and related polyesters[J]. Polymer,2005,46(16):6135-6147
    [39] Fensin S.J., Valone S.M., Cerreta E.K., et al. Effect of grain boundary structure on plasticdeformation during shock compression using molecular dynamics[J]. Modelling andSimulation In Materials Science and Engineering,2013,21(1):015011
    [40] Gautieri A., Buehler M.J., Redaelli A. Deformation rate controls elasticity and unfoldingpathway of single tropocollagen molecules[J]. Journal of the Mechanical Behavior ofBiomedical Materials,2009,2(2):130-137
    [41] Guenole J., Godet J., Brochard S. Deformation of silicon nanowires studied by moleculardynamics simulations[J]. Modelling and Simulation In Materials Science and Engineering,2011,19(7):1-15
    [42] Komanduri R., Chandrasekaran N., Raff L. Molecular dynamic simulations of uniaxialtension at nanoscale of semiconductor materials for micro-electro-mechanical systems(MEMS) applications[J]. Materials Science and Engineering A-structural MaterialsProperties Microst,2003,340(1):58-67
    [43]马孝松.微电子封装高聚物热、湿-机械特性及其封装可靠性研究[D];西安电子科技大学,2006
    [44]刘勇,梁利华,曲建民.微电子器件及封装的建模与仿真[M].科学出版社,2010
    [45] Dhatt G., Touzot G. Finite Element Method[M]. Hoboken: John Wiley&Sons,2012
    [46] Fraaije J., Van Vlimmeren B., Maurits N., et al. The dynamic mean-field densityfunctional method and its application to the mesoscopic dynamics of quenched blockcopolymer melts[J]. The Journal of Chemical Physics,1997,106(10):4260-4269
    [47] Maurits N., Zvelindovsky A., Sevink G., et al. Hydrodynamic effects inthree-dimensional microphase separation of block copolymers: Dynamic mean-fielddensity functional approach[J]. The Journal of Chemical Physics,1998,108:9150-9154
    [48] Zvelindovsky A., Sevink G., Van Vlimmeren B., et al. Three-dimensional mesoscaledynamics of block copolymers under shear: The dynamic density-functional approach[J].Physical Review E,1998,57(5):4879-4882
    [49] Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap betweenatomistic and mesoscopic simulation[J]. The Journal of Chemical Physics,1997,107(11):4423-4435
    [50] Hoogerbrugge P., Koelman J. Simulating microscopic hydrodynamic phenomena withdissipative particle dynamics[J]. EPL (Europhysics Letters),1992,19(3):155-160
    [51]赵伟超,宁荣昌.耐湿热高性能环氧树脂的研究进展[J].中国胶粘剂,2009,18(8):55-57
    [52] Lin Y.C., Chen X. Investigation of moisture diffusion in epoxy system: Experiments andmolecular dynamics simulations[J]. Chemical Physics Letters,2005,412(4-6):322-326
    [53] Fan H.B., Chan E.K.L., Wong C.K.Y., et al. Moisture diffusion study in electronicpackaging using molecular dynamic simulation[J]. Electronic Components andTechnology Conference,2006:1425-1428
    [54] Fan H.B., Chan E.K.L., Wong C.K.Y., et al. Investigation of moisture diffusion inelectronic packages by molecular dynamics simulation[J]. Journal of Adhesion Scienceand Technology,2006,20(16):1937-1947
    [55] Wu C., Xu W. Atomistic simulation study of absorbed water influence on structure andproperties of crosslinked epoxy resin [J]. Polymer,2007,48(18):5440-5448
    [56] Lee S.G., Jang S.S., Kim J., et al. Distribution and diffusion of water in model epoxymolding compound: molecular dynamics simulation approach[J]. IEEE Transactions OnAdvanced Packaging,2010,33(2):333-339
    [57] Wunderle B., Dermitzaki E., H lck O., et al. Molecular dynamics approach tostructure-property correlation in epoxy resins for therm-mechanical lifetime modeling[J].Microelectronics Reliability,2010,50(7):900-909
    [58] Chang S.-H., Kim H.-S. Investigation of hygroscopic properties in electronic packagesusing molecular dynamics simulation[J]. Polymer,2011,52(15):3437-3442
    [59] D m t r G., Hentschke R. Equilibrium Swelling of an Epoxy‐Resin in Contact withWater–A Molecular Dynamics Simulation Study[J]. Macromolecular Theory andSimulations,2004,13(6):506-511
    [60] Yarovasky I., Evans E. Computer simulation of structure and properties of crosslinkedpolymers: application to epoxy resins [J]. Polymer,2002,43(3):963-969
    [61] Mijovic J., Zhang H. Local dynamics and molecular origin of polymer network-waterinteractions as studied by broadband dielectric relaxation spectroscopy, FTIR, andmolecular simulations[J]. Macromolecules,2003,36(4):1279-1288
    [62] Mijovic J., Zhang H. Molecular dynamics simulation study of motions and interactionsof water in a polymer network[J]. The Journal of Physical Chemistry B,2004,108(8):2557-2563
    [63] Hamerton I., Heald C.R., Howlin B.J. Molecular modelling of the physical andmechanical properties of two polycyanurate network polymers[J]. Journal of MaterialsChemistry,1996,6(3):311-314
    [64] Hamerton I., Howlin B.J., Klewpatinond P., et al. Conformational studies ofpolycyanurates: a study of internal stress versus molecular structure[J]. Polymer,2002,43(17):4599-4604
    [65] Hamerton I., Howlin B.J., Klewpatinond P., et al. Developing predictive models forpolycyanurates through a comparative study of molecular simulation and empiricalthermo-mechanical data[J]. Polymer,2006,47(2):690-698
    [66] Fan H.B., Yuen M.M.F. Material properties of the cross-linked epoxy resin compoundpredicted by molecular dynamics simulation[J]. Polymer,2007,48(7):2174-2178
    [67] Varshney V., Patnaik S.S., Roy A.K., et al. A molecular dynamics study of epoxy-basednetworks: cross-linking procedure and prediction of molecular and material properties [J].Macromolecules,2008,41(18):6837-6842
    [68] Bermejo J.S., Ugarte C.M. Influence of cross-linking density on the glass transition andstructure of chemically cross-linked PVA: a molecular dynamics study [J].Macromolecular theory and simulations2009,18(6):317-327
    [69]Lan T., Pinnavaia T.J. Clay-reinforced epoxy nanocomposites[J]. Chemistry Of Materials,1994,6(12):2216-2219
    [70] Yang S., Qu J. Computing thermomechanical properties of crosslinked epoxy bymolecular dynamic simulations[J]. Polymer,2012,53(21):4806-4817
    [71] Li C., Strachan A. Molecular dynamics predictions of thermal and mechanical propertiesof thermoset polymer EPON862/DETDA[J]. Polymer,2011,52(13):2920-2928
    [72] Li C., Medvedev G.A., Lee E.-W., et al. Molecular dynamics simulations andexperimental studies of the thermomechanical response of an epoxy thermoset polymer[J].Polymer,2012:4222-4230
    [73] Khare K.S., Khare R. Directed Diffusion Approach for preparing atomistic models ofcrosslinked epoxy for use in molecular simulations[J]. Macromolecular Theory andSimulations,2012,21(5):322-327
    [74] Theodorou D.N., Suter U.W. Atomistic modeling of mechanical properties of polymericglasses[J]. Macromolecules,1986,19(1):139-154
    [75] Nouri N., Ziaei-Rad S. A molecular dynamics investigation on mechanical properties ofcross-linked polymer networks[J]. Macromolecules,2011,44(13):5481-5489
    [76] Clancy T.C., Frankland S.J.V., Hinkley J.A., et al. Molecular modeling for calculation ofmechanical properties of epoxies with moisture ingress[J]. Polymer,2009,50(12):2736-2742
    [77] Shenogina N.B., Tsige M., Patnaik S.S., et al. Molecular modeling approach toprediction of thermo-mechanical behavior of thermoset polymer networks[J].Macromolecules,2012,45(12):5307-5315
    [78] Moller J., Barr S., Schultz E., et al. Simulation of fracture nucleation in cross-linkedpolymer networks[J]. Jom,2013,65(2):147-167
    [79] Izumi A., Nakao T., Shibayama M. Atomistic molecular dynamics study of cross-linkedphenolic resins[J]. Soft Matter,2012,8(19):5283-5292
    [80] Yagyu H., Hirai Y., Uesugi A., et al. Simulation of mechanical properties of epoxy-basedchemically amplified resist by coarse-grained molecular dynamics[J]. Polymer,2012:
    [81] Sundararaghavan V., Kumar A. Molecular dynamics simulations of compressive yieldingin cross–linked epoxies in the context of Argon theory[J]. International Journal OfPlasticity,2013,47:111-125
    [82] Natarajan U., Misra S., Mattice W.L. Atomistic simulation of polymer-polymerinterface:interfacial energy and work of adhesion[J]. Computational and TheoreticalPolymer Science,1998,8:323-329
    [83] Natarajan U., Tanaka G., Mattice W.L. Atomistic simulations of the surfaces of thin filmsof random copolymers[J]. Journal of Compter-Aided Materials Design,1997,4:193-205
    [84] Clancy T., Mattice W. Computer simulation of polyolefin interfaces[J]. Computationaland Theoretical Polymer Science,1999,9(3):261-270
    [85] Deng M., Tan V., Tay T. Atomistic modeling: interfacial diffusion and adhesion ofpolycarbonate and silanes[J]. Polymer,2004,45(18):6399-6407
    [86] Aabloo A., Klintenberg M., Thomas J.O. Molecular dynamics simulation of apolymer–inorganic interface[J]. Electrochimica Acta,2000,45(8):1425-1429
    [87] Prathab B., Subramanian V., Aminabhavi T. Molecular dynamics simulations toinvestigate polymer–polymer and polymer–metal oxide interactions[J]. Polymer,2007,48(1):409-416
    [88] Okada O., Oka K., Kuwajima S., et al. Molecular simulation of an amorphous poly(methyl methacrylate)–poly (tetrafluoroethylene) interface[J]. Computational andTheoretical Polymer Science,2000,10(3):371-381
    [89] Wong C., Fan H., Yuen M. Investigation of adhesion properties of Cu-EMC interface bymolecular dynamic simulation; proceedings of the Thermal, Mechanical andMulti-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems,2005EuroSimE2005Proceedings of the6th International Conference on, F,2005[C].IEEE
    [90] Fan H.B., Chan E.K., Wong C.K., et al. Molecular dynamics simulation of thermalcycling test in electronic packaging[J]. Journal Of Electronic Packaging,2007,129(1):35-40
    [91] Wong C.K., Fan H., Yuen M.M. Interfacial adhesion study for SAM induced covalentbonded copper-EMC interface by molecular dynamics simulation[J]. Components andPackaging Technologies, IEEE Transactions on,2008,31(2):297-308
    [92] Fan H., Yuen M. A multiscale method to predict delamination in Cu-epoxy systems inelectronic packages; proceedings of the Electronic Components and TechnologyConference,2009ECTC200959th, F,2009[C]. IEEE
    [93] Wong C., Fan H., Zhang G., et al. Molecular design of reliable epoxy-copper interfaceusing molecular dynamic simulation; proceedings of the Thermal, Mechanical&Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems(EuroSimE),201011th International Conference on, F,2010[C]. IEEE
    [94] Yang S., Gao F., Qu J. Modeling of separation behavior of epoxy/Cu interface usingmolecular dynamics simulation[J]. Electronic Components and Technology Conference(ECTC),2011IEEE61st,2011:1110-1114
    [95] Kisin S., Bozovic Vukic J., van der Varst P.G.T., et al. Estimating the polymer-metalwork of adhesion from molecular dynamics simulations[J]. Chemistry Of Materials,2007,19(4):903-907
    [96] Youssefian S., Rahbar N. Nano-scale adhesion in multilayered drug eluting stents[J].Journal of the Mechanical Behavior of Biomedical Materials,2013,18:1-11
    [97] Zhou S.Q., Cheng X.C., Jin Y.L., et al. Molecular dynamics simulation on interactingand mechanical properties of polylactic acid and attapulgite (100) surface[J]. Journal OfApplied Polymer Science,2013,128(5):3043-3049
    [98] Yiapanis G., Henry D.J., Maclaughlin S., et al. Effect of substrate on the mechanicalresponse and adhesion of PEGylated surfaces: insights from all-atom simulations[J].Langmuir,2012,28(50):17263-17272
    [99] Cheng H.-C., Hsu Y.-C., Wu C.-H., et al. Molecular dynamics study of interfacialbonding strength of self-assembled monolayer-coated Au-epoxy and Au–Au systems[J].Applied Surface Science,2011,257(20):8665-8674
    [100] Qiang L., Li Z., Zhao T., et al. Atomic-scale interactions of the interface betweenchitosan and Fe3O4[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2012,419:125-132
    [101] Zhang X., Du L., Xu Z. The effect of soft bake on adhesion property between SU‐8photoresist and Ni substrate by molecular dynamics simulation[J]. Journal Of AppliedPolymer Science,2013,127(6):4456-4462
    [102] Youssefian S., Rahbar N. Nano-scale adhesion in multilayered drug eluting stents[J].Journal of the Mechanical Behavior of Biomedical Materials,2012,18:1-11
    [103] Hadden C., Jensen B., Bandyopadhyay A., et al. Molecular modeling ofEPON-862/graphite composites: Interfacial characteristics for multiple crosslinkdensities[J]. Composites Science and Technology,2013,76:92-99
    [104] Chen Y., Chia J.Y.H., Su Z.C., et al. Mechanical characterization of interfaces inepoxy-clay nanocomposites by molecular simulations[J]. Polymer,2013,54:766-773
    [105] Zhou Y., Pervin F., Lewis L., et al. Experimental study on the thermal and mechanicalproperties of multi-walled carbon nanotube-reinforced epoxy[J]. Materials Science andEngineering: A,2007,452:657-664
    [106] Shen L., Wang L., Liu T., et al. Nanoindentation and morphological studies of epoxynanocomposites[J]. Macromolecular Materials and Engineering,2006,291(11):1358-1366
    [107] Jansen B., Tamminga K., Meijer H., et al. Preparation of thermoset rubbery epoxyparticles as novel toughening modifiers for glassy epoxy resins[J]. Polymer,1999,40(20):5601-5607
    [108] Oral I., Guzel H., Ahmetli G. Determining the mechanical properties of epoxy resin(DGEBA) composites by ultrasonic velocity measurement[J]. Journal Of Applied PolymerScience,2013,127(3):1667-1675
    [109] Jansen K., Wang L., Yang D., et al. Constitutive modeling of moulding compounds
    [electronic packaging applications]; proceedings of the Electronic Components andTechnology Conference,2004Proceedings54th, F,2004[C]. IEEE
    [110] RichardáHeald C. Molecular modelling of the physical and mechanical properties oftwo polycyanurate network polymers[J]. Journal Of Materials Chemistry,1996,6(3):311-314
    [111] Hay J., Jones J., Webb G. Molecular modelling of interactions at the compositeinterfaces between electrolytically surface-treated carbon fibre and epoxy resin[J]. JournalOf Materials Chemistry,1997,7(1):169-174
    [112] Morel E., Bellenger V., Bocquet M., et al. Structure-properties relationships for denselycross-linked epoxide-amine systems based on epoxide or amine mixtures[J]. Journal OfMaterials Science,1989,24(1):69-75
    [113] Ellis B., Found M., Bell J. Influence of cure treatment on extent of reaction and glassymodulus for BADGE‐DDM epoxy resin[J]. Journal Of Applied Polymer Science,2001,82(5):1265-1276
    [114] Pascault J.-P., Sautereau H., Verdu J., et al. Thermosetting polymers[M]. Boca RatonCRC Press,2002
    [115] Marks M.J., Snelgrove R.V. Effect of conversion on the structure-property relationshipsof amine-cured epoxy thermosets[J]. ACS applied materials&interfaces,2009,1(4):921-926
    [116] Wu C., Xu W. Atomistic molecular modelling of crosslinked epoxy resin[J]. Polymer,2006,47(16):6004-6009
    [117]丁遗福,李华,刘墨君等.吸水过程对环氧树脂的动态松弛行为的影响[J].高等学校化学学报,2002,23(5):965-969
    [118] Zhou J., Lucas J.P. Hygrothermal effects of epoxyresin. Part II: variations of glasstransition temperature[J]. Polymer,1999,40(20):5513-5522
    [119] Zhou J., Lucas J.P. Hygrothermal effects of epoxy resin. Part I: the nature of water inepoxy[J]. Polymer,1999,40(20):5505-5512
    [120] Musto P., Ragosta G., Mascia L. Vibrational spectroscopy evidence for the dual natureof water sorbed into epoxy resins[J]. Chemistry Of Materials,2000,12(5):1331-1341
    [121] Weir M.D., Bastide C., Sung C.S.P. Characterization of interaction of water in epoxy byUV reflection spectroscopy[J]. Macromolecules,2001,34(14):4923-4926
    [122] Xiao G., Shanahan M. Swelling of DGEBA/DDA epoxy resin during hygrothermalageing[J]. Polymer,1998,39(14):3253-3260
    [123] Krakovsky I., Ple til J., Almásy L. Structure and swelling behaviour of hydrophilicepoxy networks investigated by SANS[J]. Polymer,2006,47(1):218-226
    [124] Lettieri M., Frigione M. Effects of humid environment on thermal and mechanicalproperties of a cold-curing structural epoxy adhesive[J]. Construction and BuildingMaterials,2012,30:753-760
    [125] Sindt O., Perez J., Gerard J. Molecular architecture-mechanical behaviour relationshipsin epoxy networks[J]. Polymer,1996,37(14):2989-2997
    [126] Boyce M.C., Parks D.M., Argon A.S. Large inelastic deformation of glassy polymers. I.Rate dependent constitutive model[J]. Mechanics Of Materials,1988,7(1):15-33
    [127] Heinz S.R., Wiggins J.S. Uniaxial compression analysis of glassy polymer networksusing digital image correlation[J]. Polymer Testing,2010,29(8):925-932
    [128] Ta demirci A., Yüksel S., Karsu D., et al. Diatom frustule-filled epoxy: Experimentaland numerical study of the quasi-static and high strain rate compression behavior[J].Materials Science and Engineering: A,2008,480(1):373-382
    [129] Leung S., Lam D., Luo S., et al. The role of water in delamination in electronicpackages: degradation of interfacial adhesion[J]. Journal of Adhesion Science andTechnology,2004,18(10):1103-1121
    [130] Lau D., Büyük ztürk O. Fracture characterization of concrete/epoxy interface affectedby moisture[J]. Mechanics Of Materials,2010,42(12):1031-1042
    [131] Yi S., Yue C.Y., Hsieh J.H., et al. Effects of oxidation and plasma cleaning on theadhesion strength of molding compounds to copper leadframes[J]. Journal Of AdhesionScience and Technology,1999,13(7):789-804
    [132] Lee H.Y., Qu J. Microstructure, adhesion strength and failure path at apolymer/roughened metal interface[J]. Journal Of Adhesion Science and Technology,2003,17(2):195-215
    [133]杨生荣,任嗣利,张俊彦等.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报,2001,22(3):470-476
    [134] Ulman A. Formation and structure of self-assembled monolayers[J]. Chemical Reviews,1996,96(4):1533-1554
    [135] Sellers H., Ulman A., Shnidman Y., et al. Structure and binding of alkanethiolates ongold and silver surfaces: implications for self-assembled monolayers[J]. Journal Of TheAmerican Chemical Society,1993,115(21):9389-9401
    [136] Materials Studio,2013, Accelrys, Inc. http://www.accelrys.com/products/mstudio/
    [137] Wong E.H., Rajoo R., Koh S.W., et al. The mechanics and impact of hygroscopicswelling of polymeric materials in electronic packaging[J]. Journal of ElectronicPackaging,2002,124(2):122-126
    [138] Tsai D. The virial theorem and stress calculation in molecular dynamics[J]. Journal OfChemical Physics,1979,70:1375-1382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700