用户名: 密码: 验证码:
直接用于轮胎设计的稳态滚动温度场及滚动阻力求解策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由粘性损耗引起的轮胎稳态滚动温度场(包括滚动阻力)是控制轮胎整体性能的关键因素之一,且轮胎滚动温度场是一个非常复杂的热力耦合问题,因此轮胎滚动温度场分析是轮胎学术界和工程界长期关注的一个具有挑战性的应用基础问题;尽管对此问题已进行了较长期的大量研究,并在近期由本课题组形成了较为完整的以“双向解耦”迭代算法为基础的求解策略(简称非直接策略),但该求解策略依赖于轮胎温度场的计算和表面温度场的测试,不可直接用于轮胎设计。本文以形成可靠有效的可直接用于轮胎设计的稳态滚动温度场及滚动阻力求解策略(简称直接策略)为目的,开展了一系列相关的工作。
     提出了一个采用红外热像仪三方向测量滚动轮胎外表面温度场的方法,以及一个消除测试偏差的修正方法。该方法首先采用余弦四次方定律对测试结果进行了与辐射入射角α相关的修正。然后依据轮胎外表面任意点温度的同一性(即与观测方向无关)进行了与β(即表面点的入射方向与其法向的夹角)相关的进一步修正,并给出了一个轮胎外表面发射率与β的经验关系;进而形成了一个双角度(α和β)修正函数以及测试温度的修正公式。成功研制了一个滚动轮胎内表面和内腔温度场的KTWTS无线测试系统,并得到了有效的测试结果。依据ISO28580标准采用MTS滚动阻力试验机测量得到了轮胎稳态滚动阻力。上述滚动轮胎内外表面和内腔温度场以及轮胎滚动阻力的测试结果为本文求解策略的验证奠定了坚实的实验基础。
     基于粘弹谱仪的轮胎胶料粘弹特性静应变相关性的实验研究,首次较充分地揭示了Payne效应与静应变的相关性。基于实验结果,本文提出了一个同时计及轮胎胶料复模量的动应变、温度和静应变相关性的修正的Kraus模型。该模型能较好地表征轮胎胶料复模量的动应变、温度和静应变相关性。
     选取了RNG k-ε湍流模型,然后采用Fluent软件建立了相应的数值模型,从而求解得到了轮胎在不同运行速度下稳态滚动时内腔及外部空气的速度场和温度场,进而计算得到了轮胎内外表面上的对流换热系数分布。采用轮胎内表面的实测温度分布作为设定的壁面温度边界条件,计算得到的轮胎内腔温度分布与实测值十分吻合,这表明所采用的计算模型是有效可靠的,也即本文基于Fluent软件求解得到的轮胎内外表面对流换热系数是正确的。这意味着本文提出的Fluent求解策略可直接用于轮胎设计阶段的温度场及滚动阻力分析;这将轮胎滚动温度场和滚动阻力求解策略的研究提升到一个新的发展阶段。
     将同时计及轮胎胶料复模量的动应变、温度和静应变相关性的修正的Kraus模型以及由Fluent求解策略确定的滚动轮胎热边界条件引入到非直接策略中,由此得到了可直接用于轮胎设计的稳态滚动温度场和滚动阻力的求解策略。两种策略得到的轮胎稳态温度场以及滚动阻力计算结果与相关实测结果的对比表明,本文提出的直接策略是可靠有效的,且显著提高了轮胎温度场及滚动阻力的计算精度(与非直接策略的计算结果比较)。还表明损耗模型对轮胎滚动阻力有显著影响,而热边界条件则对轮胎温度场有显著影响。基于直接策略,分析计算了不同工况下的轮胎稳态温度场和滚动阻力。结果表明,轮胎内部稳态温度随速度增大而升高,轮胎稳态滚动阻力则随速度增加而减小;还表明轮胎内部稳态温度随载荷增大而升高,轮胎稳态滚动阻力随载荷增大而增加。
The steady temperature field (as well as rolling resistance) due to the viscous dissipation in a rolling tire plays a key role in controlling the overall tire performance. However, the analysis of temperature field in a rolling tire is a very complex thermo-mechanical problem. Therefore obtaining the accurate temperature field in a rolling tire is a basic but challenging problem which attracts the long-term attention in the academic and engineering field of tire.Many researchers have studied on this problem for several decades and recently a relatively complete solving strategy (named non-direct strategy) based on the two-way iterative approach was established by our research group.However, this solving strategy depends on the calculation of tire temperature field and the test of surface temperature distribution, thereby it cannot be used for tire design directly. Aimed to establish a reliable and effective solving strategy (named direct strategy) of steady tire temperature field as well as rolling resistance which can be used for tire design directly, a series of studies are carried out in this dissertation.
     With the aid of infrared thermal imager, a method to measure the outer surface temperature field in a rolling tire from three directions is presented. On this basis,a correction procedure for eliminating the measurement deviation is given. Firstly, the measurement deviation related to the radiative incident angle (a) of the surface point is corrected based on the cosine-fourth law. Then the measurement deviation related to the angle between the direction of incidence and the normal at the point (β) is corrected according to the identity of the temperature at an arbitrary surface point. And an empirical relationship between the surface emissivity and β is derived. Finally, the Dual-angle (α and β) correction function and the corresponding temperature correction formula are derived. The measured temperatures in different directions for the same tire surface tend to be the same after correction, thus the accurate outer surface temperature field is obtained. A wireless testing system (KTWTS) for the inner surface and the contained air temperature field is developed and necessary calibration is conducted. Then the tire inner surface and contained air temperature field at different speed is obtained by this system. Based on MTS rolling resistance testing machine, the tire steady rolling resistance is obtained according to the ISO28580standard. The above-mentioned test results of surface and contained air temperature field, as well as the tire rolling resistance, provide the solid foundation for the verification of the solving strategy proposed in this dissertation.
     The experimental study on the prestrain dependence of the viscoelastic properties for tire rubbers, by means of Dynamic Mechanical Thermal Analyzer (DMTA), reveals the correlation of the Payne effect and prestrain relative fully for the first time. A modified Kraus model to characterize the dynamic strain, temperature and prestrain dependence of dynamic modulus for tire rubbers is presented based on the work of Wu Fuqi. The modified Kraus model is able to characterize the dynamic strain dependence, temperature dependence and prestrain dependence of dynamic modulus for tire rubbers accurately.
     The RNG k-ε turbulence model is selected, and the corresponding numerical model is established by means of Fluent software. The velocity and temperature field of the contained air and the ambient air for a steady rolling tire at different speed are then obtained; furthermore the convective heat transfer coefficients on the inner and outer tire surface are calculated. The calculated temperature distribution of the tire contained air agree the test results well, provided the wall temperature boundary condition is set to be the test results of the inner tire surface temperature distribution. This indicates the adopted physical and numerical models are reliable and effective, and also demonstrates the obtained convective heat transfer coefficients on the inner and outer tire surface are correct. The presented solving strategy of the convective heat transfer coefficients based on Fluent software, can be applied to the tire design directly.
     Taking into consideration the above new modified Kraus model and new thermal boundary conditions together, the direct solving strategy of steady temperature field as well as rolling resistance in a rolling tire for tire design is thus established based on the non-direct solving strategy. The comparisons between the calculated results of the surface temperature field and rolling resistance by two strategy and the corresponding test results, indicate the direct strategy is more reliable, effective and accurate. The comparisons also indicate different dynamic modulus models have a significant influence on the tire rolling resistance, while different thermal boundary conditions
     have a significant influence on the tire temperature field. Finally, the steady tire temperature field and rolling resistance under different working conditions are calculated based on the direct solving strategy. The results indicate the steady tire temperatures increase, while the steady tire rolling resistance decreases with the increase of the tire speed. The results also indicate the steady tire temperatures increase, and the steady tire rolling resistance increase with the increase of the tire load.
引文
[1]吴福麒.2009.轮胎稳态滚动温度场的有限元分析[D]:[博士].合肥:中国科学技术大学.
    [2]庄继德.2001.现代汽车轮胎技术[M].北京:北京理工大学出版社.
    [3]Gehman S D.1967. Heat Transfer in Processing and Use of Rubber[J]. Rubber Chemistry and Technology,40(2):36-99.
    [4]Mars W V, Fatemi A.2004. Factors That Affect the Fatigue Life of Rubber:A Literature Survey[J]. Rubber Chemistry and Technology,77(3):391-412.
    [5]Beatty J.1964. Fatigue of Rubber[J]. Rubber Chemistry and Technology,37(5):1341-1364.
    [6]Jamshidi M, Afshar F, Shamayeli B.2006. Evaluation of Cord/Rubber Adhesion By a New Fatigue Test Method[J]. Journal of Applied Polymer Science,101(4):2488-2494.
    [7]Clark S K.1986. Loss of Adhesion of Cord-Rubber Composites in Aircraft Tires[J]. Tire Science and Technology,14(1):33-43.
    [8]Brenner F, Mandel J, Simson B.1969. Research for a Uniform Quality Grading System for Tires. Ⅱ. Wheel Speed Capability Test[J]. Rubber Chemistry and Technology,42(5): 1450-1461.
    [9]Willett P R.1974. Heat Generation in Tires Due to the Viscoelastic Properties of Elastomeric Components[J]. Rubber Chemistry and Technology,47(2):363-375.
    [10]Conant F S.1971. Tire Temperature[J]. Rubber Chemistry and Technology,44(2):397-439.
    [11]Kainradl P, Kaufmann G.1976. Heat Generation in Pneumatic Tires[J]. Rubber Chemistry and Technology,49(3):823-861.
    [12]Grosch K A.2008. Rubber Abrasion and Tire Wear[J]. Rubber Chemistry and Technology, 81(3):470-505.
    [13]Hofstetter K, Grohs C, Eberhardsteiner J, Mang H A.2006. Sliding Behaviour of Simplified Tire Tread Patterns Investigated by Means of FEM[J]. Computers and Strustures,84(17-18): 1151-1163.
    [14]Hall D E, Moreland J C.2001. Fundamentals of Rolling Resistance[J]. Rubber Chemistry and Technology,74(3):525-539.
    [15]Schuring D J, Futamura S.1990. Rolling Loss of Pneumatic Highway Tires in the Eighties[J]. Rubber Chemistry and Technology,63(3):315-367.
    [16]Trivisonno N M.1970. Thermal Analysis of a Rolling Tire[J]. Society of Automotive Engineers, Paper700474:336-341.
    [17]Whicker D, Browne A L, Segalman D J, et al.1981. A Thermomechanical Approach to Tire Power Loss Modeling[J]. Tire Science and Technology,9(1-4):3-18.
    [18]Whicker D, Rohde S M.1981. Modeling Tire Deformation for Power Loss Calculations[J]. Society of Automotive Engineers, Paper810161:667-672.
    [19]Segalman D J.1981. Modeling Tire Energy Dissipation for Power Loss Calculations[J]. Society of Automotive Engineers, Paper810162:673-682.
    [20]Browne A L, Arambages A.1981. Modeling the Thermal State of Tires for Powers Loss Calculations[J]. Society of Automotive Engineers, Paper810163:683-694.
    [21]Whicker D, Browne A L, Segalman D J.1981. The Structure and Use of the GMR Combined Thermo-Mechanical Tire Power Loss Model[J]. Society of Automotive Engineers, Paper810164:695-704.
    [22]Clark S K, Dodge R N.1982. Heat Generation in Aircraft Tires Under Free Rolling Conditions[R]. NASA Contractor Report 3629.
    [23]Sarkar K, Kwon Y D, Prevorsek D C.1987. A New Approach for the Thermomechanical Analysis of Tires by the Finite Element Method[J]. Tire Science and Technology,15(4): 261-275.
    [24]Yavayi B, Tworzydlo W W, Bass J M.1993. A Thermomechanical Model to Predict the Temperature Distribution of Steady State Rolling Tires[J]. Tire Science and Technology, 21(3):163-178.
    [25]Oh B S, Kim Y N, Kim N J, et al.1995. Internal Temperature Distribution in a Rolling Tire[J]. Tire Science and Technology,23(1):11-25.
    [26]Mc Allen J, Cuitino A M, Sernas V.1996. Numerical Investigation of the Deformation Characteristics and Heat Generation in Pneumatic Aircraft Tires, Part Ⅱ:Thermal Modeling[J]. Finite Elements in Analysis and Design,23(2-4):265-290.
    [27]Park H C, Youn S-K, Song T S, et al.1997. Analysis of Temperature Distribution in a Rolling Tire Due to Strain Energy Dissipation[J]. Tire Science and Technology,25(3):214-228.
    [28]危银涛.1997.轮胎热力学分析及耐久性评价[D]:[博士].哈尔滨:哈尔滨工业大学.
    [29]Ebbott T G, Hohman R L, Jeusette J-P, et al.1999. Tire Temperature and Rolling Resistance Prediction with Finite Element Analysis[J]. Tire Science and Technology,27(1):2-21.
    [30]Futamura S, Goldstein A.2004. A Simple Method of Handling Thermomechanical Coupling for Temperature Computation in a Rolling Tire[J]. Tire Science and Technology,32(2): 56-68.
    [31]Lin Y J, Hwang S J.2004. Temperature Prediction of Rolling Tires by Computer Simulation[J]. Mathematics and Computers in Simulation,67(3):235-249.
    [32]Narasimha Rao K V, Krishna K R, Bohara P C, et al.2006. A Finite Element Algorithm for the Prediction of Steady-State Temperatures of Rolling Tires[J]. Tire Science and Technology, 34(3):195-214.
    [33]Terziyski J, Kennedy R.2009. Accuracy, Sensitivity, and Correlation of FEA-Computed Coastdown Rolling Resistance[J]. Tire Science and Technology,37(1):4-31.
    [34]Clark J D, Schuring D J.1988. Load, Speed and Inflation Pressure Effects on Rolling Loss Distribution in Automobile Tires[J]. Tire Science and Technology,16(2):78-95.
    [35]Kreith F.1968. Convection Heat Transfer in Rotating Systems[J]. Advances in Heat Transfer, 5:129-251.
    [36]FLUENT, Inc.2007. FLUENT 6.3 User's Guide.
    [37]杨挺青,罗文波,徐平等.2004.黏弹性理论与应用[M].北京:科学出版社.
    [38]Christensen R M.1982. Theory of Viscoelasticity:An Introduction[M]. New York:Academic Press.
    [39]Sawant S, Muliana A.2008. A Thermo-Mechanical Viscoelastic Analysis of Orthotropic Materials[J]. Composite Structures,83:61-72.
    [40]Jung G D, Youn S K, Kim B K.2000. A Three-Dimensional Nonlinear Viscoelastic Constitutive Model of Solid Propellant[J]. International Journal of Solids and Structures,37: 4715-4732.
    [41]Le Tallec P, Rahier C.1994. Numerical Models of Steady Rolling for Non-Linear Viscoelastic Structures in Finite Deformations[J]. International Journal for Numerical Methods in Engineering,37(7):1159-1186.
    [42]Nakajima Y, Padovan J.1987. Finite Element Analysis of Steady and Transiently Moving/Rolling Nonlinear Viscoelastic Structure. III. Impact/Contact Simulations[J]. Computers and Structures,27(2):275-286.
    [43]Heinrich G, Kliippel M.2002. Recent Advances in the Theory of Filler Networking in Elastomers[J]. Advances in Polymer Science,160:1-44.
    [44]Fletcher W P, Gent A N.1957. Dynamic Shear Properties of Some Rubber-Like Materials[J]. British Journal of Applied Physics,8(5):194-201.
    [45]Payne A R.1960. A Note on the Existence of a Yield Point in the Dynamic Modulus of Loaded Vulcanizates[J]. Journal of Applied Polymer Science,3(7):127.
    [46]Payne A R.1961. Dynamic Mechanical Properties of Filler Loaded Vulcanisates[J]. Rubber and Plastic Age,42(8):963-965+967.
    [47]Payne A R.1962. The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates. Journal of Applied Polymer Science,6(19):57-63.
    [48]Payne A R.1963. Dynamic Properties of Heat-Treated Butyl Vulcanizates. Journal of Applied Polymer Science,7(3):873-885.
    [49]Voet A, Morawski J C.1974. Dynamic Mechanical and Electrical Properties of Vulcanizates at Elongations up to Sample Rupture[J]. Rubber Chemistry and Technology,47(4):765-777.
    [50]Kraus G.1978. Reinforcement of Elastomers by Carbon Black[J]. Rubber Chemistry and Technology,51(2):297-321.
    [51]Medalia A I.1978. Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates[J]. Rubber Chemistry and Technology,51(3):437-523.
    [52]李炜.2003.子午线轮胎结构有限元分析和设计原理的若干问题研究[D]:[博士].合肥:中国科学技术大学.
    [53]李兵.2008.计及复杂胎面花纹的子午线轮胎结构有限元分析[D]:[博士].合肥:中国科学技术大学.
    [54]Willett P R.1973. Hysteretic Losses in Rolling Tires[J]. Rubber Chemistry and Technology, 46(2):425-441.
    [55]Clark S K.1981. Mechanics of Pneumatic Tires[M]. US Department of Transportation, Washington, DC.
    [56]Popov A A, Cole D J, Cebon D and Winkler C B.1999. Energy loss in Truck Tires and Suspensions[J]. Vehicle System Dynamics Supplement,33:516-527.
    [57]Lion A.1998. Thixotropic Behaviour of Rubber Under Dynamic Loading Histories: Experiments and Theory[J]. Journal of the Mechanics and Physics Solids,46(5):895-930.
    [58]Lion A, Kardelky C.2004. The Payne Effect in Finite Viscoelasticity Constitutive Modelling Based on Fractional Derivatives and Intrinsic Time Scales[J]. International Journal of Plasticity,20(7):1313-1345.
    [59]Dutta N K, Tripathy D K.1992. Effects of Types of Fillers on the Molecular Relaxation Characteristics, Dynamic Mechanical, and Physical Properties of Rubber Vulcanizates[J]. Journal of Applied Polymer Science,44(9):1635-1648.
    [60]Wang M J.1998. Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates[J]. Rubber Chemistry and Technology,71(3):520-589.
    [61]Aklonis J J, MacKnight W J.1983. Introduction to Polymer Viscoelasticity[M]. New York: John Wiley and Sons.
    [62]Wei Y T, Nasdala L, Rothert H and Xie Z.2004. Experimental Investigations on the Dynamic Mechanical Porperties of Aged Rubbers[J]. Polymer Testing,23:447-453.
    [63]Kraus G.1984. Mechanical Losses in Carbon-Black-Filled Rubbers[J]. Journal of Applied Polymer Science:Applied Polymer Symposium,39:75-92.
    [64]Ulmer J D.1996. Strain Dependence of Dynamic Mechanical Properties of Carbon Black-Filled Rubber Compounds[J]. Rubber Chemistry and Technology,69(1):15-47.
    [65]Lion A, Retka J and Rendek M.2009. On the Calculation of Predeformation-dependent Dynamic Modulus Tensors in Finite Nonlinear Viscoelasticity [J]. Mechanics Research Communications,36:653-658.
    [66]Suphadon N, Thomas A G and Busfield J J C.2009. Viscoelastic Behavior of Rubber under a Complex Loading[J]. Journal of Applied Polymer Science,113:693-699.
    [67]Suphadon N, Thomas A G and Busfield J J C.2010. The Viscoelastic Behavior of Rubber under a Complex Loading Ⅱ The Effect Large Strains and the Incorporation of Carbon Black[J]. Journal of Applied Polymer Science,117:1290-1297.
    [68]Suphadon N, Busfield J J C.2011. The Dynamic Properties of Fumed Silica Filled SBR as Function of Pre-strain[J]. Polymer Testing,30:779-783.
    [69]Thorin A, Azoug A and Constantinescu A.2012. Influence of Prestrain on Mechanical Properties of Highly-filled Elastomers:Measurements and Modeling[J]. Polymer Testing,31: 978-986.
    [70]Yin H S, Hu Y S, Zhang H, et al.2006. Truck Tire Thermal-Mechanical FEA and DMA with Application to Endurance Evaluation[J]. Tire Science and Technology,34(4):220-236.
    [71]李杰,王庆年,赵子亮等.2003.高速滚动汽车轮胎稳态温度场分布的数值研究[J].汽车工程,25(3):256-259.
    [72]宋君萍,刘丽,马连湘.2006.滚动轮胎稳态温度场的有限元计算[J].橡胶工业,53(3):161-165.
    [73]Cooper M G, Mikic B B, Yovanovich M M.1969. Thermal Contact Conductance[J]. International Journal of Heat and Mass Transfer,12(3):279-300.
    [74]Mikic B B.1974. Thermal Contact Conductance:Theoretical Considerations[J]. International Journal of Heat and Mass Transfer,17(2):205-214.
    [75]Ozisik M N.1977. Basic Heat Transfer[M]. New York:McGraw-Hill.
    [76]赵镇南.2008.传热学[M].北京:高等教育出版社.
    [77]Incropera F P, DeWitt D P, Bergman T L and Lavine A S.2006. Fundamentals of Heat and Mass Transfer[M]. New York:Wiley.
    [78]马连湘.2001.滚动轮胎温度场的理论与实验研究[D]:[博士].武汉:华中科技大学.
    [79]Raichle D R.1978. The Heating of Pneumatic Tires and Dissipation in a Voigt Viscoelastic Shell with Internal Pressure[D]. Princeton University, Ph.D. Thesis.
    [80]Cobb E C, Saunders O A.1956. Heat Transfer From a Rotating Disk[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,236(1206): 343-351.
    [81]Popiel Cz O, Boguslawski L.1975. Local Heat-Transfer Coefficients on the Rotating Disk in Still Air[J]. International Journal of Heat and Mass Transfer,18(1):167-170.
    [82]Kreith F, Taylor J H, Chong J P.1959. Heat and Mass Transfer From a Rotating Disk[J]. Journal of Heat Transfer,81(2):95-105.
    [83]Ong C L, Owen J M.1991. Computation of the Flow and Heat Transfer Due to a Rotating Disc[J]. International Journal of Heat and Flow,12(2):106-115.
    [84]Tien C L, Campbell D T.1963. Heat and Mass Transfer From Rotating Cones[J]. Journal of Fluid Mechanics,17(1):105-112.
    [85]Tien C L.1965. Heat Transfer by the Induced Flow About a Rotating Cone of Non-Uniform Surface Temperature[J]. International Journal of Heat and Mass Transfer,8(3):411-418.
    [86]Hayday A A.1965. On Heat Transfer From Isothermal and Nonisothermal Spinning Bodies of Revolution[J]. Transactions of the ASME, Series C. Journal of Heat Transfer,87(4): 445-452.
    [87]王晓军.2004.子午线轮胎温度场有限元分析与测试[D]:[硕士].合肥:中国科学技术大学.
    [88]Neale A, Derome D, Blocken B and Carmeliet J.2007. Determination of Surface Convective Heat Transfer Coefficients by CFD[J].11th Canadian Conference on Building Science and Technology, Banff, Alberta.
    [89]Defraeye T, Blocken B and Carmeliet J.2009. CFD Analysis of Convective Heat Transfer Coefficients on the Exterior Surfaces of a Cubic Building[J]. The Seventh International Conference on Urban Climate, Yokohama, Japan.
    [90]Rout S K, Mishra D P, Thatoi D N and Acharya A K.2012. Numerical Analysis of Mixed Convection through an Internally Finned Tube[J]. Advances in Mechanical Engineering, Volume 2012, Article ID 918342,10 pages, http://dx.doi.org/10.1155/2012/918342.
    [91]Buchlin J M, Gouriet J B, Planquart P, Beeck J V and Renard M.2002. Experimental and Numerical Study of Convective Heat Transfer in an Array of Slot Jets[J]. Proceedings of the ASME Flows in Manufacturing Processes, Montreal, Quebec, Canada.
    [92]Abed W M, Shareef A J and Najeeb A A.2010. Natural Convection Heat Transfer in Horizontal Concentric Annulus between Outer Cylinder and Inner Flat Tube[J]. Anbar Journal for Engineering Sciences,3(2):31-44.
    [93]Schuster M.2007. Simulations of Heat Transfer through the Cabin Walls of Rail Vehicle[J]. Applied and Computational Mechanics,1:273-280.
    [94]李杰,赵旗,王庆年,赵子亮,管欣.2003.高速滚动轮胎单向实时红外测温系统的研究[J].农业机械学报,34(5):134-136.
    [95]Browne A L, Wickliffe L E.1979. Rubber Emissivity and the Thermal State of Tires[J]. Tire Science and Technology,7(3-4):71-89.
    [96]Aggarwal M, Hua H and Ahuja N.2001. On cosine-fourth and vignetting effects in real lenses[J]. Proc. IEEE Int. Conf. Computer Vision,2001:472-479.
    [97]Moreno I and Sun C C.2009. Three-dimensional measurement of light-emitting diode radiation pattern:a rapid estimation[J]. Measurement Science and Technology,2009,20: 075306.
    [98]Sidney F. Ray.2002. Applied Photographic Optics[M]. Oxford:Focal Press.
    [99]Horn B K P.1986. Robot Vision[M]. Cambridge, Mass.:MIT Press
    [100]LaClair T J, Zarak C.2005. Truck Tire Operating Temperatures on Flat and Curved Test Surfaces[J]. Tire Science and Technology,33(3):156-178.
    [101]Matsuzaki R, Todoroki A.2008. Wireless Monitoring of Automobile Tires for Intelligent Tires[J]. Sensors,8:8123-8138.
    [102]NEC San-ei Instruments, Ltd.1998. Thermo Tracer TH5104 Operation Manual.
    [103]吕崇德.2001.热工参数测量与处理[M].北京:清华大学出版社.
    [104]Sentenac T, Maoultt Y L, Rolland G, and Devy M.2003. Temperature correction of radiometric and geometric models for an uncooled CCD camera in the near infrared[J]. IEEE Transactions on Instrumentation and Measurement,52:46-60.
    [105]ISO 28580.2009. Passenger car, truck and bus tyres-Methods of measuring rolling resistance-Single point test and correlation of measurement results.
    [106]Mullins L.1969. Softening of Rubber by Deformation[J]. Rubber Chemistry and Technology,42(1):339-362.
    [107]汪志诚.2008.热力学与统计物理[M].北京:高等教育出版社.
    [108]Launder B E, Spalding D B.1972. Lectures in Mathematical Models of Turbulence[M]. London:Academic Press
    [109]Kader B.1981. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers[J]. Int.J. Heat Mass Transfer,24(9):1541-1544.
    [110]Launder B E, Spalding D B.1974. The Numerical Computation of Turbulent Flows[J]. Computer Methods in Applied Mechanics and Engineering,3:269-289.
    [111]Wolfstein M.1969. The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient[J]. Int. J. Heat Mass Transfer,12: 301-318.
    [112]Chen H C and Patel V C.1988. Near-Wall Turbulence Models for Complex Flows Including Separation[J]. AIAA Journal,26(6):641-648.
    [113]Williams F A.1975. Turbulent Mixing in Nonreactive and Reactive Flows[M]. New York: Plenum Press.
    [114]ABAQUS, Inc.2008. ABAQUS Analysis User's Manual. Version 6.8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700