用户名: 密码: 验证码:
基于多胺修饰的萘酰亚胺、黄酮衍生物的合成及抗肿瘤活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来多胺修饰的用于抗肿瘤试剂的多胺缀合物引起人们的广泛关注,研究表明天然或合成多胺有潜力发展成为一种有效利用细胞膜上多胺转运体(PAT)的靶向载体,它们可能具有提高化合物生物活性和细胞选择性的能力。
     萘酰亚胺类化合物作为抗肿瘤试剂的研究取得了巨大进展,如氨萘非特(amonafide)和米托萘胺(mitonafide)已经进入到了II期临床试验。但是这类化合物也存在着许多不足,如具有神经毒性、肿瘤特异性差等。黄酮类化合物广泛存在于多种植物中,数量种类繁多,结构类型复杂多样,具有许多重要的生理、生化作用,引起了国内外化学家的广泛关注。本论文基于利用多胺分别修饰萘酰亚胺和黄酮这两种药效基团,考察具有细胞毒性的萘酰亚胺和没有细胞毒性的黄酮分别与多胺缀合后活性如何;同时将萘酰亚胺结构和黄酮母核通过碳-碳单键连接后再与多胺缀合。设计合成了三类共62个新型抗肿瘤药物先导,其中59个未见文献报道,评价了部分化合物对4种肿瘤细胞株(MDA-MB-231、HCT-116、HepG2、K562)的细胞毒性、诱导HePG2细胞凋亡的能力、凋亡机制以及体内抗肿瘤活性。研究工作包括以下三个方面:
     第一部分合成了7种33个酰亚胺-多胺衍生物。首先利用Suzuki偶联反应在萘酰亚胺和邻苯二甲酰亚胺-多胺衍生物的芳环上引入新的苯环,设计合成了9个目标化合物;其次以1,4,5,8-萘二甲酸酐、3,3’,4,4’-邻苯二甲酸酐为原料合成了9个芳香酰二亚胺-多胺衍生物;最后以氨萘菲特和1,8-萘酐为原料合成了10个分子结构中含有乙酰偶联多胺链的萘酰亚胺衍生物和4个乙酰基萘酰亚胺-多胺衍生物。
     第二部分合成了三类25个黄酮-多胺衍生物。利用具有生物活性的7-羟基黄酮和5,7-二羟基黄酮与多胺反应合成了8个黄酮的Mannich碱类多胺-缀合物;分别通过对5,7-二羟基黄酮进行氨基乙酰化和酯化得到了13个黄酮-多胺缀合物;同时,我们将黄酮骨架和萘酰亚胺骨架结合后与多胺缀合衍生出了4个萘酰亚胺并黄酮-多胺缀合物。
     第三部分主要研究了萘酰亚胺-多胺衍生物的抗肿瘤活性;初步测试了黄酮-多胺衍生物对HCT-116细胞株的抑制能力;萘酰亚胺并黄酮-多胺缀合物的抗肿瘤活性正在测试中。细胞毒性测试结果表明萘酰二亚胺-多胺衍生物、苯环取代的萘酰亚胺-多胺衍生物、分子结构中含有乙酰基偶联多胺连的萘酰亚胺衍生物均具有一定程度的抗肿瘤活性,部分化合物的活性高于阳性对照品氨萘菲特;部分黄酮-多胺缀合物对HCT-116细胞株的抑制能力优于阳性对照槲皮素。其中代表性化合物21e被证明诱导HePG2细胞凋亡;H22肿瘤模型的体内综合实验表明化合物21e能有效抑制肿瘤细胞并明显延长小鼠寿命,降低血液毒性,这也是阳性对照氨萘菲特最主要的缺陷之一;不过,更有意义的是化合物21e能有效抑制肿瘤细胞的肺转移,这说明多胺与具有药效活性的基团结合后有可能赋予该药效团有趣的生物活性,而萘酰亚胺-多胺缀合物作为抗肿瘤药物是一类非常有前途的先导化合物。
The anticancer agents modified by polyamine have attracted widespread attention in recent years, and research has shown that natural or synthetic polyamine has the potential to be an effective targeting vector by using polyamine transporter on the cell membrane, they may have improved the biological activity and cell selectivity of the conjugates coupled by polyamine.
     Naphthalimides are significant examples of antitumor agents, many of which, such as Amonafide and Mitonafide, have been used in Phase Ⅱ clinical trials. But there are still many problems with them such as neurotoxicity and poor tumor selectivity. Flavonoids are widely distributed in almost all plants owing to huge diversity in the category and configuration. Flavonoids, with unique chemical structures, are bearing many important physiological and biochemical effects. With increasing research of the structure-activity relationship, molecular mechanism of partial pharmacological actions are discovered and this progress acelerates their development.In the dissertation, naphthalimide-polyammine derivatives, flavone-polyamine derivatives and naphthalimide fused flavone-polyamine derivatives were designed and synthesized.62target compounds were synthesized and59have not been reported previously. Antitumor activities of some target compounds were evaluated against MDA-MB-231, HCT-116, HepG2, K562cancer cell lines in vitro. The properties of their induction of apoptosis, antitumor activity in vivo and systemic toxicity were also systematically studied. The research includes mainly three aspects as follows:
     In the first section seven kinds of33target compounds were designed and synthesized. First a new benzene ring was introduced on the aromatic core of naphthalimide imide-polyamine and phthalimide-polyamine derivatives by Suzuki coupling reaction and nine target compounds were obtained; second, nine aromatic diimide polyamine derivatives were synthesized using1,4,5,8-naphthalenetetracarboxylic dianhydride and3,3',4,4'biphenyltetracarboxylic diandhydride as raw materials; last, ten alkylamino-acetyl naphthalimide derivatives and four acetyl naphthalimide-polyamine derivatives were designed to couple with different polyamines.
     In the second section, we synthesized25flavone-polyamine derivatives:four mannich base derivatives of5,7-dihydroxy flavone and four mannich base derivatives of7-hydroxy flavone were geted respectively using5,7-dihydroxy flavone and7-hydroxy flavone as raw materials;13flavone-polyamine conjugates were obtained respectively by the5,7-dihydroxy flavone amino acetylation and esterification; at the same time,4naphthalimide fused flavone-polyamine conjugates were obtained by naphthalimide skeleton combining with flavone skeleton.
     The third seetion studied the antiproliferative activity, antitumor and apoptosis-inducing function of the naphthalimide-polyamine conjugates; some preliminary tests was maken to investigate the effects of flavone-polyamine derivatives on cancer cell line HCT-116; the pharmacological tests of naphthalimide fused flavone-polyamine conjugates are underway. The in vitro assays revealed that naphthalene diimide polyamine conjugates, benzene substituted naphthalimide polyamine derivatives, alkylaminoacetyl naphthalimide derivatives and the flavone-polyamine derivatives could inhibit the growth of multiple cancer cell lines, some more potent than amonafide.21e, the most potent compound, was verified to efficiently induce HePG2apoptosis in a preliminary mechanistic study. The comprehensive in vivo trials on three H22tumor transplant models demonstrated that21e improved the indexes in terms of inhibitive effect and lifespan extension and reduced the hematotoxicity which is one of main drawbacks of amonafide. More importantly, the obviously elevated ability in preventing lung cancer metastasis was observed, which increased the value of2le as a promising lead compound. This work supported that the versatile function of polyamines may endow some intriguing biological features to the parent drugs.
引文
[1]吴爱斌.新颖萘酰亚胺类抗肿瘤剂的设计合成与生物性能[D].上海:华东理工大学,2009年.
    [2]Armitage B. Photoleavage of nucleic acids. Chemical Reviews.1998(3):1171.
    [3]Rhee H J, Kim E JK. Physiological polyamines:simple primordial stress molecules[J]. J Cell Mol Med, 2007,11(4):685-703.
    [4]G D Luk, S B Baylin. Polyamines in Biology and Medicine[J]. West J Med,1985,142(1):89-90.
    [5]Larque E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines[J]. Nutrition, 2007,23(1):87-95.
    [6]Alison Rodger, Steven Taylor, Gareth Adlam, et al. Multiple DNA binding modes of anthracene-9-car-bonyl-N1-spermine[J]. Bioorg Med Chem,1995,3(6):861-872.
    [7]Seiler N. Pharmacological aspects of cytotoxic polyamines:simple primordial stress molecules[J]. Pharmacol Ther,2005,107:99.
    [8]Tabor H, Tabor C W. Biosynthesis and metablism of 1,4-diaminobutane, spermidine, spermine, and related amines[J]. Adv Enzymol Relat Areas Mol Biol.1972,36:203-68.
    [9]Facchinano F, Arcangelo D, Riccomi A, et al. Transglutaminase Activity Is Involved in Polyamine--Induced Programmed Cell Death[J]. Exp Cell Res.2001,271(1):118-29.
    [10]Gaboriau F, Kreder A, Clavreul N, et al. Polyamine modulation of iron uptake in CHO cells[J]. Bilc-hem Pharmacil,2004,67:1629-1637.
    [11]Belting M, Persson S, Fransson LA. Proteoglycan inbolvement in polyamine uptake[J]. J Biochem, 1999,338:317-323.
    [12]Mimori K, Mori M, Shiraishi T, et al. Expression of ornithine decarboxylasem RNA and c-myc Mrna In breast tumours[J]. Int J Oncol,1998,12:597.
    [13]Moulinoux JP, QuemenerV, Calve ML, et al. Polyamines in human brain tumors. A correlative study between tumor, cerebrospinal fluid and red blood cell free polyamine levels[J]. J Neurooncol,1984,2: 153-158.
    [14]Medina MA, Quesada AR, Castro IN, et al. Polyamines, and Cance[J]. Biochem Pharmacol,1999, 57(12):1341-1344.
    [15]Ohishi H, Odoko M, Grzeskowiak K, et al. Polyamines stabilize left-handed Z-DNA; Using X-ray crystallographic analysis,we have found a new type of polyamine that stabilizes left-handed Z-DNA[J]. Biochem Biophys Res Commun,2007,358(1):24-28.
    [16]Wallace HM.Targeting polyamine metabolidm:a viable therapeutic/preventative solution for cancer[J]. Expert Opin Pharmacother,2007,8(13):2109-2116.
    [17]Milovic V,Turchanoe L, Khomutov AR, et al. Hydroxylamine-containing inhibitors of polyamine bio- synthesis and impairment of colon cancer cell growth[J]. Biochem Pharmacol,2001,61:199-206.
    [18]Seiler N.Thirty years of polyamine-related approacheds to cancer therapy. Retrospect and prospect.Part 1.Selective enzyme inhibitors[J]. Curr Drug Targets,2003,4:537-564.
    [19]Hegde SS, Chandler J, Vetting MW, et al. Mechanistic and structural analysis of human spermidine-/spermine N1-acetyltransferase [J]. Biochemistry,2007,46(24):7187-7195.
    [20]Pietrangeli P, Mondovi B. Amine Oxidases and Tumors[J]. Neuro Toxidology,2004,25:317-324.
    [21]Casero RA Jr, Wang Y, Stewart TM, et al. The role of polyamine catabolism in anti-tumour drug response. Biochem Soc Trans,2003,31:361-365.
    [22]Sebela M, Tylichova M, Pec P. Inhibition of diamine oxidases and polyamine oxidases by diamine--based compounds[J]. J Nerual Transm,2007,114(6):793-798.
    [23]Bergeron RJ, Muller R, Huang G, et al. Synthesis and evaluation of hydroxylated polyamine analogues as antiproliferatives[J]. J Med Chem,2001,44(15):2451-9.
    [24]Federica Lizzi, Giacomo Veronesi, Federica Belluti, et al. Conjugation of Quinones with Natu-ral Polyamines:Toward an Expanded Antitrypanosomatid Profile[J]. J Med Chem,2012,55(23): 10490-10500.
    [25]Simon Lucas, Mette H. Poulsen, Niels G. Norager, et al. General Synthesis of β-Alanine-Containing Spider Polyamine Toxins and Discovery of Nephila Polyamine Toxins 1 and 8 as Highly Potent Inhibitors of Ionotropic Glutamate Receptors[J]. J Med Chem,2012,55 (22):10297-10301.
    [26]Arturo Battaglia, Andrea Guerrini, Eleonora Baldelli, et al. Synthesis of 7-and 10-spermine conjugates of paclitaxel and 10-deacetyl-paclitaxel as potential prodrugs[J]. Tetrahedron Letters,2006,47: 2667-2670.
    [27]Carlo Melchiorre, Maria Laura Bolognesi, Anna Minarini, et al. Polyamines in Drug Discovery:From the Universal Template Approach to the Multitarget-Directed Ligand Design Strategy[J]. J Med Chem, 2010,53:5906-5914.
    [28]Janne Weisell, Mervi T, Hyv€onen, et al. Synthesis and Biological Characterization of Novel Charge-Deficient Spermine Analogues[J]. J Med Chem,2010,53:5738-5748.
    [29]Sophie Tomasi, Jacques Renault, Ben edicte Martin, et al. Targe ting the Polyamine Transport System with Benzazep ine-and Azepine-Polyamine Conjugates[J]. J Med Chem,2010,53:7647-7663.
    [30]Casero RA Jr, Woster PM.. Terminally alkylated polyamine analogues as chemotherapeutic agents[J]. Journal of Medicinal Chemistry,2001,44(1):1-26.
    [31]Raymond J, Bergeron, Jan Wiegand, et al. Polyamine Analogue Antidiarrheals:A Structure-Activity Study[J]. J Med Chem,2001,44:232-244.
    [32]Chaojie Wang, Jean-Guy Delcros, John Biggerstaff, et al. Synthesis and Biological Evaluation of Nl-(Anthracen-9-ylmethyl)triamines as Molecular Recognition Elements for the Polyamine Transporter[J]. J. Med. Chem.,2003,46:2663-2671.
    [33]Chaojie Wang, Jean-Guy Delcros, Laura Cannon, et al. Defining the Molecular Requirements for the Selective Delivery of Polyamine Conjugates into Cells Containing Active Polyamine Transporters[J]. J. Med. Chem.,2003,46:5129-5138.
    [34]刘淼.新型萘酰亚胺类化合物对肿瘤细胞的凋亡作用[D].辽宁:大连理工大学,2009年.
    [35]赵同丰,赵德丰,于华云等.1,8-萘酰亚胺荧光材料进展[J].染料工业,1997,34:8.
    [36]Brana M F, Ramos A. Naphthali mides as anticancer agents:Synthesis and biological Activity [J]. Curr Med Chem-AntiCancer Agents,2001,1:237-255.
    [37]Brana M F, Castellano J M, Roldan C M, et al. Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-1,8-naphthalic acid[J]. Cancer Chem other Pharmacol,1980,4:61-66.
    [38]Rosell R, CarlesJ, Abad A, et al. Phase I study of mitonafide in 120 hour continuous infusion in non-small cell lung cancer[J], Invest NewDrugs,1992,10:171-175.
    [39]Brana M F, Castellano J M, Moran M, et al. Bis-naphthalimides:a new class of a ntitumor agents[J]. Anti-Cancer Drug Des,1993,8:257.
    [40]Baily C, Brana M F, Waring M J. Sequence-selective intercalation of antitumor bisnaphthalimides into DNA evident for an approach via the major groove[J]. Eur J Biochem,1996,240:195.
    [41]Brana M F, Castellano J M, Sanz A M, et al. Synthesis and cytostatic activity of benz [de]isoquino-lin-1,3-dione structure-activity relationships[J]. Eur J Med Chem,1981,16:207.
    [42]朱虹,丁健.萘酰亚胺类化合物作为抗肿瘤药物的研发现状[J].中国新药杂志,2007,16(10):742.
    [43]Diaz-Rubio E, Martin M, Lopez-Vege J M, et al. Phase I study of mitonafide with a 3-day adminis-tration schedule:early interruption due to severe central nervous system toxity[J]. Invest New Drugs,1994, 12:277-281.
    [44]Rosell R, CarlesJ, Abad A, et al. Phase I study of mitonafide in 120 hour continuous infusion in non-small cell lung cancer[J]. Invest NewDrugs,1992,10:171-175.
    [45]Llombart M, Poveda A, Forner E, et al. Phase I study of mitonafide in solid tumors[J]. Invest New Drugs,1992,10:177-181.
    [46]Min Lv and Hui Xu. Overview of Naphthalimide Analogs as Anticancer Agents[J]. Current Medicinal Chemistry,2009,16:4797-4813.
    [47]Laurent Ingrassia, Florence Lefranc, Robert Kis, et al. Naphthalimides and Azonafides as Promising Anti-Cancer Agents[J]. Current Medicinal Chemistry,2009,16:1192-1213.
    [48]Brana M F, Castellano J M, Moran M, et al. Synthesis, structure and antitumor activity of new benz[de] isoquinoline-1,3-diones[J].Arzneim-Forsch,1995,45:1311-1378.
    [49]Sami S M, D or R T, Albert D S, et al.2-Substituted 1,2-dihydro-3H-dibenz[de,h] isoquinoli ne-1,3-diones A new class of antitumor agent[J]. J Med Chem,1993,36:765-770.
    [50]Sami S M, Dorr R T, Alberts D S, et al. Analogues of aminofide and azonafide with novel ring systems[J]. J Med Chem,2000,43:3067-3073.
    [51]Sami S M, Dorr R T, Solyom A M, et al. Aminosubstituted 2-[2'-(dimethyl-amino) Ethyl 1,2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones. Synthsis, antitumor activity and quantitative structure activity relationship[J]. J Med Chem,1995,38:983-993.
    [52]Brana M F, Cacho M, Garcia M A, et al. Synthesis, antitumor activity, molecular modeling, and DNA binding properties of a new series of imidazo-naphthalimides[J]. J Med Chem,2002,45:5813-5816.
    [53]Zhuo Chen, Xin Liang, Huanying Zhang, et al. A New Class of Naphthalimide-Based Antitumor Agents That Inhibit Topoisomerase II and Induce Lysosomal Membrane Permeabilization and Apoptosis[J]. J Med Chem,2010,53(6):2589-2600.
    [54]Aibin Wu, Yufang Xu, Xuhong Qian, et al. Novel naphthalimide derivatives as potential apoptosis--inducing agents:Design, synthesis and biological evaluation[J]. European Journal of Medicinal Chemistry, 2009,44:4674-4680.
    [55]Y.GLi, Y.F.Xu, X. H. Qian, et al. Naphthalimidethiazoles as novel photonucleases:molecular design, synthesis, and evaluation[J]. Tetrahedron Lett.,2004,45:1247-1251.
    [56]X.H. Qian, Z.G. Li, Q. Yang. Highly efficient antitumor agents of heterocycles containing sulfur atom:Linear and angular thiazonaphthalimides against human lung cancer cell in vitro[J]. Bioorg. Med. Chem.,2007,15:6846-6851.
    [57]X Liang, AB Wu, YF Xu, et al. B1, a novel naphthalimide-based DNA intercalator, induces cell cycle arrest and apoptosis in HeLa cells via p53 activation, Invest[J]. New Drug,2011,29:646-658.
    [58]X. Qian, Y. Li, Y Xu, et al. Highly-efficient DNA photocleavers with long wave length absorptions: thio-heterocyclic fused naphthalimides containing aminoalkyl side chains[J]. Bioorg Med Chem Lett., 2004,14:2665-2668.
    [59]Y. Xu, B. Qu, X. Qian, et al. Fivemember thioheterocyclic fused naphthalimides with aminoalkyl side chains:intercalation and photocleavage to DNA[J], Bioorg. Med. Chem. Lett.,2005,15:1139-1142.
    [60]Ke Shen, Liyun Sun, Huanying Zhang, et al. A ROS-mediated lysosomal-mitochondrial pathway is induced by a novel Amonafide analogue,7c, in human Hela cervix carcinoma cells[J]. Cancer Letters, 2013, xxx:xxx-xxx. Article in press.
    [61]Hong Zhu, Ze-Hong Miao, Min Huang, et al. Naphthalimides Induce G2Arrest Through the ATM-Activated Chk2-Executed Pathway in HCT116 Cells[J]. Neoplasia,2009,11:1226-1234.
    [62]Hong Zhu, Min Huang, Fan Yang, et al. R16, a novel amonafide analogue, induces apoptosis and G2-M arrest via poisoning topoisomerase II[J]. Mol Cancer Ther,2007,6(2):484-495.
    [63]Zhigang Li,Qing Yang and Xuhong Qian. Synthesis, antitumor and DNA photo cleaving activities of novel naphthalene carboxamides:effects of different thio-heterocyclic rings and aminoalkyl side chainsfJ]. Tetrahedron,2005,61:8711-8717.
    [64]Quaquebeke E V, Mahieu T, Dum ont P, et al.2,2,2-Tr ichloro-N-({2-[2-(dimethylamino)ethyl]-l, 3-dioxo-2,3-di-lH-benzo[de]isoquinolin-5-yl}carbamoyl)acetamide (UNBS3157), a novel nonhemato-toxic naphthalimide derivative with potent antitumor activity[J]. J Med Chem,2007,50:4122-4134.
    [65]Shaoying Tan, Hong Yin, Zhuo Chen, et al. Oxo-Heterocyclic Fused Naphthalimides as Antitumor Agents:Synthesis and Biological Evaluation. European Journal of Medicinal Chemistry. Accepted Manuscript.
    [66]Denny W A.Dual topoi somerase Ⅰ/Ⅱ poisons as anticancer drugs[J]. Exp Opin Invest Drugs,1997, 6(12):1845.
    [67]Sun J H, Mates J R, Park C H, et al. Process for preparing for bisnaphthalimides containing amino--acid derived linkers[P]. US:5461176,1995-10-24.
    [68]Brana M F, Castellano J M, Perron D, et al. Chromophore-modified bis-naphthalimides:synthesis and antitumor activity of bis-dibenz[de,h]iso-quinoline-1,3-diones[J]. J Med Chem,1997,40:449-454.
    [69]Sun J H. Highly water soluble bisnaphthalimides useful as anticancer agents[P]. WO:9312092, 1993-6-24.
    [70]Keihauer G, Romerdahl C, Brana M F, et al. Bisnaphthalimides for the treatment of cancer[P]. US:5616589,1997-4-1103.
    [71]Keihauer G, Romerdahl C, Brana M F, et al. New bisnaphthalimides for the treatment of cancer[P]. WO:9505365,1995-2-23.
    [72]Weis A L, Chen S F, Reddy P S, et al. Diamine platinum naphthalimide complexes as antitumor agents[P]. US:5561042,1996-10-1.
    [73]Kaltenbach R F, Sun J H, Chmrney R, et al. Unsymmetrical mono-3-nitro-bis-naphthalimides as anticancer agents[P]. US:5376664,1994-12-27.
    [74]Brana M F, Castellano J M, Moran M, et al, Bisnaphthalimides:a new class of antitumor agents, Anticancer Drug Des,1993,8:257-268.
    [75]Sun J H. Bis-naphthalimides containing amino-acid derived linkers as anticancer Agents[P]. US: 5206249,1993-4-27.
    [76]Sun J H. Highly water soluble bisnapht halimides useful as anticancer agents[P]. US:5488110, 1996-1-30.
    [77]Weis A L, Chen S F, Reddy P S, et al. Bis-naphthalimide with linkers having heteroatoms and uses there of[P]. WO:9603384,1996-2-8.
    [78]Brana M F, Castellano J M, Moran M, et al. Bis-naphthalimides.2. Synthesis and biological activity of 5,6-acenaphthalimidoalkyl-1,8-naphthalimidoalkyl amines[J]. Eur J Med Chem,1995,30:235-239.
    [79]Brana M F, Castellano J M, Moran M, et al. Bis-naphthalimides 3:Synthesis and antitumor activity of N,N'-bis[2-(1,8-naphthalimido)-ethyl]alkanedimines[J]. Anticancer Drug Des,1996,11:297-309.
    [80]Brana M F, Cacho M, Garcia M A, et al. New analogues of amonafide and elinafide, containing aroma-tic heterocycles:synthesis, antitumor activity, molecular modeling, and DNA binding[J]. J Med Chem,2004,47:1391-1399.
    [81]McRipley R J, Burns-Horwitz P E, Czerniak P M, et al. Efficacy of DMP 840:a novel bisnaphtha-limide cytotoxic agent with human solid tumor xenograft selectivity [J]. Cancer Res,1994,54 (1): 159-164.
    [82]Gallego J.Reid B R. Solution structure and dynamics of a complex between DNA and the antitumor bisnaphthalimide LU-79553:intercalated ring flipping on the millisecond time scale[J]. Biochemistry, 1999,38:15104.
    [83]Bousquet P F, Brana M.F, Conlon D, et al. Preclinical Evaluation of LU-79553:a novel bisnaphtha-limide with potent antitumor activity[J]. Cancer Res,1995,55:1176-1180.
    [84]Baily C, Brana M F, Waring M J. Sequence-selective intercalation of antitumor bisnaphthalimides into DNA evident for an approach via the major groove[J]. Eur J Biochem,1996,240:195-208.
    [85]贺茜,李永刚.抗肿瘤药双萘酰亚胺的研究进展[J].广州化学,2002,27(2):48-52.
    [86]E. B. Veale, D. O. Frimannsson, M. Lawler, et al.4-Amino-1,8-naphthalimide-based Troger's bases as high affinity DNA targeting fluorescent supramolecular scaffolds[J]. Org. Lett.,2009,11:4040.
    [87]Emma B, Veale, Thorfinnur Gunnlaugsson. Synthesis, photophysical and DNA binding studies of fluo-rescent Troger's base derived 4-amino-1,8-naphthalimide supramolecular clefts"[J]. J. Org. Chem.,2010, 75:5513-5525.
    [88]Brana M F, Cacho M, Garcia M A, et al. Synthesis, antitumor activity, molecular Modeling and DNA binding properties of a new series of imidazo-naphthalimides[J]. J Med Chem,2002,45:5813-5816.
    [89]Brana M F, Castellano J M, Sanz A M, et al. Synthesis and cytostatic activity of benz [d,e] isoquinolin-1.3-dione, structure-activity relationships[J]. Eur J Med Chem,1981,16:207-212.
    [90]Lai C M, Garner D M, Gray J E,et al. Determination of bisnafide, a novel bis-naphthalimide anticancer agent, in human plasma by high performance liquid chromatography with UV detection[J]. J Pharm Biomed Anal,1998,17(3):427.
    [91]Kobb P W, Degen D R, Clark G M, et al. Activity of DMP-840, a new bis-phthalimide, on primary human tumor colony-forming units[J]. J Natl Cancer Inst,1994,86(19):1462-1465.
    [92]Pavlov V, Lin PI K T, Rodilla V. Cytotoxicity, DNA binding and local isation of novel bisnaphtha-limidopropyl polyamine derivatives[J]. Chemico-Biological Interactions,2001,137:15-24.
    [93]A.M. Dance, L. Ralton, Z. Fuller, et al. Signaling via the Angiotensin-Converting Enzyme Results in the Phosphorylation of the Nonmuscle Myosin Heavy Chain IIA[J].Pharmacol.,2005,69:19.
    [94]M. F. Bran" a, M. Cacho, A. Ramos, M, et al. Synthesis,biological evaluation and DNA binding prop-erties of novel mono andbisnaphthalimides[J]. Org. Biomol. Chem.,2003,1:648.
    [95]C Bailly, C Carrasco, A Joubert, et al. Chromophore-Modified Bisnaphthalimides:□DNA Recogniti-on, Topoisomerase Inhibition, and Cytotoxic Properties of Two Mono-and Bisfurona-phthalimides[J]. Biochemistry,2003,42:4136.
    [96]Zhi-yong Tian, Song-qiang Xie, Zi-hou Mei, et al.Conjugation of substituted naphthalimides to poly- amines as cytotoxic agents targeting the Akt/mTOR signal pathway[J]. Org Biomol Chem,2009,7: 4651-4660.
    [97]Zhi Yong Tian, Hong Xia Ma, Song Qiang Xie, et al. Synthesis, DNA binding and topoisom-erase inhibition of mononaphthalimide homospermidine derivatives[J]. Chinese Chemical Letters, 2008,19:509-512.
    [98]Zhi-yong Tian, Song-qiang Xie, Yao-wu Du, et al. Synthesis, cytotoxicity and apoptosis of na-phthalimide polyamine conjugates as antitumor agents[J]. European Journal of Medicinal Chemistry, 2009,44:393-399.
    [99]梅子厚,田智勇,马红霞等.酰亚胺-多胺缀合物的合成及体外抗癌活性[J]. Acta Pharmaceutica Sinica,2009,44 (7):754-757.
    [100]B. Halsteen. Flavonoids, A class of naturtural products of High pharmacological potency [J]. Biochemical pharmacology,1983,32(7):1141-1148.
    [101]王玮,王琳.黄酮类化合物的研究进展[J].沈阳医学院学报,2002,4(2):115-119.
    [102]毛雪石,徐世平.国外医学药学分册[J].1995,22(2):92-96.
    [103]GaborM, FarkaLsL, et al.[M]Elsevier,1981:421.
    [104]HarbomevJ B. The flavonoids, advances in research[M]. London:Chapman and Hall,1982: 512-521.
    [105]胡迎庆,刘岱琳,周运筹.天然二氢查耳酮类化合物的生物活性[J].国外医药植物药分册,2002,17(6):241-244.
    [106]浩围.黄酮类化合物[M].北京:科学出版社,2004:4.
    [107]徐任生.天然产物化学[M].北京:科学出版社.2004:526-528.
    [108]Bingnan Z, Lumonadio L, Sang K Lee, et al. Antioxidant Flavonodi Glycosides from Daphmiphullum calycinum[J]. Journal of Natural Products,1998,61(4):706-708.
    [109]Lewis P T, Wahala K, Hoikkala A, et al. Synthesis of antioxidant isoflavone fatty acid esters[J]. Tetrahedron,2000,56(39):7805-7810.
    [110]Zhao R, Li Q W, Long L, et al. Antidiabetic activity of flavone from Ipomoea Batatas leaf innon-insulin dependent diabeticrats[J]. INT J FOOD SCI TECH,2007,42(1):80-85.
    [111]张海生,陈锦屏.蜂蛹黄酮的提取及体外抗氧化作用的研究明[J].食品科学,2008,2(29):158-162.
    [112]崔永明,余龙江.甘草总黄酮对油脂抗氧化作用研究明[J].食品科学,2007,11(28):119-121.
    [113]王敏,魏益民,高锦明.苦养麦总黄酮对高脂血大鼠血脂和抗氧化作用的影响[J].营养学报,2006,6(28):502-505.
    [114]hongxiang Z, Jing J, Jinlan R, et al. Antioxidant Flavonodi Glycosides from Aerial Parts of the Fern Abraeopteris penangiana[J]. Journal of Natural Products,2007,70(10):1683-1686.
    [115]Hongfei L, Hong Z, Heqiang L, et al. Using Neural Networks to Estimate the Losses of Ascorbic Acid, Total Phenols, Flavonoid, and Antioxidant Activity in Asparagus during Thermal Treatments[J]. Journal of cultural and Food Chemistry,2010,58(10):2995-3001.
    [116]Caiya Z, Yun Shen, J Chen, et al. Nondestructive Prediction of Total Phenolics, Flavonoid Contents, and Antioxidant Capacity of Rice Grain Using Near-Infrared Spectroscopy[J]. Journal of Agricuhural and Food Chemistry,2008,56(10):8268-8272.
    [117]Raj KH., Maringanti B. Terpenoids from the resin of Shorea robust[J]. Phytochemistry,1994,35: 1073-1074.
    [118]刘爽.广枣总黄酮对cVB3病毒引起细胞凋亡的影响以[J].中医药导报,2011,3(17):87-89.
    [119]Peiwen H, Fangrong C, Kuohusing L,et al.A New Anti-HIV Alkaloid, Drymaritin, and a New C-Glycoside Flavonoid, Diandraflavone, from Drymaria diandra[J]. Journal of Natural Products,2004, 67(6):1175-1177.
    [120]张玉萌,郑作文.黄酮类化合物抗肿瘤作用分子机制研究进展[J].中国药物应用与监测,2006,6:50-53.
    [121]马波,李梦龙,周在德,陈放。黄酮体化合物抗肿瘤活性的量子化学研究化学研究与应用,2002,14(2):149.
    [122]Vrba J, Gazak R, KuzmaM, et al. A Novel-Semisynthetic Flavonoid 7-O-Galloyltaxifolin Upreg ulates Heme Oxygenasel in RAW264.7 Cells viaMAPK/Nrf2 Pathway[J]. J Med Chem,2013,56(3):8 56-66.
    [123]Nguyen TT, Tran E, Nguyen TH, et al.The role of activated MEK-ERKpathhway in quercet i-n-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis.2004,25(5): 647-659.
    [124]Yoshiharu Motoo; Norio Sawabu. Antitumor effects of saikosaponins, baicalin and baicalein on human hepatoma cell lines[J]. Cancer Letters,1994,86(1):91-95.
    [125]袁榴娣,徐红,杜肇宗.黄芩苷对艾氏腹水瘤细胞影响的初步探讨田[J].南京铁道医学院学报,1997,16(4):231.
    [126]Marrel, C; Boss, G; Van De Waterbeemd, et al. L-Dopa esters as potential prodrugs. Eur J Med. Chem Chim Ther.,1985,20:459-465.
    [127]Phase II trials of flavone acetic acid in advanced malignant melanoma and colorectal carcinoma. Kerr DJ, Maughan T, Newlands E, et al. Br J Cancer,1989,60(1):104-6.
    [128]Kenneth F. Mace, Ronald L. Hornung, Robert H. Wiltrout, et al. Correlation between in Vivo Induction of Cytokine Gene Expression by Flavone Acetic Acid and Strict Dose Dependency and Therapeutic Efficacy against Murine Renal Cancer[J]. Cancer Res,1990,50:6 1742-1747.
    [129]Severina P, Monica S, Brigida A, et al. Spectroscopic Characterization and Antiproliferative Activity on HepG2 Human Hepatoblastoma Cells of Flavonoid C-Glyc-osides from Petrorhagia velutina[J]. Journal of Natural Products,2010,73(11):1973-1978.
    [130]Satoru K, Yasuhiko T, Kazunorio, et al. Antieancer Activity and Flavonoid Content ofVarious Citrus Juices[R]. Washington, DC:American Chemical Socirry,2003:76-88.
    [131]Voskresensky ON, Levitsky AP.QSAR aspects of flavonoids as a plentiful s ource of new drugs[J]. Current Medicinal Chemistry,2002,9(14):1367-1383.
    [132]YuanLili, Gan Pinggan, Zhan Hui, et al. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anti-cancer effects on human cancer cell lines[J]. Journal of Ethnopharmacology,2007: 1-13.
    [133]郭簧菁,杨秀芬.黄酮类化合物对动物实验性肝损伤保护作用的研究进展[J].中国药理学通报,2008,24(1):5-10.
    [134]高昕,王喜军.黄酮类化合物抗肿瘤作用研究进展[J].中医药信息,2005,22(5):33.
    [135]Yap T A, Garrett M D, Walton M I, et al. Workman,targeting the PI3-Akt-mTOR pathway: progress, pitfalls, and promises[J]. Curr Opin Pharmacol,2008,8:393-412.
    [136]Casero RA Jr, Marton LJ. Polyamine Metabolism and Function:A Target Rich Environment in the Battle Against Cancer and Other Hyperproliferative Diseases[J]. Nature Reviews:Drug Discovery,2007,6: 373-390.
    [137]Simoni E, Bergamini C, Fato R, et al. Polyamine conjugation of curcumin analogues toward the discovery of mitochondria-directed neuroprotective agents[J]. J Med Chem,2010,53(19):7264-8.
    [138]Jean-Marc Barret, Anna Kruczynski, Stephane Vispe, et al. F14512, a Potent Antitumor Agent Targeting Topoisomerase Ⅱ Vectored into Cancer Cells via the Polyamine Transport System[J]. Cancer Res, 2008,68:9845.
    [139]Erika Terzuoli, Maura Puppo, Annamaria Rapisarda, et al. Aminoflavone, a Ligand of the Aryl Hydrocarbon Receptor, Inhibits HIF-1α Expression in an AhR-Independent Fashion[J]. Cancer Res, 2010,70:6837.
    [140]Nakagawa-Goto K, Chang PC, Lai CY, et al. Antitumor agents.280. Multidrug resistance-selective desmosdumotin B analogues[J].2010,53(18):6699-705.
    [1]Hong Zhu, Ze-Hong Miao, Min Huan, et al. Naphthalimides Induce G2 Arrest Through the ATM-Activated Chk2-Execute Pathway in HCT116 Cells[J]. Neoplasia,2009,11:1226-1234
    [2]Hong Zhu, Min Huang, Fan Yang, et al. R16, a novel amonafide analogue, induces apoptosisand G2-M arrest via poisoning topoisomerase II[J]. Mol Cancer,2007,6(2):484
    [3]Aibin Wu, Yufang Xu, Xuhong Qian, et al. Novel naphthalimide derivatives as potential apoptosis-inducing agents:Design, synthesis and biological evaluation[J]. European Journal of Medicinal Chemistry,2009,44:4674-4680.
    [4]Zhigang Li, Qing Yang, Xuhong Qian. Novel thiazonaphthalimides as efficient antitumor and DNA photocleaving agents:Effects of intercalation, side chains,and substituent groups[J]. Bioorganic & M edicinal Chemistry,2005,13:4864-4870.
    [5]Lv M., Xu H. Overview of Naphthalimide Analogs as Anticancer Agents[J]. Curr. Med. Chem.,2009, 16 (36):4797-4813.
    [6]Ingrassia L, Lefranc F, Kiss R, et al. Naphthalimides and azonafides as promising anti-cancer agents[J]. Curr Med Chem,2009,16(10):1192-1213.
    [7]Giannopoulos, K, Dmoszynska, A, Kowal, M, et al. Thalidomide exerts distinct molecular antil eukemic effects and combined thalidomide/fludarabine therapy is clinically effective in high-risk ch ronic lymphocytic leukemia[J]. Leukemia,2009,23 (10):1771-1778.
    [8]Warren, K.E., Goldman, S, Pollack, IF, et al. Phase I trial of lenalidomide in pediatric patients with recurrent, refractory, or progressive primary CNS tumors:Pediatric Brain Tumor Consortium study PBTC-018[J]. J. Clin. Oncol.,2011,29 (3):324-329.
    [9]Liu ZR, Hecker KH, Rill RL. Selective DNA binding of (N-alkylamine)-substituted naphthale ne imides and diimides to G+C-rich DNA[J]. J Biomol Struct Dyn,1996,14(3):331-339.
    [10]GallegoryJ, Reide B R. Solution structure and dynamics of complex between DNA and the antitumor bisnaphthlimide LU-79553:interealated ring flipping on the millisecond time scale[J]. Biochemistry,1999, 38:15104-15115.
    [11]Bousquet P E, Brana M F, Conlon D, et al. Preelinical Evaluation of LU-79553:a novel bisnaphtha-limide with potent antitumor activity[J]. Cancer Res,1995,55:1176-1180.
    [12]Bailly C, Waring M J. Transferring the purine 2-amino from guanines to ademines in DNA changes the adquence-specific binding of antibiotics[J]. Nuceic Acids Res,1995,23:885-892.
    [13]Brana M F, Castellano J M, Moran M, et al. Bis-naphthalimides:a new class of antitumor agents[J]. Anti-Cancer Drug Des,1993,8:257-268.
    [14]Baily C, Brana M F, Waring M J. Sepuence-selective intercalation of antitumor bis-naphthalimides into DNA evident for an approach via the major groove[J]. Eur J Biochem,1996,240:195-208.
    [15]Baily C, Waring M J. Transferring the purine 2-amino group as a critical recognition element for specific DNA cleavage by bleomycin and calicheamicin[J]. J Am Chem Soc,1995,117:7311-7316.
    [16]Tumiatti V, Milelli A, Minarini A, et al. Design, Synthesis, and Biological Evaluation of Substituted Naphthalene Imides and Diimides as Anticancer Agent[J]. J. Med. Chem,2009,52 (23):873-7877.
    [17]Kirshenbaum M R, Chen S F, Behrens C H, et al. (R,R)-2,2'-[1,2-ethanediyl bis[imino-(1-methyl-2,1-ethanediyl)]-bis-5-nitro-lH-benz[de]isoquinoline-1,3-(2H)-dione]dimethanesulfonate(DMP-840), a novel bisnaphthalimide with potent nonselective rumorieidal activity in bitro[J]. Cancer Res, 1994,54:2199-2206.
    [18]Kobb P W, Degen D R. Clark G M, et al. Activity of DMP-840, a new bis-naphthalimide, on primary human tumor colony-forming units[J]. J Natl Cancer Inst,1994,86(19):1462-1465.
    [19]Honghton P J, Cheshire P J, Hallman J C, et al. Evaluation of a novel bis-naphthalimide anticancer agent, DMP-840, against human xenograft derived from adult, juvenile and pediatric cancers[J]. Cancer Chemother Plarmacol,1994,33(4):265-272.
    [20]Brana M F, Castellano J M, Perron D, et al. Chormophone-modified bis-naphthalimides:synthesis and antitumor activity of bis-dibenz[di,h]isoqinoline-1,3-diones[J]. J Med Chem,1997,40:449-454.
    [21]MeRipley R J, Burns-Horwitz P E, Czerniak PM, et al. Efficacy of DMP-840, a novel bisnaphtha-limide cytotoxic agent with human solid tuor xenograft selectivity [J]. Cancer Res,1994,54:159-164.
    [22]Lai C M, Garner D M, Gray J C, et al. Evaluation of a novel bis-naphthalimide anticancer agent, in human plasma by high performance liquid chromatography with UV detection[J]. J Pharm Biomed Anal, 1998,17(3):427-434.
    [23]Eric Van Quaquebeke, Tine Mahieu, Patrick Dumont, et al.2,2,2-Trichloro-N-({2-[2-(dimethyl--amino)ethyl]-l,3-dioxo-2,3-dihydro-lH-benzo[de]isoquinolin-5-yl}carbamoyl) acetamide (UNBS3157), a Novel Nonhematotoxic Naphthalimide Derivative with Potent Antitumor Activity[J]. J. Med. Chem, 2007,50(17):4122-4134.
    [24]See http//clinicaltrials.gov. Identifiers:NCT01066494, NCT00715637.
    [25]Peduto A, Pagano B, Petronzi C, et al. Design, synthesis, biophysical and biological studies of trisubstituted naphthalimides as Gquadruplex ligands[J]. Bioorg Med Chem,2011,19 (21):6419-6429.
    [26]Liu Y, Norton JT, Witschi MA, et al. Methoxyethylamino-numonafide is an efficacious and minimally toxic amonafide derivative in murine models of human cancer[J]. Neoplasia,2011,13 (5):453-460.
    [27]Brana MF, Cacho M, Garcia MA, et al. New Analogues of Amonafide and Elinafide, Containing Aromatic Heterocycles:□Synthesis, Antitumor Activity, Molecular Modeling, and DNA Binding Properties[J]. J. Med. Chem,2004,47(6):1391-1399.
    [28]Hong Zhu, Ze-Hong Miao, Min Huang, et al. Naphthalimides Induce G2 Arrest Through the ATM-Activated Chk2-Executed Pathway in HCT116 Cells[J]. Neoplasia.2009,11(11):1226-1234.
    [29]Peduto A, Pagano B, Petronzi C, et al. Design, synthesis, biophysical and biological studies of tri-substituted naphthalimides as Gquadruplex ligands[J]. Bioorg Med Chem,2011,19 (21):6419-6429.
    [30]Liu Y, Norton JT, Witschi MA, et al. Methoxyethylamino-numonafide is an efficacious and minimally toxic amonafide derivative in murine models of human cancer[J]. Neoplasia,2011,13(5):453-460.
    [31]Chen Z, Liang X, Zhang H, et al. A New Class of Naphthalimide-Based Antitumor Agents That Inhibit Topoisomerase Ⅱ and Induce Lysosomal Membrane Permeabilization and Apoptosis[J]. J. Med. Chem., 2010,53 (6):2589-2600.
    [32]Casero RA Jr, Woster PM. Terminally Alkylated Polyamine Analogues as Chemotherapeutic Agents[J]. J. Med. Chem,2001,44 (1):1-26.
    [33]Carta F, Temperini C, Innocenti A, et al. Polyamines Inhibit Carbonic Anhydrases by Anchoring to the Zinc-Coordinated Water Molecule[J]. J. Med. Chem,2010,53 (15):5511-5522.
    [34]Weisell J, Hyvonen MT, Hakkinen MR, et al. Synthesis and Biological Characterization of Novel Charge-Deficient Spermine Analogues[J]. J. Med. Chem,2010,53 (15):5738-5748.
    [35]Chen Z, Liang X, Zhang H, et al. A New Class of Naphthalimide-Based Antitumor Agents That Inhibit Topoisomerase Ⅱ and Induce Lysosomal Membrane Permeabilization and Apoptosis[J]. J. Med. Chem., 2010,53 (6):2589-2600.
    [36]Liu ZR, Hecker KH, Rill RL. Selective DNA binding of (N-alkylamine)-substit uted naphthalene imides and diimides to G+C-rich DNA[J]. J Biomol Struct Dyn,1996,14 (3):331-339.
    [37]Tumiatti V, Milelli A, Minarini A, et al. Design, Synthesis, and Biological Evaluation of Substituted Naphthalene Imides and Diimides as Anticancer Agent[J]. J Med Chem,2009,52 (23):7873-7877.
    [38]Casero RA Jr, Woster PM. Recent Advances in the Development of Polyamine Analogues as Antitumor Agents[J]. J Med Chem,2009,52 (15):4551-4573.
    [39]Barret JM, Kruczynski A, Vispe S, et al. F14512, a potent antitumor agent targeting topoisomerase II vectored into cancer cells via the polyamine transport system[J]. Cancer Res,2008,68(23):9845-53.
    [40]Casero RA Jr, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyper-proliferative diseases[J]. Nature Reviews Drug Discovery,2007,6:373-390.
    [41]Kruczynski A, Vandenberghe I, Pillon A, et al. Preclinical activity of F14512, designed to target tumors expressing anactive polyamine transport system[J]. Invest New Drugs,2011,29 (1):9-21.
    [42]Xie, S, Wang, J, Zhang, Y, et al. Antitumor conjugates with polyamine vectors and their molec-ular mechanisms[J]. Expert Opin. Drug Deliv.,2010,7 (9):1049-1061.
    [43]Oliveira J, Ralton L, Tavares J, et al. The synthesis and the in vitro cytotoxicity studies of bisnaph-thalimidopropyl polyamine derivatives against colon cancer cells and parasite Leishmania infantum[J]. Bioorg Med Chem,2007,15(1):541-545.
    [44]Antonini I, Volpini R, Dal Ben D, et al. Design, synthesis, and biological evaluation of new mitonafide derivatives as potential antitumor drugs[J]. Bioorg Med Chem,2008,16(18):8440-8446.
    [45]Wang C J, Delcros J G, Cannon L, et al. Defining the molecular requirements for the selective delivery of polyamine conjugates into cells containing active polyamine transporters[J]. J Med Chem,2003,46(24): 5129-5138.
    [46]匡永清,孙晓莉,何炜.6-[N-(4-氨基丁基)-N-乙基]氨基-2,3-二氢-1,4-酞嗪二酮的合成[J].第四军医大学学报,2002,23(11):1037-1039.
    [47]匡永清,张生勇,蔚琳琳.N-(4-溴丁基)邻苯二甲酰亚胺的合成化学试剂[J].2001,23(6):359-361.
    [48]Chong H S, Suzy V, Br echbiel T, et al. Synthesis and potent antitumor activities of novel 1,3,5--cis,cis-triaminocyclohexane N-pyridyl derivatives [J]. J Med Chem,2004,47:5230-5234.
    [49]Jasys V J, Kelbaugh P R, Nason D M, et al.Novel quaternary ammonium salt-containing polyamines from the Ag elenopsis aperta funnel-web spider[J]. J Org Chem,1992,57:1814-1820.
    [50]Tian ZY, Xie SQ, Du YW, et al. Synthesis, cytotoxicity and apoptosis of naphthalimide polyamine conjugates as antitumor agents[J]. Eur. J. Med. Chem,2009,44(1):393-399.
    [51]Tian ZY, Xie SQ, Mei ZH, et al. Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway[J]. Org. Biomol. Chem.,2009,7 (22):4651-4660.
    [52]Hidehiro Sakurai, Tatsuya Tsukuda, Toshikazu Hirao. Pd/C as a Reusable Catalyst for the Coupling Reaction of Halophenols and Arylboronic Acids in Aqueous Media[J]. J Org Chem,2002,67 (8): 2721-2722.
    [53]Xie L,Cui J, Qian X, et al.5-Nonamino aromatic substituted naphthalimides as potential antitumor agents:Synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior[J]. Bioorg Med Chem,2011,19 (2):961-967.
    [54]Mei-Jin Lin, Xiu-Zhi Xu, Jun-Dong Wang, et al. Synthesis and Crystal Structure of 4-Bromo-5-nitrophthalonitrile[J]. Chinese Journal of Synthetic Chemistry,13(2):169-171.
    [55]Mei-Jin Lin, Jun-Dong Wang, Nai-Sheng Chen, et al. A cinbeniernt synthesis of a substituted phethalocyanine compound[J]. Journal of Coordination Chemistry,2009,59(6):607-611.
    [56]Ivanovskii S A, Dorogov M V, Abramov I G, et al. Method of synthesis of 4-bromonitrophthaloni-trile[P]. Russ:2167 855,2001.
    [57]Vincenzo Tumiatti, Andrea Milelli, Anna Minarini, et al.Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone.4. Further investigation on the inner spacer[J]. Journal of medicinal chemistry,2008,51(22):7308-12.
    [58]田智勇.萘酰亚胺衍生物的合成与抗肿瘤活性评价[D].河北:天津大学,2010.
    [59]Weihong Zhu, Rong Yao, He Tian. Synthesis of novel electro-transporting emitting compounds[J]. Dyes and Pigments,2002,54:147-154.
    [1]方从兵,宛晓春江昌俊.黄酮类化合物生物合成的研究进展[J].安徽农业大学学报,2005,32(4):498-504.
    [2]Bandele OJ, Osheroff N. Bioflavonoids as poisons of human topoisomerase Ⅱ alpha and Ⅱ beta[J] Biochemistry,2007,46(20):6097-108.
    [3]杨念云,段金廒,钱士辉等.万寿菊花的化学成分的研究[J].沈阳药科大学学报,2003,20(4):258-259.
    [4]黄帅,周先礼,王洪燕等.万寿菊花的化学成分[J].华西药学杂志,2007,22(4):370-373.
    [5]El-Subbagh HI, Abu-Zaid SM, Mahran MA et al. Synthesis and biological evaluation of certain alpha, beta-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J. Med. Chem.2000,43(15):2915-21.
    [6]Miyoshi N, Naniwa K, Yamada T, et al. Dietary flavonoid apigenin is a potential inducer of intrace-llular oxidative stress:the role in the interruptive apoptotic signal[J]. Arch Biochem Biophys,2007,466(2): 274-82.
    [7]Shukla S, MacLennan GT, Flask CA, et al. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res,2007,67(14):6925-35.
    [8]Walle T, Walle UK. Novel methoxylated flavone inhibitors of cytochrome P4501B1 in SCC-9 human oral cancer cells[J]. J Pharm Pharmacol,2007,59(6):857-62.
    [9]Patanasethanont D, Nagai J, Matsuura C, et al. Modulation of function of multidrug resistance asso-ciated-proteins by Kaempferia parviflora extracts and their components[J]. Eur J Pharmacol,2007,566(1-3): 67-74.
    [10]Walle T, Ta N, Kawamori T, et al. Cancer chemopreventive properties of orally bioavailable flavono-ids-methylated versus unmethylated flavones. Biochem Pharmacol,2007,73(9):1288-96.
    [11]Verschoyle RD, Greaves P, Cai H, et al. Preliminary safety evaluation of the putative canc-er chemopreventive agent tricin, a naturally occurring flavone[J]. Cancer Chemother Pharmacol.2006, 57(1):1-6.
    [12]张氽,阚建全,陈宗道.生物类黄酮抗癌作用研究进展[J].中国食品添加剂,2003,3:17-20.
    [13]张氽,阚建全,陈宗道.生物类黄酮抗癌作用研究进展[J].中国野生植物资源,2003,24(3):38-41.
    [14]7(6)羟基黄酮的简便合成及相关谱学分析[J].渤海大学学报:自然科学版,2007,28(4):310-315.
    [15]Musialik M, Kuzmicz R, Pawlowski TS, et al. Acidity of hydroxyl groups:an overlooked influence on antiradical properties of flavonoids [J]. J Org Chem.2009,74(7):2699-709.
    [16]Benavente GarciaO, CastilloJ. Update on uses and properties of citrus flavonoids:new findings in anticancer, cardiovascular, and anti-inflammatory activity[J]. J Agric Food Chem,2008,56:6185-6205.
    [17]Masayuki Ninomiya, Kaori Tanaka,Yuzo Tsuchida, et al. Increased Bioavailability of Tricin-Amino Acid Derivatives via a Prodrug Approach[J]. J. Med. Chem,2011,54:1529-1536.
    [18]Mark Cushman,pt Helen Zhu,Robert L,et al. Synthesis and Biochemical Evaluation of a Series of Aminoflavones as Potential Inhibitors of Protein-Tyrosine Kinases p56 and p60[J]. J. Med. Chem,1994, 37:3353-3362.
    [19]Luca Costantino, Antonella Del Corso, Giulio Rastelli, et al.7-Hydroxy-2-substituted-4-H-1-benzo-pyran-4-one derivatives as aldose reductase inhibitors:a SAR study[J]. Eur. J. Med. Chem,2001,36: 697-703.
    [20]Jordi Bolo's, Lluis Anglada, Santiago Gubert, et al.7-[3-(1-Piperidinyl)propoxy]chromenones as Potential Atypical Antipsychotics.2.Pharmacological Profile of 7-[3-[4-(6-Fluoro-1,2-benzisoxazol- -3-yl)-piperidin-1-yl]propoxy]-3-(hydroxymethyl)chromen-4-one (Abaperidone, FI-8602)[J]. J. Med. Chem.1998,41:5402-5409.
    [21]Kim YW, Mobley JA, Brueggemeier RW. Synthesis and estrogen receptor binding affinities of 7-hy-droxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-ones containing a basic side chain[J]. Bioorg Med Chem Lett.2003,13(8):1475-8.
    [22]Kim YW, Hackett JC, Brueggemeier RW. Synthesis and aromatase inhibitory activity of novel pyrid-ine-containing isoflavones[J]. J Med Chem.2004,47(16):4032-40.
    [23]Su B, Hackett JC, Diaz-Cruz ES,et al. Lead optimization of 7-benzyloxy 2-(4'-pyridylmethyl)thio isoflavone aromatase inhibitors[J]. Bioorg Med Chem.2005,13(23):6571-7.
    [24]Wang TC, Chen IL, Lu PJ,et al. Synthesis, antiproliferative, and antiplatelet activities of oxime-and methyloxime-containing flavone and isoflavone derivatives[J]. Bioorg Med Chem.2005,13(21):6045-53.
    [25]Patil S, Narayanan S, Eibl G, et al. Evaluation of antimitotic activity of Rotula aquatica (Lour):a traditional herb used in treatment of cancer[J]. Indian J Exp Biol.2004,42(9):893-9.
    [26]陈莉莉.黄酮体羟甲基化衍生物合成及其药理作用究[D].陕西:陕西师范大学,2007
    [27]董琳.5,7-甲氧基白杨素诱导人急性髓性白血病细胞生长抑制和凋亡作用的实验研究[D].湖南省:南华大学,2007.
    [28]陈晓岚,张守仁,屈凌波等.新型白杨素-7-氨基磷酸酯衍牛物的合成与波谱学研究[J].波谱学杂志,2009,26(2):240-241.
    [29]徐阳炎,郑兴,朱炳阳等.8-硝基白杨素的合成及其抗肿瘤作用[J].南华大学学报医学版,2004,32(3):283-285.
    [30]Gao H, Kawabata J. Glucosidase inhibitionof 6-hydroxyflavones.Part3:Synthesis and evaluationof 2,3,4-trihydroxybenzoyl-containing flavonoid analogs and 6-aminoflavones as a-glucosidase inhibitors[J]. J Med Chem,2005,13:1661-1671.
    [31]史娟.白杨素-6-磺酸根与金属离子自组装作用及晶体结构研究[D].陕西:陕西师范大学,2006.
    [32]李文锋.白杨素含磷衍生物的合成及与溶菌酶弱相巨作用研究[D].河南:郑州大学,2007
    [33]邹晓青,郑兴,曹建国等.6,8-二(三氟甲基)-5-羟基-7-乙酰基白杨素的抗肿瘤作用[J].中国药理学通报,2004,20(4):453-457.
    [34]Rhee H J, Kim E JK. Physiological polyamines:simple primordial stress molecules. J Cell Mol Med, 2007,11(4):685-703.
    [35]Morris, D R, Marton, L Jeds. Polyamines in Biology and Medicine[M]., Marcel Dekker, New York,1981:19-24
    [36]Larque E,Sabater-Molina M,Zamora S.Biological significance of dietary polyamines[J]. Nutrition, 2007,23(1):87-95
    [37]Alison Rodger, Steven Taylor, Gareth Adlam, et al. Multiple DNA binding modes of anthracene--9-carbonyl-N1-spermine[J]. Bioorg Med Chem,1995,3(6):861-872
    [38]Seiler N. Pharmacological aspects of cytotoxic polyamines:simple primordial stress molecules[J]. Pharmacol Ther,2005,107:99
    [39]Casero RA Jr, Woster PM. Recent Advances in the Development of Polyamine Analogues as Antitum-or Agents. J Med Chem,2009,52 (15):4551-4573.
    [40]Casero RA Jr, Woster PM. Terminally Alkylated Polyamine Analogues as Chemotherapeutic Agents. J. Med. Chem.2001,44(1):1-26.
    [41]Carta F, Temperini C, Innocenti A, et al. Polyamines Inhibit Carbonic Anhydrases by Anchoring to the Zinc-Coordinated Water Molecule. J. Med. Chem.2010,53 (15):5511-5522.
    [42]Weisell J, Hyvonen MT, Hakkinen MR, et al. Synthesis and Biological Characterization of Novel Charge-Deficient Spermine Analogues. J. Med. Chem.2010,53 (15):5738-5748.
    [43]Tomasi S, Renault J, Martin B, et al. Targeting the Polyamine Transport System with Benzazepine-and Azepine-Polyamine Conjugates. J. Med. Chem.2010,53 (21):7647-7663.
    [44]Palmer AJ, WallaceHM. The polyamine transport system as a target for anticancer drug development[J]. Amino Acids.2010,38 (2):415-422.
    [45]Xie S,Wang J, Zhang Y, et al. Antitumor conjugates with polyamine vectors and their molecula rmechanisms. Expert Opin.Drug Deliv,2010,7(9),1049-1061.
    [46]Arturo Battaglia,Andrea Guerrini,Eleonora Baldelli, et al. Synthesis of 7-and 10-spermine conjugates of paclitaxel and 10-deacetyl-paclitaxel as potential prodrugs[J]. Tetrahedron Letters 2006,47:2667-2670.
    [47]Carlo Melchiorre, Maria Laura Bolognesi, Anna Minarini, et al. Polyamines in Drug Discovery:From the UniversalTemplate Approach to the Multitarget-Directed Ligand Design Strategy [J]. J. Med. Chem,2010,53:5906-5914.
    [48]Janne Weisell, Mervi T. Hyv€onen, Merja R. H€akkinen, et al. Synthesis and Biological Characte rization of Novel Charge-Deficient Spermine Analogues[J]. J Med Chem.2010,53:5738-5748.
    [49]Sophie Tomasi, Jacques Renault, Ben edicte Martin, et al. Targeting the Polyamine Transport System with Benzazep ine-and Azepine-Polyamine Conjugates[J]. J Med Chem,2010,53:7647-7663.
    [50]Robert A. Casero, Jr,Patrick M. Woster. Terminally Alkylated Polyamine Analogues as Chemothera-peutic Agents[J]. Journal of Medicinal Chemistry,2001,44(1):1-26.
    [51]Raymond J. Bergeron, Jan Wiegand, James S. McManis, et al. Polyamine Analogue Antidiarrheals:A Structure-Activity Study [J]. J Med Chem,2001,44:232-244
    [52]Chaojie Wang, Jean-Guy Delcros, John Biggerstaff, et al. Synthesis and Biological Evaluation of N1-(Anthracen-9-ylmethyl)triamines as Molecular Recognition Elements for the Polyamine Transporte[J]. J. Med. Chem.2003,46:2663-2671.
    [53]Chaojie Wang. Jean-Guy Delcros, Laura Cannon,et al. Defining the Molecular Requirements for the Selective Delivery of Polyamine Conjugates into Cells Containing Active Polyamine Transporters[J]. J Med Chem,2003,46:5129-5138.
    [54]黄帅,周先礼,王洪燕等.万寿菊花的化学成分[J].华西药学杂志,2007,22(4):370-373.
    [55]El-Subbagh HI, Abu-Zaid SM, Mahran MA,et al. Synthesis and biological evaluation of certain alpha,beta-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents[J]. J Med Chem.2000,43(15):2915-21.
    [56]Miyoshi N, Naniwa K, Yamada T, et al. Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress:the role in the interruptive apoptotic signal[J]. Arch Biochem Biophys,2007, 466(2):274-82.
    [57]Shukla, S, MacLennan, G T, Flask, C A,et al. Blockade of betacatenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice[J]. Cancer Res.2007,67(14):6925
    [58]孙逊,胡昌奇,黄晓东等.黄芩苷元的Mannich反应[J].有机化学,2003,23(1):81-85.
    [59]Peng-Cheng Lv, Kai-Rui Wang, Qing-Shan Li, et al. Design, synthesis and biological evaluation of chrysin long-chain derivatives as potential anticancer agents. Bioorganic & Medicinal Chemistry 2010,18: 1117-1123.
    [60]王超杰,王玉霞,赵瑾等.酰胺型茄呢醇衍生物的合成与生理活性[J].2005,1:50-54.
    [61]Hong Gao, Jun Kawabata. a-Glucosidase inhibition of 6-hydroxyflavones. Part 3:Synthesis and evaluation of 2,3,4-trihydroxybenzoyl-containing flavonoid analogs and 6-aminoflavones as aglucosidase inhibitors. Bioorganic & Medicinal Chemistry [J].2005,13:1661-1671.
    [62]Weihong Zhu, Rong Yao, He Tian. Synthesis of novel electro-transporting emitting compounds[J]. Dyes and Pigments,2002,54:147-154.
    [1]stewart WW. Lucifer dyes-highly fluorescent dyes for biological tracing[J]. Nature,1981,292:17-21.
    [2]Roldan CM, Brana MF, Castellano JM. Un Procedimiento Parala PreParatio industrial denaftalimidas sustitoidas enel nitrogenoy enla Posieion tresysus Derivados. Spanish Patent No.410.740 1973.
    [3]sami SM, Dorr RT, Alberts DS, et al. Analogues of Amonafide and azonafide with novel ring systems [J]. Journal of Medicinal Chemistry,2000,43(16):3067-3073.
    [4]Brana MF, Caeho M, Ramos A, et al. Synthesis,biological evaluation And DNA binding ProPerties of novel monoand bisnaphthalimides[J]. organic & Biomolecular Chemistly 2003,1(4):648-654.
    [5]Brana MF, Caeho MG, MA de, et al. New analogues of amonafide and elinafide, Containing aromatic hcterocyeles:Synthesis, antitumor activity, molecular modeling, and DNA binding properties[J]. Journal of Medicinal Chemistry,2004,47(6):1391-1399.
    [6]Qian XH, Li ZG, Yang Q. Highly efficient antitumor agents of heterocycles Containing sulfurato-m:Linear and angular thiazona Phthalimides against humanlung Cancer cell in vitro[J]. Bioorganic & Medicinal Chemistry,2007,15(21):6846-6851.
    [7]Brana M F,Castellano J M,Sanz A M, et al. Synthesis and cytostatic activity of benz [de]isoquinolin--1,3-dione.structure-activity relationships[J]. Eur J Med Chem,1981,16:207-211.
    [8]Brana M F, Sanz A M, Castellano J M, et al. Syntehsis and cytostatic activity of benz[de]-isoquino-line-1,3-diones, structure-activity relationships[J]. Eur J Med Chem Chim Ther,1981,16:207-212.
    [9]Rosell R, CarlesJ, Abad A, et al. Phase I study of mitonafide in 120 hour continuous infusion in non--small cell lung cancer[J].Invest NewDrugs,1992,10:171-175.
    [10]Brana M F, Castellano J M, Roldan C M, et al. Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-1,8-naphthalic acid[J]. Cancer Chem other Pharmacol,1980,4:61-66.
    [11]Diaz-Rubio E, Martin M, Lopez-Vege J M, et al. Phase I study of mitonafide with a 3-day adminis-tration schedule:early interruption due to severe central nervous system toxity[J]. Invest New Drugs,1994, 12:277-281.
    [12]朱虹,丁健.萘酰亚胺类化合物作为抗肿瘤药物的研发现状[J].中国新药杂志,2007,16(10):742-748
    [13]Llombart M, Poveda A, Forner E, et al. Phase I study of mitonafide in solid Tumors[J], Invest New Drugs,1992,10:177-181.
    [14]Brana M F, Cacho M, Garcia M A, et al. Synthesis, antitumor activity, molecular modeling, and DNA binding properties of a new series of imidazo-naphthalimides[J]. J Med Chem,2002,45:5813-5816.
    [15]Brana M F,Cacho M, Garcia M A, et al. New analogues of amonafide and elinafide, containing aroma tic heterocycles:synthesis,antitumor activity, molecular modeling, and DNA binding[J]. J Med Chem, 2004,47:1391-1399.
    [16]Zhuo Chen, Xin Liang, Huanying Zhang, et al. A New Class of Naphthalimide-Based Antitumor Agents That Inhibit Topoisomerase II and Induce Lysosomal Membrane Permeabilization and Apoptosis[J]. J Med Chem,2010,53(6):2589-2600.
    [17]AibinWu,Yufang Xu, Xuhong Qian, etal. Novel naphthalimide derivatives as potential apoptosis-inducing agents:Design, synthesis and biological evaluation[J]. European Journal of Medicinal Chemistry, 44:4674-4680.
    [18]Arturo Battaglia, Andrea Guerrini, Eleonora Baldelli, et al. Synthesis of 7-and 10-spermine conju-gates of paclitaxel and 10-deacetyl-paclitaxel as potential prodrugs[J]. Tetrahedron Letters,2006,47 2667-2670.
    [19]Janne Weisell, Mervi T. Hyv€onen, Merja R. H€akkinen, et al. Synthesis and Biological Characte rization of Novel Charge-Deficient Sperm ine Analogues[J]. J. Med. Chem.2010,53:5738-5748.
    [20]Sophie Tomasi,Jacques Renault,Ben edicte Martin, et al. Targe ting the Polyamine Transport System with Benzazep ine-and Azepine-PolyamineConjugates[J]. J. Med. Chem,2010,53:7647-7663.
    [21]Chaojie Wang,Jean-Guy Delcros,John Biggerstaff, et al. Synthesis and Biological Evaluation of Nl-(Anthracen-9-ylmethyl)triamines as Molecular Recognition Elements for the Polyamine Transporter[J]. J. Med. Chem,2003,46:2663-2671.
    [22]Robert A. Casero, Jr.and Patrick M. Woster. Terminally Alkylated Polyamine Analogues as Chemo- therapeutic Agents[J]. Journal of Medicinal Chemistry,2001,44(1):1-26.
    [23]Chaojie Wang,Jean-Guy Delcros,Laura Cannon, et al.Defining the Molecular Requirements for the Selective Delivery of Polyamine Conjugates into Cells Containing Active Polyamine Transporters[J]. J. Med. Chem,2003,46:5129-5138.
    [24]Raymond J. Bergeron, Jan Wiegand, James S. McManis, et al.Polyamine Analogue Antidiarrheals:A Structure-Activity Study [J] J. Med. Chem,2001,44:232-244.
    [25]Carlo Melchiorre, Maria Laura Bolognesi, Anna Minarini, et al.Polyamines in Drug Discovery:From the Universal Template Approach to the Multitarget-Directed Ligand Design Strategy[J]. J Med Chem,2010,53:5906-5914.
    [26]O. B ENAVENTE-GARC'IA ANDJ. C ASTILLO. Update on Uses and Properties ofCitrus Flavonoi-ds:New Findings in Anticancer, Cardiovascular, and Anti-inflammatory Activity[J]. J. Agric. Food Chem,2008,56:6185-6205.
    [27]Masayuki Ninomiya,Kaori Tanaka,Yuzo Tsuchida,et al. Increased Bioavailability of Tricin-Amino Acid Derivatives via a Prodrug Approach[J]. J Med Chem,2011,54:1529-1536.
    [28]Luca Costantino, Antonella Del Corso, Giulio Rastelli, et al.7-Hydroxy-2-substituted-4-H-1-benzo-pyran-4-one derivatives as aldose reductase inhibitors:a SAR study [J]. Eur. J. Med. Chem,2001 (36):697-703.
    [29]Mark Cushman,pt Helen Zhu,Robert Let al. Synthesis and Biochemical Evaluation of a Series of Aminoflavones as Potential Inhibitors of Protein-Tyrosine Kinases p56 and p60[J]. J. Med. Chem,1994, 37:3353-3362.
    [30]Jordi Bolo's, Llui's Anglada, Santiago Gubert,et al.7-[3-(1-Piperidinyl)-propoxy]-chromenones as Potential Atypical Antipsychotics.2. Pharmacological Profile of 7-[3-[4-(6-Fluoro-1,2-benzisoxazol-3-yl)-piperidin-1-yl]propoxy]-3-(hydroxymethyl)-chromen-4-one (Abaperidone,FI-8602)[J]. J. Med. Chem, 1998,41:5402-5409.
    [31]Mosmann T.Rapid co lorimetric assay for cellular growth and survival. Application to proliferation and cytotoxicity assays[J]. J Immunol Meth,1983,65:55-63.
    [32]Zhi-yong Tian,Song-qiang Xie, Zi-hou Mei,et al. Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway[J]. Org. Biomol. Chem,2009, 7:4651-4660.
    [33]Zhi Yong Tian, Hong Xia Ma, Song Qiang Xie.et al.Synthesis, DNA binding and topoisomerase inhibition of mononaphthalimide homospermidine derivatives[J].ChineseChemical Letters,2008 (19): 509-512.
    [34]Zhi-yong Tian, Song-qiang Xie, Yao-wu Du, et al.Synthesis, cytotoxicity and apoptosis of naphthali-mide polyamine conjugates as antitumor agents[J]. European Journal of Medicinal Chemistry,2009,44: 393-399.
    [35]田智勇,魏金风,谢松强等,邻苯二甲酰亚胺多胺缀合物的合成及其生物活性[J].化学研究,2009,20(3):33-37
    [36]Martinez R,Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs:what it worked and what did not work[J]. Curr. Med. Chem,2005,12:127-151.
    [37]Persil, O, Hud, NV. Harnessing DNA intercalation[J]. Trends Biotechnol,2007,25:433-436.
    [38]Ferguson LR, Denny WA. Genotoxicity of non-covalent interactions:DNA intercalators[J]. Mutat. Res,2007,623:14-23.
    [39]Tumiatti V, Milelli A, Minarini A, et al. Design, synthesis, and biological evaluation of substituted naphthaalene imides and diimides as anticancer agent[J]. J Med Chem,2009,52(23):7873-7.
    [40]Guiliano KA, Haskins JR, Tayolor DL. Advances in high content screening for drug discovery[J]. Assay Drug Dev Technol,2003,1(4):565-577.
    [41]陈凯先,蒋华良,罗小民等.后基因组时代的药物发现趋势和实践[J].中国天然药物,2004,2(5):257-260.
    [42]孙婉,李敏.药物筛选技术的最新进展—高内涵筛选[J].中国药学杂志,2006,1(5):12-16.
    [43]Chen Z, Liang X, Zhang H, et al. A New Class of Naphthalimide-Based Antitumor Agents That Inhibit Topoisomerase II and Induce Lysosomal Membrane Permeabilization and Apoptosis[J]. J Med Chem,2010, 53 (6):2589-2600.
    [44]Chandler JM, Cohen GM, Mac Farlane M. Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver[J]. J Biol Chem,1998,273:10815-10818.
    [45]刘戎,宣昭林.活性氧、线粒体与细胞凋亡[J]. Chin J Ctrl Endem Dis,2005,20(5):285-288.
    [46]Yang L, Zhao J, Zhu Y, et al. Reactive oxygen species (ROS) accumulation induced by mononaphtha-limide-spermidine leads to intrinsic and AIF-mediated apoptosis in HeLa cells[J]. Oncol Rep,2011,25 (4):1099-1107.
    [47]Xie L,Cui J, Qian X, et al.5-Non-amino aromatic substituted naphthalimides as potential antitumor agents:Synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior[J]. Bioorg Med Chem,2011,19 (2):961-967.
    [48]Jin HO, Yoon SI, Seo SK, et al. Synergistic induction of apoptosis by sulindac and arsenic trioxide in human lung cancer A549 cells via reactive oxygen species-dependent down-regulation of survivin[J]. Biochem Pharmacol,2006,72(10):1228-36.
    [49]Tumiatti V, Milelli A, Minarini A, et al. Design, Synthesis, and Biological Evaluation of Substituted Naphthalene Imides and Diimides as Anticancer Agent[J]. J Med Chem,2009,52 (23):7873-7877.
    [50]Tian ZY, Xie SQ, Du YW, et al. Synthesis, cytotoxicity and apoptosis of naphthalimide polyamine conjugates as antitumor agents[J]. Eur. J. Med. Chem,2009,44 (1):393-399.
    [51]Tian ZY, Xie SQ, Mei ZH, et al. Conjugation of substituted naphthalimides to polyamines as cytot-oxic agents targeting the Akt/mTOR signal pathway[J]. Org. Biomol. Chem,2009,7 (22):4651-4660.
    [52]Jasys V J, Kelbaugh P R, Nason D M, et al.Novel quaternary ammonium salt-containing polyamines from the Agelenopsis aperta funnel-web spider[J]. J Org Chem,1992,57:1814-1820.
    [53]Yi Huang, Erin R. Hager, Dawn L et al. A Novel Polyamine Analog Inhibits Growth and Induces Apoptosis in Human Breast Cancer Cells[J]. Clin Cancer Res,2003,9:2769-2775.
    [54]Dandan Rena, Guanghua Penga, Hongxia Huangc, et al. Effect of rhodoxanthin from Potamogeton crispus L. on cell apoptosis in Hela cells[J]. Toxicology in Vitro2006,20(8):1411-1418.
    [55]Jeong-Ki Mina, Jung-Ho Kima, Young-Lai Choc, Yong-Sun Maenga, et al.20(S)-Ginsenoside Rg3 prevents endothelial cell apoptosis via inhibition of a mitochondrial caspase pathway[J]. Biochemical and Biophysical Research Communications,2006,349(3):987-994.
    [56]Hong Zhu, Ze-Hong Miao, Min Huan, et al. Naphthalimides Induce G2 Arrest Through the ATM-Activated Chk2-Execute Pathway in HCT116 Cells[J]. Neoplasia,2009,11:1226-1234.
    [57]Kruczynski A,Vandenberghe I, Pillon A, et al. Preclinical activity of F14512, designed to target tumors expressing anactive polyamine transport system [J]. Invest New Drugs,2011,29 (1):9-21.
    [58]Bousquet P E, Brana M F, Conlon D, et al. Preelinical Evaluation of LU-79553:a novel bisnaphthali-mide with potent antitumor activity[J]. Cancer Res,1995,55:1176-1180.
    [59]Barret JM, Kruczynski A, Vispe S, et al. F14512, a potent antitumor agent targeting topoisomerase II vectored into cancer cells via the polyamine transport system[J]. Cancer Res.2008,68(23):9845-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700