用户名: 密码: 验证码:
多组分体系质量—热量联合交换网络综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质量交换网络(MEN)综合与换热网络(HEN)综合是过程工业实现“节能减排”的重要手段。本文首先根据多组分体系传质过程的特点,提出了能够处理不相容多组分体系质量交换网络综合问题的方法。随后以此为基础,以年度总费用(TAC)最小的质量-热量联合交换网络为目标,着重探索了MEN和HEN的同步综合策略。论文主要研究内容及结果如下:
     (1)为解决由组分溶解性能不同而导致的不相容问题,提出将传质单元理论塔板数作为优化变量的多组分体系MEN综合思想。将这种思想融入截断法与超结构法中,其中前者通过离散截断器、线性化传质方程和给定操作选项等简化手段,可大幅度线性化所建立的混合整数非线性(MINLP)数学模型,简化后的模型采用通用求解软件即可获得最优解;而后者通过与遗传模拟退火算法(GASA)相结合,则可实现目标网络在全局解空间内的最优化。研究表明,本文所提两种方法均能确保所得MEN中的组分浓度值为准确值,不存在文献中因选取“关键组分”而导致部分浓度值与传质单元不相符的情况发生,证明了本文方法在处理多组分体系MEN综合问题时更具合理性,能够用于解决不相容多组分体系的MEN综合问题。
     (2)针对单组分体系质量-热量联合交换网络综合问题,提出基于质量夹点法(MPT)和虚拟温-焓图法(PTHDA)的MEN和HEN同步综合方法。该方法首先在文献的两子网络耦合模式基础上引入贫流股旁路,以期更全面地实现MEN费用和HEN费用在联合交换网络TAC中的权衡。然后提出基于“流股存在性矩阵”和“温差贡献值矩阵”的两子网络同步综合策略,过程中流股的实际存在性、冷热性质和对应优化变量的值由这两个矩阵的乘积来确定。此策略的提出确保了在未知流股换热需求的情况下,本文所提方法仍能实现MEN和HEN的同步综合与优化设计。采用一个文献中的实例对所提方法进行了验证,结果表明无贫流股旁路时,本文所得最优结果与文献结果基本一致,证明了所提方法的有效性;而当有贫流股旁路时,所得最优TAC分别比文献结果和本文无贫流股旁路的结果低19.9%和21.2%,说明引入旁路流股能为解空间提供更多可行解,有可能获得更优的解。
     (3)针对多组分体系质量-热量联合交换网络综合问题,提出基于超结构法的多组分体系MEN和HEN同步综合方法。其中采用超结构法综合MEN,提出无区别换热网络超结构的概念用于HEN综合。无区别换热网络超结构在换热流股冷热性质不确定的情况下,可通过构造潜在换热流股间的匹配,为计算过程中实际存在流股所形成的HEN提供所有可能的结构选项,而在此基础上提出的同步综合策略则可实现MEN和HEN的同步综合。首先将该方法用于单组分算例,所得结果与前文结果基本一致,证明了所提同步综合策略的有效性。随后对一个多组分算例进行质量-热量联合交换网络的优化设计,优化过程中同时考察了传质温度和压力对传质相平衡方程的影响,证明该方法能够用于解决多组分体系的MEN和HEN同步综合问题。
Mass exchange networks (MENs) and heat exchange networks (HENs) are among the most important contributors of process industries to realize the objective of energy conservation and emission reduction. According to the nature of mass transfer processes involving multiple components, MEN synthesis methods are proposed to handle the incompatible multi-component system problem at first in this thesis; then the simultaneous synthesis strategies for MEN and HEN are explored, with regarding the minimum total annual cost (TAC) of combined mass and heat exchange network as target. The main contents and results of this thesis are as follows:
     (1) To handle the incompatible problem that caused by the diverse solubility of components in multi-component systems, the synthesis though of setting tray numbers of mass exchange units as variables are proposed. Merge this thought into the interception method and the superstructure method, then the mixed integer non-linear program (MINLP) mathematical model of the former method can be significantly linearized and able to be solved by general solution software in case of using several simplification activities, including interceptors' discretization, mass transfer equations'linearization and operation options' pre-setting; the latter method can execute the global optimization and find the optimal solutions through its combination with genetic-simulated annealing algorithm (GASA). An example from literature is separately investigated using the proposed two methods. The obtained true concentration values can demonstrate the rationality and the application of the proposed methods in dealing with MEN synthesis problem of multi-component systems.
     (2) A method is presented for purpose of synthesizing the MEN and HEN in a single component system simultaneously. In this method, MEN and HEN in a combined mass and heat exchange network are designed using mass pinch technology (MPT) and pseudo T-H diagram approach (PTHDA), respectively. Based on the sub-networks coupling model in literature, the lean bypass streams, which are employed for sake of getting a more comprehensive tradeoff between the costs of MENs and HENs, are considered firstly in the method. Then, a simultaneous synthesis strategy is proposed based on the formation of steam existence matrix and stream temperature difference contribution value matrix. During the synthesis process, the existence feature, the hot or cold nature, as well as the corresponding variable value of any process stream can be identified through the product of these two matrices. This strategy is a guarantee for the simultaneous synthesis, especially in the case of hot/cold properties of heat exchange streams are unable to be predicted in advance. An example from literature is used to verify the proposed method, and the two cases of no bypass involved and having bypass involved are both investigated for comparison. Results indicate that the optimal network and TAC results of former case are both about the same with those obtained in literature; the optimal TAC of latter case is19.9%and21.2%lower than that of literature and former case, respectively. These comparison results can not only show the effectiveness of proposed method, but also can demonstrate the possibility of obtaining a better solution by involving bypass streams.
     (3) For multi-component systems, a superstructure-based method is proposed for their combined mass and heat exchange networks synthesis. In this method, MENs are designed with the pre-introduced superstructure method, HENs are supposed to be obtained using a new network representation called indistinct HEN superstructure. Indistinct HEN superstructure is possible to provide all possible network options in the case of hot/cold streams are unable to be pre-indentified. It is the basis of synthesis strategy which can ensure the simultaneous design of MENs and HENs. At last, the results of a single-component example and a multi-component example have demonstrated the effectiveness of this proposed method.
引文
[1]中国超越日本成为全球第二大经济体[EB/OL]. (2011,02,14) [2013,07,30]. http://news.xinhuanet.com/fortune/2011-02/14/c_121074485.htm.
    [2]张平.中华人民共和国可持续发展国家报告[EB/OL]. (2012,06,01) [2013,07,30]. http://www.sdpc.gov.cn/xwzx/xwtt/t20120601_483687.htm.
    [3]金涌,李有润,冯久田.生态工业:原理与应用[M].北京:清华大学出版社,2003.
    [4]国民经济和社会发展第十一个五年规划纲要[EB/OL]. (2006,03,16) [2013,07,30]. http://news.xinhuanet.com/misc/2006-03/16/content_4309517.htm.
    [5]国民经济和社会发展第十二个五年规划纲要[EB/OL]. (2011,03,16) [2013,07,30]. http://news.xinhuanet.com/politics/2011-03/16/c_121193916_2.htm.
    [6]杨友麒.可持续发展时代的过程系统集成[J].化工进展,1999,18(3):15-19.
    [7]杨友麒.质量交换网络[J].化工进展,2007,26(2):284-298.
    [8]姚平经主编.化工过程系统工程[M].第二版.大连:大连理工大学出版社,1992:1-3.
    [9]LINNHOFF B, FLOWER J R. Synthesis of heat exchanger network (Ⅰ):systematic generation of energy optimal network [J]. AlChE Journal,1978,24(4):633-642.
    [10]NISHIDA N, STEPHANOPOULOS G, WESTBERG A W. A review of process synthesis [J]. AIChE Journal,1981,27:321-351.
    [11]TEN BROECK H. Economic Selection of Exchanger Sizes [J]. Industrial and Engineering Chemistry, 1944,36(1):64-67.
    [12]HWA C S. Mathematical Formulation and Optimization of Heat Exchanger Networks Using Separable Programming [C]. AIChE-IChemE Symposium Series 4. New York:AIChE,1965:101-106.
    [13]RUDD D F. The Synthesis of System Designs:Ⅰ. Elementary Decomposition Theory [J]. AIChE Journal,1968,14(2):343-349.
    [14]MASSO A H, RUDD D F. The Synthesis of System Designs:Ⅱ. Heuristic Structuring [J]. AIChE Journal,1969,15(1):10-17.
    [15]EL-HALWAGI M M. Process Integration [M]. San Diego:ACADEMIC PRESS,2006:232.
    [16]GUNDERSEN T, NAESS L. The synthesis of cost optimal heat exchanger:An industrial review of the art [J]. Computers and Chemical Engineering,1988,12(6):503-530.
    [17]LINNHOFF B. Pinch analysis-a state-of-the-art overview. Chemical Engineering Research and Design,1993,71(A):503-522.
    [18]JEZOWSKI J. Heat exchanger network grassroot and retrofit design. The review of the state-of-the-art: Part Ⅰ:Heat exchanger network targeting and insight based method of synthesis [J]. Hungarian Journal of Industrial Chemistry,1994,4:279-294.
    [19]JEZOWSKI J. Heat exchanger network grassroot and retrofit design. The review of the state-of-the-art: Part Ⅱ:Heat exchanger network synthesis by mathematical methods and approaches for retrofit design [J]. Hungarian Journal of Industrial Chemistry,1994,4:295-308.
    [20]SHENOY U V. Heat Exchang Network Synthesis:Process Optimization by Energy and Resource Analysis [M]. Houston:Gulf Publ. Co.1995.
    [21]FURMAN K C, Sahinidis N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century [J]. Industrial and Engineering Chemistry Research,2002, 41(10):2335-2370.
    [22]华贲.过程系统能量综合的研究和开发.中国系统工程学会过程系统专业委员会第一次学术交流会,1990.10.
    [23]HOHMANN E C. Optimum networks for heat exchanger [D]. Los Angeles:University of Southern California,1971.
    [24]LINNHOFF B, MASON D R, WARDLE I. Understanding heat exchanger networks [J]. Computers and Chemical Engineering,1978,3:295-302.
    [25]UMEDA T, ITOH J, SHIROKO K. Heat exchanger system synthesis [J]. Chemical Engineering Progressing,1978,74(6):70-76.
    [26]UMEDA T, ITOH J, SHIROKO K. A thermodynamic approach to the synthesis of heat integration systems in chemical processes [J]. Computers and Chemical Engineering,1979,3:273-282.
    [27]LINNHOFF B, TOWNSEND D W, BOLAND D, et al. A User guide on process integration for the efficient use of energy [M]. Rugby:Institution of Chemical Engineers,1982.
    [28]LINNHOFF B AND HINDMARSH E. The pinch design method for heat exchanger networks [J]. Chemical Engineering Science.1983,38(5):745-763.
    [29]SU J L, MOTARD R L. Evolution synthesis of heat exchanger networks [J]. Computers and Chemical Engineering,1984,8(2):67-80.
    [30]CHALLAND T B, COLBERT R W, VENKATESH C K. Computerized heat exchanger networks [J]. Chemical Engineering Progress,1981,77(6):65-71.
    [31]TRTVED K K, O'NEILL B K, ROACH J R. A new dual-temperature design method for the synthesis of heat exchanger networks [J]. Computers and Chemical Engineering,1989,13(6):667-685.
    [32]JEZOWSKI J. A note on the use of dual temperature approach in heat exchanger network synthesis [J]. Computers and Chemical Engineering,1991,15(5):305-312.
    [33]REV E, FONY6 Z. Hidden and Pseudo Pinch Phenomena and Relaxation in the Synthesis of Heat-Exchange Networks [J]. Computers and Chemical Engineering.1986,10 (6),601-607.
    [34]WOOD R M, SUAYSOMPOL K, O'NEILL B K, et al. A New Option for Heat Exchanger Network Design [J]. Chemical Engineering Progress,1991,87 (9):38-43.
    [35]SUAYSOMPOL K, WOOD R M. The Flexible Pinch Design Method for Heat Exchanger Networks Part Ⅰ:Heuristic Guidelines for Free Hand Designs [J]. Chemical Engineering Research and Design, 1991,69(6):458-464.
    [36]DURAN M A, GROSSMANN I E. Simultaneous optimization and heat integration of chemical processes. AIChE Journal,1986,32:123-138.
    [37]王莉,姚平经,袁一.换热网络的新设计方法:三温差法的应用研究[J].化学工程,1995,23(1):25-30.
    [38]王莉,王玲,姚平经等.一种具有不同传热膜系数网络的新设计方法-虚拟温度法[J].大连理工大学学报,1995,35(2):203-207.
    [39]李晖,王莉,姚平经.采用虚拟温度法设计换热网络[J].高校化学工程学报,1997,11(1):100-103.
    [40]AHMAD S, LINNHOFF B. Supertarget:Different process structures for different economics [J]. Journal of Energy Resources Technology,1989,11(3):131-136.
    [41]孙亚琴.用虚拟温度法进行具有多流股换热器的换热器网络综合[D].大连:大连理工大学,2003.
    [42]肖武.基于流股有效温位的大规模多流股换热器网络综合[D].大连:大连理工大学,2006.
    [43]原栋文,王瑶,肖武等.利用温-焓图自动综合多流股换热器网络[J].计算机与应用化学,2007,24(2):235-238.
    [44]SERNA G M, JIMENEZ G A, PONCE O J M. Targets for heat exchanger network synthesis with different heat transfer coefficicents and non-uniform exchanger specifications [J]. Chemical Engineering Research and Design,2007,85(10):1447-1457.
    [45]SERNA M, JIMENEZ A. An area targeting algorithm for the synthesis of heat exchanger networks [J]. Chemical Engineering Science,2004,59(12):2517-2520.
    [46]靳遵龙,董其武,刘敏珊.基于经济学观点确定换热网络传热温差[J].化学工程,2007,35(7):11-14.
    [47]SALAMA A I A. Numerical construction of HEN composite curves and their attributes [J]. Computers and Chemical Engineering,2009,33(1):181-190.
    [48]ALWI S R W, MANAN Z A. STEP-A new graphical tool for simultaneous targeting and design of a heat exchanger network [J]. Chemical Engineering Journal,2010,162(1):106-121.
    [49]SUN K N, ALWI S R W, MANAN Z A. Heat exchanger network cost optimization considering multiple utilities and different types of heat exchangers [J]. Computers and Chemical Engineering, 2013,49:194-204.
    [50]LIEW P Y, ALWI S W A, VARBANOV P S, et al. A numerical technique for Total Site sensitivity analysis [J]. Applied Thermal Engineering,2012,40:397-408.
    [51]ABBOOD N K, MANAN Z A, ALWI S W A. A combined numerical and visualization tool for utility targeting and heat exchanger network retrofitting [J]. Journal of Cleaner Production,2012,23:1-7.
    [52]FLOUDAS C A, CIRIC A R, GROSSMANN I E. Automatic synthesis of optimum heat exchanger network configurations [J]. AIChE Journal,1986,32:276-290.
    [53]FLOUDAS C A, GROSSMANN I E. Synthesis of flexible heat exchanger networks for multiperiod operation [J]. Computers and Chemical Engineering,1986,10(2):153-168.
    [54]ZHU X X. Automated design method for heat exchanger network using block decomposition and heuristic rules. Computers and Chemical Engineering [J],1997,21(10):1095-1104.
    [55]MIKKELSEN J, QVALE B. A combinatorial method for the automatic generation of multiple, near-optimal heat exchanger networks [J]. Chemical Engineering Reserch and Design,2001, 79(6):663-672.
    [56]KHORASANY R M, FESANGHARY M. A novel approach for synthesis of cost-optimal heat exchanger networks [J]. Computers and Chemical Engineering,2009,33(8):1363-1370.
    [57]TOFFOLO A. The synthesis of cost optimal heat exchanger networks with unconstrained topology [J]. Applied Thermal Engineering,2009,29(17-18):3515-3528.
    [58]ANANTHARAMAN R, NASTAD I, NYGREEN B, et al. The sequential framework for heat exchanger network synthesis-The minimum number of units sub-problem [J]. Computers and Chemical Engineering,2010,34(11):1822-1830.
    [59]FLOUDAS C A, GROSSMANN I E. Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures [J]. Computers and Chemical Engineering,1987,11(4):319-336.
    [60]YUAN X, PIBOULEAU L, DOMENCH S. Experiments in process synthesis via mixed-inter programming [J]. Computers and Chemical Engineering,1989,25(2):99-116.
    [61]YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration (Ⅰ):Area and energy targeting and modeling of multistream exchangers [J]. Computers and Chemical Engineering,1990,14 (10):1151-1164.
    [62]YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration (Ⅱ):Heat exchanger network synthesis [J]. Computers and Chemical Engineering,1990,14 (10):1165-1184.
    [63]袁希钢.混合整数非线性规划与化学工程系统最优化设计(Ⅱ):换热器网络的最优合成[J].化工学报,1991,1:40-46.
    [64]BJORK K M, WESTERLUND T. Global optimization of heat exchanger network synthesis problem with and without the isothermal mixing assumption [J]. Computers and chemical Engineering,2002, 26:1581-1593.
    [65]ISAFIADE A J, FRASER D M. Interval-based MINLP superstructure synthesis of heat exchange networks [J]. Chemical Engineering Reserch and Design,2008,86(3):245-257.
    [66]ISAFIADE A J, FRASER D M. Interval based MINLP superstructure synthesis of heat exchanger networks for multi-period operations [J]. Chemical Engineering Reserch and Design,2010, 88(10):1329-1340.
    [67]AZEEZ O S, ISAFIADE A J, FRASER D M. Supply-based superstructure synthesis of heat and mass exchange networks [J]. Computers and Chemical Engineering,2013,56:184-201.
    [68]Bagajewicz MJ, Manousiouthakis V. Mass/Heat Exchange Network Representation of Distillation Network [J]. AIChE Journal,1992,38 (11):1769-1800.
    [69]Bagajewicz M J, Pham R, Manousiouthakis V. On the State Space Approach to Mass/Heat Exchanger Network Design [J]. Chemical Engineering Science,1998,23(14):2595-2621.
    [70]DONG H G, LIN C Y, CHANG C T. Simultaneous optimization strategy for synthesizing heat exchanger networks with multi-stream mixers [J]. Chemical Engineering Research and Design,2008, 86(3):299-309.
    [71]PAPALEXANDRI K P, PISTIKOPOULOS E N. Synthesis and Retrofit Design of Operable Heat Exchanger Networks.1. Flexibility and Structural Controllability Aspects [J]. Industrial and Engineering Chemistry Research.1994,33 (7):1718-1737.
    [72]PAPALEXANDRI K P, PISTIKOPOULOS E N. Synthesis and Retrofit Design of Operable Heat Exchanger Networks.2. Dynamics and Control Structure Considerations [J]. Industrial and Engineering Chemistry Research.1994,33 (7):1738-1755.
    [73]SHIVAKUMAR K, NARASIMHAN S. A robust and efficient NLP formulation using graph theoretic principles for synthesis of heat exchanger networks [J]. Computers and Chemical Engineering,2002, 26:1517-1532.
    [74]ATHIER G, FLOQUET P, PEBOULEAU L, et al. Synthesis of Heat-Exchanger Network by simulated Annealing and NLP Procedures [J]. AIChE Journal,1997,43:3007-3030.
    [75]王克峰.改进遗传算法研究及其在过程系统综合中的应用[D].大连:大连理工大学,1997.
    [76]俞红梅.全过程系统能量综合方法的研究[D].大连:大连理工大学,1998.
    [77]魏关锋.用遗传/模拟退火算法进行具有多流股换热器的换热器网络综合[D].大连:大连理工大学,2003.
    [78]肖丰.柔性换热网络综合与设备清洗安排同步优化[D].大连:大连理工大学,2011.
    [79]JEZOWSKI J, BOCHENEK R, POPLEWSKI G. On application of stochastic optimization techniques to designing heat exchanger-and water networks [J]. Chemical Engineering Processing,2007,46(11): 1160-1174.
    [80]REZAEI E, SHAFIEI S. Heat exchanger networks retrofit by coupling genetic algorithm with NLP and ILP method [J]. Computers and Chemical Engineering,2009,33(9):1451-1459.
    [81]LUO X, WEN Q Y, FIEG G. A hybrid genetic algorithm for synthesis for heat exchanger networks [J]. Computers and Chemical Engineering,2009,33(6):1169-1181.
    [82]FIEG G, LUO X, JEZOWSKI J. A monogenetic algorithem for optimal design of large-scale heat exchanger networks [J]. Chemical Engineering Processing,2009,48(11-12):1506-1516.
    [83]GUPTA A, GHOSH P. A randomized algorithm for the efficient synthesis of heat exchanger networks [J]. Computers and Chemical Engineering,2010,34(10):1632-1639.
    [84]DIPAMA J, TEYSSEDOU A, SORIN M. Synthesis of heat exchanger networks using genetic algorithms [J]. Applied Thermal Engineering,2008,28(14-15):1763-1773.
    [85]LIN B, MILLER D C. Solving heat exchanger network synthesis problems with Tabu Search [J]. Computers and Chemical Engineering,2004,28:1451-1464.
    [86]夏涛,贾涛,程杰.群智优化算法同步综合换热网络[J].北京化工大学学报,2009,36(1):97-101.
    [87]GRIME L E, RYCHERNER M D. Westerberg A W. The synthesis and evolution of networks of heat exchanger that figure the minimum number of units [J]. Chemical Engineering Communication,1982, 14:339-360.
    [88]Hartmann K, Kauschus W, Wagenknecht M. Optimal design of chemical process systems by fuzzy methods [C]. Proceeding of MATCHEM Ⅱ, Bulatontured, Hugury 1986:156-165.
    [89]陈丙珍,沈静珠,何小荣等.热回收网络优化综合的专家系统[J].石油炼制,1988,19(4):34-38.
    [90]陆明亮.化工专家系统工具-CHEEST的开发[D].大连:大连理工大学,1990.
    [91]项曙光.换热网络系统软件HENS V2.0 [J]青岛化工学院学报.1993,14(2):74.
    [92]李志红.换热器网络最优合成及其弹性分析和弹性合成的研究[D].广州:华南理工大学,1998.
    [93]张慧平,刘洪谦,麻德贤.专家系统十遗传算法在换热网络综合中的应用[J].北京化工大学学报,2001,25(20):13-16.
    [94]张平,何小荣.换热网络改造综合中初始网络调优的专家系统[J].计算机与应用化学,2002,19(3):218-222.
    [95]苏文杰.换热网络优化规则及求解策略研究[D].大连:大连理工大学,2005.
    [96]SALAMA A I A. Heat exchanger network synthesis based on minimum rule variatitions [J]. Applied Thermal Engineering,2008,28(10):1234-1249.
    [97]HUANG Y L, FAN L T. Distributed strategy for integration of process design and control [J]. Computers and Chemical Engineering,1992,16(5):497-522.
    [98]毕立群.换热网络智能综合方法的理论研究与实践[D].北京:北京化工学院,1995.
    [99]HOPFIELD J J. Neural networks and physical systemas with emergent collective computational abilities [J]. Proceedings of the National Academy of Sciences,1982,79:2554-2558.
    [100]ISLAMOGLU Y. A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger-use of an artificial neural network model [J]. Applied Thermal Engineering, 2003,23:243-249.
    [101]VARSHNEY K, PANIGRAHI PK. Artificial neural network control of a heat exchanger in a closed flow air circuit [J]. Applied Soft Computing,2005,5(4):441-465.
    [102]AKBARI S, HEMINGSON H B, BERIAULT D, et al. Application of neural networks to predict the steady state performance of a Run-Around Membrane Energy Exchanger [J]. International Journal of Heat and Mass Transfer,2012,55 (5-6):1628-1641.
    [103]AKBARI S, HEMINGSON H B, BERIAULT D, et al. Application of neural networks to predict the transient performance of a Run-Around Membrane Energy Exchanger for yearly non-stop operation [J]. International Journal of Heat and Mass Transfer,2012,55(21-22):5403-5416.
    [104]TANTIMURATHA L, KOKOSSIS A C, MULLER F U. The heat exchanger network design as a paradigm of technology integration [J]. Applied Thermal Engineering,2000,20(15-16):1589-1605.
    [105]El-Halwagi M M, Manousiouthakis V. Synthesis of Mass Exchange Networks [J]. AIChE Journal, 1989,35(18):1233-1244.
    [106]陈理.基于传质浓度差同步优化多组分质量交换网络[D].大连:大连理工大学,2008.
    [107]HALLALE N. Capital Cost Targets for the Optimum synthesis of massexchange networks [D]. Cape Town:University of Cape Town,1998.
    [108]HALLALE N, ERASER D M. Capital cost targets for mass exchange networks. A special case: Waste minimisation. Chemical Engineering [J]. Science,1998,53(2):293-313.
    [109]HALLALE N, FRASER D M. Capital and total cost targets for mass exchange networks Part 1: Simple capital cost models [J]. Computers and Chemical Engineering,2000,23(11):1661-1679.
    [110]HALLALE N, FRASER D M. Capital and total cost targets for mass exchange networks Part 2: Detailed capital cost models [J]. Computers and Chemical Engineering,2000,23(11):1681-1699.
    [111]EL-HALWAGI M M, HAMAD A A, GARRISON G W. Synthesis of Waste Interception and Allocation Networks [J]. AIChE Journal,1996,42(11):3087-3101.
    [112]薛东峰.废物最小化为目标的质量集成方法研究[D].大连:大连理工大学,2001.
    [113]GABRIEL F B, EL-HALWAGI M M. Simultaneous synthesisi of waste interception and material reuse networks:problem reformulation for global optimization [J]. Environmental Progress,2005, 24(2):171-180.
    [114]LOVELADY E M, EL-HALWAGI M M. Design and integration of eco-industriai parks for managing water resources [J]. Environmental Progress and Sustainable Energy,2009,28(2): 265-272.
    [115]NAPOLES-RJVERA F, PONCE-ORTEGA J M, EL-HALWAGI M M, et al. Global optimization of mass and property integration networks with in-plant property interceptors [J]. Chemical Engeering Science,2010,65(15):4363-4377.
    [116]RUBIO-CASTRO E, PONCE-ORTEGA J M, SERNA-GONZALEZ M, et al. A global optimal formulation for the water integration of eco-industrial parks considering multiple pollutants [J]. Computers and Chemical Engineering,2011,35(8):1558-1574.
    [117]KHEIREDDINE H, DADMOHAMMADI Y, DENG C, et al. Optimization of direct recycle networks with the simultaneous consideration of property, mass, and thermal effects [J]. Industrial and Engineering Chemistry Research,2011,50(7):3754-3762.
    [118]RUBIO-CASTRO E, PONCE-ORTEGA J M, SERNA-GONZALEZ M, et al. Global optimization in property-based interplant water integration [J], AIChE Journal,2013,59(3):813-833.
    [119]PAPALEXANDRI K P, PISTIKOPOULOS E N, FLOUDAS A. Mass exchange networks for waste minimization:A simultaneous approach. Chemical Engineering Research and Design,1994,72(3): 279-294.
    [120]李绍军,阳永荣.利用改进的遗传算法进行质量交换网络的最优综合[J].化工学报,2002,53(1):60-64.
    [121]CHEN C L, HUNG P S. Simultaneous synthesis of mass exchange networks for waste minimization [J]. Computers and Chemical Engineering,2005,29(7):1561-1576.
    [122]SZITKAI Z, FARKAS T, LELKES Z, et al. Fairly Linear Mixed Integer Nonlinear Programming Model for the Synthesis of Mass Exchange Networks [J]. Industrial and Engineering Chemistry Research,2006,45(1):236-244.
    [123]1SAFIADE A J, FRASER D M. Interval based MINLP superstructure synthesis of mass exchange networks [J]. Chemical Engineering Research and Design,2008,86:909-924.
    [124]HALLALE N, FRASER D M. Supertargeting for Mass Exchange Networks Part Ⅰ:Targeting and Design Techniques [J]. Chemical Engineering Research and Design,2000,78(2):202-207.
    [125]HALLALE N, FRASER D M. Supertargeting for Mass Exchange Networks Part Ⅱ:Applications [J]. Chemical Engineering Research and Design,2000,78(2):208-216.
    [126]ALVA-ARGAEZ A, VALLIANATOS A AND KOKOSSIS A. A multi-contaminant transshipment model for mass exchange networks and wastewater minimization problems [J]. Computers and Chemical Engineering,1999,23(10):1439-1453.
    [127]WILSON S, MANOUSIOUTHAKIS V. Minimum utility cost for a multi-component mass exchange operation [J]. Chemical Engineering Science,1998,53(22):3887-3896.
    [128]王江峰,沈静珠,李有润,胡山鹰.不相容多组分质量交换网络综合[J].化工学报,2004,55(2):297-304.
    [129]大连理工大学.化工原理.下册[M].北京:高等教育出版社,2009.
    [130]SRINIVAS B K, EL-HALWAGI M M. Synthesis of Combined Heat and Reactive Mass Exchange Networks [J]. Chemical Engineering Science,1994,49(13):2059-2074.
    [131]SAVELSKI M J, BAGAJEWICZ M J. Design and retrofit of water utilization systems in refineries and process plants [C]. Los Angeles:American Institute of Chemical Engineering Annual Meeting, 1997,188.
    [132]SAVULESCU L E, SMITH R. Simultaneous energy and water minimization [C]. AIChE Annual Meeting, Miami,1998.
    [133]SAVULESCU L, KIM J K, SMITH R. Studies on simultaneous energy and water minimisation-Part I:Systems with no water re-use [J]. Chemical Engineering Science,2005,60(12):3279-3290.
    [134]SAVULESCU L, KIM J K, SMITH R. Studies on simultaneous energy and water minimization-Part II:Systems with maximum re-use of water [J]. Chemical Engineering Science,2005,60(12): 3291-3308.
    [135]LEEWONGTANAWIT B, KIM J K. Improving energy recovery for water minimization [J]. Energy, 2009,34(7):880-893.
    [136]BAGAJEWICZ M J, RODERA H, SAVELSKI M. Energy efficient water utilization systems in process plants [J]. Computers and Chemical Engineering,2002,26:59-79.
    [137]DU J, MENG X, DU H, et al. Optimal design of water network with energy integration in process industries [J]. Chinese Journal of Chemical Engineering,2004,12(2):247-255.
    [138]LEEWONGTANAWIT B, KIM J K. Synthesis and optimisation of heat-integrated multiple-contaminant water systems [J]. Chemical Engineering and Processing:Process Intensification,2008,47(4):670-694.
    [139]DONG H G, LIN C Y, CHANG C T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks [J]. Chemical EngineeringScience,2008, 63(14):3664-3678.
    [140]FENG X, LI Y, SHEN R. A new approach to design energy efficient water allocation networks [J]. Applied Thermal Engineering,2009,29(11-12):2302-2307.
    [141]KIM J, KIM J, KIM J, et al. A simultaneous optimization approach for the design of wastewater and heat exchange networks based on cost estimation [J]. Journal of Cleaner Production,2009,17(2): 162-171.
    [142]CHEN C L, LIAO H L, JIA X P, et al. Synthesis of heat-integrated water-using networks in process plants [J]. Journal of the Taiwan Institute of Chemical Engineers,2010,41(4):512-521.
    [143]LIAO Z, RONG G, WANG J, YANG Y. Systematic optimization of heat-integrated water allocation networks [J]. Industrial and Engineering Chemistry Research,2011,50(11):6713-6727.
    [144]BOK M, PIBOULEAU L, MONTASTRUC L, et al. Minimizing water and energy consumptions in water and heat exchange networks [J]. Applied Thermal Engineering,2012,36:442-455.
    [145]SAHU G C, BANDYOPADHYAY S. Energy optimization in heat integrate^ water allocation networks [J]. Chemical Engineering Science,2012,69(1):352-364.
    [146]AHMETOVIC E, KRAVANJA Z. Simultaneous synthesis of process water and heat exchanger networks [J]. Energy,2013(57):236-250.
    [147]EL-HALWAGIM M. A process synthesis approach to the dilemma of simultaneous heat recovery, waste reduction and cost effectiveness [C]. Proceedings of the Cairo Third International Conference on Renewable Energy Sources, Cairo,1992,2:579-594.
    [1481 EDGAR T F, HUANG Y L. Simultaneous recovery of waste chemicals and energy in an oil refinery. ACS Special Symposium on Emerging Technologies for Hazardous Waste Management [C]. Atlanta: Book of Extended Abstracts,1993:27-29.
    [149]PAPALEXANDRI K P, PISTIKOPOULOS E N. A multiperiod MINLP for the synthesis of flexible heat and mass exchange networks [J]. Computers and Chemical Engineering,1994,18(11/12): 1125-1139.
    [150]ISAFIADE A, FRASER D M. Optimisation of combined heat and mass exchanger networks using pinch technology [J]. Asia-Pacific Journal of Chemical Engineering,2007,2(6):554-565.
    [151]ISAFIADE A J, FRASER D M. Interval based MINLP superstructure synthesis of combined heat and mass exchanger networks [J]. Chemical Engineering Research and Design,2009,87(11): 1536-1542.
    [152]都健,李秀峰,陈理,姚平经.超结构法分步综合热集成的质量交换网络[J].化工学报.2010,61(10):2636-2643.
    [153]李秀峰,分级超结构法综合热集成的质量交换网络[D].大连:大连理工大学,2010.
    [154]ROSENTHAL R E. GAMS—User's Guide. Washington:GAMS Development Corporation,2007.
    [155]魏传江,王浩,谢新民,孙秀芬等编译[M]. GAMS用户指南.北京:中国水利水电出版社,2009.
    [156]VAZQUEZ-CASTILLO J A, PONCE-ORTEGA J M, SEGOVIA-HERNANDEZ, et al. A multi-objective approach for property-based synthesis of batch water networks [J]. Chemical Engineering and Processing:Process Intensification,2013,65:83-96.
    [157]ZHOU L, LIAO Z, WANG J, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network [J]. International Journal of Hydrogen Energy,2012,37(23):18163-18174.
    [158]OLIVA D G, FRANCESCONI J A, MUSSATI M C, et al. Modeling, synthesis and optimization of heat exchanger networks [J]. International Journal of Hydrogen Energy.2011,36(15):9098-9144.
    [159]KARTHICK R, KUMARAPRASAD G, SRUTI B. Hybrid optimization approach for water allocation and mass exchange network [J]. Resources, Conservation and Recycling,2010,54(11): 783-792.
    [160]PONCE-ORTEGA J M, EL-HALWAGI M M, JIMENEZ-GUTIERREZ. Global optimization for the synthesis of property-based recycle and reuse networks including environmental constraints [J]. Computers and Chemical Engineering,2010,34(3):318-330.
    [161]CHEN C L, HUNG P S. Synthesis of flexible heat exchange networks and mass exchange networks [J]. Computers and Chemical Engineering,2007,31(12):1619-1632.
    [162]BETHKE A D. Genetic algorithm as function optimizers [D]. Michigan:Michigan University,1980.
    [163]DURAN M A, GROSSMANN I E. An outer approximation algorithm for a class of mixed-integer nonlinear programs [J]. Mathematical Programming,1986,36:307-339.
    [164]FLETCHER R, LEYFFER S. Solving mixed integer nonlinear programs by outer approximation [J]. Mathematical Programming,1994,66(3):327-349.
    [165]BENDERS J F. Partitioning procedures for solving mixed-variables programming problems [J]. Numerische Mathematik,1962,4:238-252.
    [166]BAGAJEWICZ M J, MANOUSIOUTHAKIS V. On the generalized benders decomposition [J]. Computers and Chemical Engineering,1991,15(10):691-700.
    [167]SAHINIDIS N V, GROSSMANN I E. Convergence properties of generalized benders decomposition [J]. Computers and Chemical Engineering,1991,15(7):481-491.
    [168]ZAPPE C.J, CABOT A V. Application of generalized benders decomposition to certain nonconvex programs [J]. Computers and Mathematics with Applications,1991,21(6-7):181-196.
    [169]KOCIS G R, GROSSMANN I E. Global optimization of nonconvex MINLP problems in process synthesis [J]. Ind. Eng. Chem. Res.,1988,27(8):1407-1421.
    [170]HOLLAND J H. Adaptation in natural and artificial systems [M]. Ann Arbor:Univ. of Michigan Press,1975.
    [171]KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated Annealing [J]. Science, 1983,220:671-680.
    [172]杜红彬,薛东峰,姚平经.改进的自适应模拟退火算法及其在过程综合中的应用[J].高校化学工程学报,2002,16(1):106-110.
    [173]TREYBAL R E. Mass transfer operations (3rd Edition) [M]. Singapore:McGraw-Hill,1981.
    [174]VISWANATHEN J, GROSSMANN I E. A combined penalty function and outer approximation method for MINLP optimization [J]. Computers and Chemical Engineering,1990,14(7):769-782.
    [175]FLOUDAS C A, AGGARWAL A, CIRIC A R. Global Optimum Search for Nonconvex NLP and MINLP Problems [J]. Computers and Chemical Engineering,1989,13 (10):1117-1132.
    [176]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [177]RICHARDSON J, PALMER M, LIEPINS G, et al. Some guidelines for genetic algorithms with penalty functions [G]. Proceedings of Third International Conference on Genetic Algorithms. San Francisco:Morgan Kaufinann Publishers Inc,1989:191-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700