用户名: 密码: 验证码:
电沉积非晶态/纳米晶Ni-Mo合金阴极材料的制备及其改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解水制氢是制氢技术中最具应用前景的一种技术。目前工业使用的Fe、Ni电极电能消耗居高不下,降低阴极的析氢过电位迫在眉睫,Ni-Mo合金因其催化活性好成为研究的热点。但从实际应用考虑,Ni-Mo合金的活性还有待提高,稳定性也是其应用的关键制约因素。本文从成分、结构和复合三方面着手提高其电催化活性和稳定性。在碱性镀液中成功制备了非晶/纳米晶混合结构Ni-Mo合金,系统研究了制备工艺、组元含量以及非晶与纳米晶结构的比例对其电化学活性的影响,首次向Ni-Mo合金镀液中分别添加稀土La、Ce元素卤化物,以及在镀液中添加ZrO_2纳米颗粒进行复合镀,研制开发了非晶/纳米晶Ni-Mo-La、Ni-Mo-Ce和Ni-Mo/ZrO_2合金电极,具有很好的电化学活性和较好的电解稳定性。
     以碱式碳酸镍为镍的主盐,在弱碱性条件下进行电镀。首先研究电镀镀液组成及主要工艺参数对电沉积非晶/纳米晶Ni-Mo合金的镀层结构、成分及其析氢性能的影响。当钼酸盐浓度在0.04~0.1mol·L~(-1)时,镀层钼原子含量在21.0~26.0at.%之间,镀层为非晶态含量大于60wt.%的混晶结构,具有较高的析氢催化活性。在80℃、7mol·L~(-1)NaOH溶液中,D为100mA·cm~(-2)时,非晶/纳米晶Ni-Mo_(23.16)合金电极的析氢过电位比纳米Ni电极降低约400mV,同时比Ni-Mo-Fe、Ni-Mo-Co、Ni-S、Ni-P合金电极的析氢电位分别降低约85mV、95mV、140mV和195mV。
     在此基础上添加稀土卤化物,获得了非晶/纳米晶Ni-Mo-La、Ni-Mo-Ce合金电极。当稀土La、Ce加入量分别为1.6g·L~(-1)、2.0g·L~(-1)时,镀层具有最佳的物理化学性能,良好的耐蚀性能和析氢催化活性。80℃高温条件下的碱性溶液中,非晶/纳米晶Ni-Mo_(25.03)-La_(0.92)合金电极的析氢过电位比非晶/纳米晶Ni-Mo_(23.16)合金电极进一步降低了约30mV。稀土元素的引入不仅促进了非晶态的形成和比表面积的增加,同时提高了合金电极的析氢催化活性。Ni-Mo、Ni-Mo-RE(La,Ce)合金的结构形态与Mo、RE元素还原过程中的价态有关,其还原过程为多步还原过程。混晶结构合金具有储氢材料的特性,其电解析氢过程包含吸氢-储氢-脱附的过程。ZrO_2纳米颗粒改性的复合镀层Ni-Mo_(22.68)/ZrO_2,室温条件电解时仍具有较好的析氢催化活性良好的耐腐蚀性能。
     模拟工业条件下的电解实验表明,混晶结构合金具有较好的电化学稳定性和析氢催化活性。Ni-Mo合金电极失效的原因与Mo元素的溶出有关,稀土La和纳米颗粒ZrO_2的存在阻止了Mo的溶出。非晶/纳米晶Ni-Mo_(25.03)-La_(0.92)、Ni-Mo_(18.68)合金的热分析表明,两种合金的结构稳定性同比非晶态Ni-Mo_(37)wt.%合金有所降低,较低温度下的热处理有利于提高合金电极的析氢催化活性。
Water electrolysis is one of the most efective techniques to produce hydrogen. Butthe high energy consumption restricts its large-scale application due to high hydrogenevolution reaction (h.e.r.) overpotential caused by ferrous or nickel electrodes, whichare widely used in industry. Therefore, it is urgent to get more active electrodes forh.e.r. in alkaline media. Ni-Mo alloy is considered as a very suitable one in view ofhigh electrochemical activity, high stability and low cost. The activity and stability ofNi-Mo alloy are the key constraints for its applications, so that the composition,microstructure and complex modification Ni-Mo alloys have been studied in thisarticle. The amorphous/nanocrystalline Ni-Mo alloys were successfully obtained in analkaline bath, and the effectes of the preparation process, composition and theproportion of amorphous or nanocrystalline phase on the electrochemical activitywere also discussed in this paper. In order to improve its activity and stability further,lanthanum, cerium and nano-particles ZrO_2were added into the electrodepositionplating to prepare amorphous/nanocrystalline Ni-Mo-La, Ni-Mo-Ce and Ni-Mo/ZrO_2electrodes, respectively, which are based on systematical study of electrodepositingamorphous/nanocrystalline Ni-Mo coatings. And the results showed that they all havea good electrochemical activity and a better electrolysis stability.
     The electrodeposition is controlled in weak alkaline solution with additional nickelcarbonate as the main salt. The amorphous/nanocrystalline Ni-Mo coatings areobtained by electrodeposition on low carbon steel sheet. The effects ofelectrodeposition parameters on the deposites microstructure and electrochemicalcatalysis activity are investigated. The results showed that the deoxidized Mo contentis about21.0~26.0at.%with molybdate concentration0.04~0.1mol·L~(-1)in solution,while the microstructure is composed of more than60wt.%amorphous phase andother nanocrystalline phase with the best electrochemical catalytic activity. The resultsof the electrochemical parameters effect and h.e. properties showed that theamorphous/nanocrystalline Ni-Mo alloy had a better h.e. performance. The cathode electrode hydrogen evolution patterns aquired by linear sweep voltammetry (LSV) at80℃,7mol·L~(-1)NaOH solution show that, when D=100mA·cm~(-2), the h.e.overpotential of Ni-Mo_(23.16)electrode is about400mV lower than that of nano-Nielectrode, about85mV,95mV,140mV and195mV lower than that of Ni-Mo-Fe,Ni-Mo-Co, Ni-S, Ni-P electrodes, respectively.
     The Ni-Mo-La and Ni-Mo-Ce alloys were obtained with lanthanum halide andcerium halide solution added into Ni-Mo bath plating, respectively. The morphologyof surface particles gradually transform from spherical particles into sand-like,meticulous and flat particles. When the concentration of lanthanum and cerium isabout1.6g·L~(-1),2.0g·L~(-1)respectivly, the deoposites can obtain the best physical andchemical properties, the better corrosion resistance and higher electrocatalyticperformance. The h.e. overpotential of amorphous/nanocrystalline Ni-Mo_(25.03)-La_(0.92)electrode is about30mV lower than that of amorphous/nanocrystalline Ni-Mo_(23.16)electrode in alkaline solution electrolysis when80℃, D=100mA·cm~(-2). The additionof rare earth not only promote the amorphous formation but aslo increase the surfacearea, while the electrode catalytic activity of hydrogen evolution is increased. Thestructural form of the Ni-Mo and Ni-Mo-RE (La, Ce) alloys have greatly beeneffected by the Mo, RE valence state, and so for a multi-step deoxidization. Theamorphous/nanocrystalline Ni-Mo alloy electrolysis has a characteristic ofcomplex-hydrogen evolution process. Meanwhile, the amorphous/nanocrystallineNi-Mo-La alloy has a certain capacity of storing hydrogen, and its h.e.r. is in anadsorption hydrogen-hydrogen storage-desorption hydrogen process. The h.e.performance of Ni-Mo_(22.68)/ZrO_2co-electrode modified with nano-particles ZrO_2has abetter catalytic activity and corrosion resistance at room temperature, alkaline solutionelectrlysis.
     Electrolysis experiments under industrial conditions showed that theamorphous/nanocrystalline alloys have a good electrochemical stability and bettercatalytic activity of hydrogen evolution. The electrolysis experiments results showedthe weakness of Ni-Mo alloy eletrodes during eletrolysis process is related to themolybdenum dissolution. The existence of La and nano-ZrO_2particles can prevent theMo dissolution and keep the h.e. performances better. Crystallization dynamics fromdifferential scanning calorimetry (DSC) showed that the microstructure stability of theamorphous/nanocrystalline Ni-Mo_(25.03)-La_(0.92)and Ni-Mo_(18.68)alloys are inferior to theamorphous Ni-Mo_(37)wt.%alloy. Heat treatment at lower temperature can help improve the electrode catalytic activity of hydrogen evolution.
引文
[1] Kreuter W. Hofmann H. Electrolysis: The important energy transformer in a world ofsustainable energy. Int.J. Hydrogen Energy,1998,2(8):661-666.
    [2] Basic Research Needs for the Hydrogen Economy, Report from the Basic Energy SciencesWorkshop on Hydrogen Production, Storage, and Use, US Department of Energy, Office ofScience Report prepared by Argonne National Laboratory,5,2003(http://www.sc.doe.gov/bes/hydrogen.pdf).
    [3] Hijikata T. Research and development of international clean energy network using ydrogenenergy (WE-NET), Int. J. Hydrogen Energy,2002,27(2):115-129.
    [4] Kazim A, Veziroglu TN. Utilization of Solar-Hydrogen Energy in the UAE to Maintain itsshare in the World Energy Market for the21st Century. Renewable Energy2001,24(2):259-274.
    [5] Abdallah M.A.H., Asfour S.S., Veziroglu T.N. Solar-Hydrogen Energy System for Egypt, Int.J. Hydrogen Energy,1999,24(6):505-517.
    [6] Mao.Z.Q. Hydrogen-a Future Clean Energy in China [A], Symposium on HydrogenInfrastructure Technology for Energy&Fuel Applications,2003,11. The Hong KongPolytechnic University, Hong Kong,27-33.
    [7] Steinfeld A., Palumbo R. Solar thermochemical process technology, Encyclopedia ofPhysical Science&Technology,2001,15:237-256.
    [8] Middleton P., Larson R., Nicklas M., etal. Renewable Hydrogen Forum: A summary ofexpert opinions and policy recommendations [Z], National Press Club, Washington DC,10,2003.
    [9]陈进富.制氢技术.新能源.1999,21(4):10-14.
    [10] Giz M.J., Machado S.A.S., Avaca L.A., et al. High area Ni-Zn and Ni-Co-Zn co-deposits ashydrogen electrodes in alkaline solutions, Appl Electrochem,1992,22(8):973-977
    [11] Winter C.J., Niisch J. Hydrogen as an Energy Carrier Technology.Boca Raton. CRC Press,1986.
    [12] Donitz W., Erdle E.. High-temperature electrolysis of water vapor-status of development andperspectives for application, Int J Hydrogen Energy,1985,10(5):291-295.
    [13] Schiller G, Henne R, Mohr P, etal. High performance electrodes for an advancedintermittently operated10-kW alkaline water electrolyzer, Hydrogen Energy,1998,23:761-765.
    [14] Hout J Y, Brossard L. Insitu activation of nickel cathodes by sodium molybdate duringalkaline water electrolysis at constant current. Appl Electrochem,1990,20:281-288.
    [15] Hideki K.. Periodic variation of exchange current density of hydrogen electrode reactionwith atomic number and reaction mechanism, J. Electrochem. Soc.,1966,113(11):1095-1111.
    [16] Choo R.T.C, Toguri J.M.. Mass transfer and electrocrystallization analysis of nanocrystallinenickel production by pulse plating, J. Appl. Electrochim.,1995,25:384-403
    [17] Chen H.S. Role of chemical bonding in metallic glasses, Acta Metalluraica,1973,21:395-400
    [18] Grigera T S, Martin-Mayor V, Parisi G, et al. Phonon interpretation of the ‘boson peak’ insupercooled liquids, letters to nature.2003,422(20):289-292
    [19] Hideaki Kita. Horiuti’s generalized rate expression and hydrogen electrode reaction, J.Molecular Catalysis A: Chemical,2003,199:161-174
    [20]张季爽,吕瑶姣,李青莲.过渡金属d%对析氢电催化活性的影响.中国化学会电化学专业委员会,第七届全国电化学会议论文摘要集.吉林长春,1993,9, P56.
    [21]曲永和,李青莲.金属元素性质与析氢反应电催化活性的关系.陕西化工,1994,1:30-32
    [22]李青莲,曲永和.电化学工业中电催化剂的活性及其设计的探讨.应用化工,1992,3:24-27
    [23]赵国瑞,才玉斌.活性阴极技术应用.氯碱工业.2000,12:13-14.
    [24]查仝性.电极过程动力学导论.北京,科学出版社(第三版).2002,236-257.
    [25]吴仲达,李松梅,林文廉,等.低碳钢基体中离子注入镍和钼的电催化活性.物理化学学报,1992,8(3):401-403.
    [26]周全,张存中,吴仲达,等.镀Pd的GC电极上HCOOH的电催化氧化.电化学,2000,6(3):329-333.
    [27] Martinsons A., Greashaw M. Cathode electrocalalyst. Int.Cl.C25B1/46, US4086149,19780425
    [28] Spasojevic M., Krstajic N., Despotov P., et al. The evolution of hydrogen on cobalt-molybdenum coating: polarization characteristics, J. Appl. Electrochem.1984,14(2):265-266.
    [29] Krotajc N.V., Spasojevic M.D., Atanasoski R.T.. Lanthanum-molybdenum coating forhydrogen evolution on titanium. J. Appl. Electrochem.1984,14:131-134.
    [30]郭鹤桐,张三元.复合电镀.天津:天津大学出版社,1991.
    [31]肖秀峰,刘榕芳,朱则善.Co-WC复合电极在碱性介质中的电催化析氢.应用化学,1999,16(4):108-110.
    [32]蔡乃才,桂岳琼.高比表面Ni-Mo-RuO2复合催化镀层析氢电极.武汉大学学报(自然科学版).1999,45(2):157-159.
    [33]朱龙章,陈宇飞,张庆元.(Ni-Co)-WC复合电极的析氢催化性能.应用化学,1999,16(4):52-54.
    [34]肖秀峰,刘榕芳,朱则善.Ni-W-WC复合电极在碱性介质中的电催化析氢.物理化学学报,1999,15(8):742-746.
    [35]刘善淑,成旦红,应太林,等.电沉积Ni-P-ZrO2复合电极析氢电催化性能的研究.电镀与涂饰,2001,20(6):4-7.
    [36] Shim Joongpyo, Lee Hong-Ki. Improved performance of Raney nickel electrode by theaddition of electrically conductive materials for hydrogen oxidation reaction, MaterialsChemistry and Physics,2001,69:72-76
    [37] Chen H.N., Li R., Wang H.L., et al.. Highly efficient enantio-selective hydrogenation ofmethyl acetoacetate over chirally modified Raney nickel catalytic system, J. MolecularCatalysis A: Chemical,2007,269:125-132
    [38] Al-Saleh M.A., Sleem-Ur-Rahman, Kareemuddin S.M.M.J., etal. Novel methods ofstabilization of Raney-Nickel catalyst for fuel-cell electrodes, J. Power Sources,1998,72:159-164
    [39] Hoffer B.W., Crezee E., Devred F., et al.. The role of the active phase of Raney-type Nicatalysts in the selective hydrogenation of d-glucose to d-sorbitol, Applied Catalysis A:General,2003,253:437-452
    [40] An M Z,Wang J L,Sun D Z. Electrodeposition of La-Ni Alloy Films in Nonaqueous System.J. Appl. Electrochem.,2001,31(7):891-896.
    [41] Sanchez-Sanchez M.C., Navarro R.M., Fierro J.L.G.. Ethanol steam reforming overNi/La-Al2O3catalysts: Influence of lanthanum loading, Catalysis Today,2007,129:336-345.
    [42] Lin Y.F., Zhao D.L., Wang X.L., et al. Electronic structure of hydrogen storage compounds,LaNi5and its micro-hydrogenated compounds, J. Rare Earths.2005,22(3):455-459.
    [43] Ao B.Y., Chen S.X., Jiang G.Q.. A study on wall stresses induced by LaNi5alloy hydrogenabsorption–desorption cycles. J. Alloys and Comp.,2005,390:122-126.
    [44] Ares J.R., Cuevas F., Percheron-Guegan A.. Microstructural effects in the hydrogenationkinetics of commercial-type LaNi5alloy, J. Alloys and Comp.,2005,404-406:327-331.
    [45] Li Y., Cheng Yang-Tse. Amorphous La-Ni thin film electrodes [J], J. Alloys and Compounds,1995,223:6-12
    [46]焦丽芳,刘强,袁华堂,等.MgNi2添加对AB5型储氢合金电化学性能的影响,高等学校化学学报,2007,28(2):346-349
    [47]王美涵,张连中,孙立贤,等.四元Mg0.9Ti0.1Ni0.9X0.1(X=Mn,Zn,Co,Fe)系列合金的制备及性能研究,高等学校化学学报,2005,26(9):1673-1676.
    [48] Fellner C, Newman J.. High-power batteries for use in hybrid vehicles, J. Power Sources.2000,85:229-236.
    [49] Corson D.W.. High power battery systems for hybrid vehicles [J], J. Power Sources,2002,105:110-113.
    [50] Sakai T., Uehara I., Ishikawa H.. R&D on metal hydride materials and Ni-MH batteries inJapan, J. Alloys and Comp.,1999,293-295:762-769.
    [51] Han S.M, Zhao M.S, Zhang Z. et al. Effect of AB2alloy addition on the phase structures andelectrochemical characteristic of LaNi5hydride electrode,. J. Alloys and Comp.2005,392:268-273.
    [52] Ye H., Zhang H, Cheng J.X. et al.. Effect of Ni content on the structure, thermodynamic andelectrochemical properties of the non-stoichiometric hydrogen storage alloys. J. AlloysComp.2000,308:163-171.
    [53] Kumar V.G, Shukla A.K., Munichandraiah N.. Electrode impedance parameters and internalresistance of a sealed nickel/metal-hydride cell, J. Power Sources,1996,63(2):203-208.
    [54]高诚辉.铁组金属-半金属非晶合金镀.材料保护,1991,24(1):7-11
    [55] Brown D.E., Mahmood M.N., Man M.C.M., et al. Preparation and characterization of lowovervoltage transition metal alloy electrocatalyst for hydrogen evolution in alkaline solution.Electrochim. Acta,1984,29(11):1551-1556.
    [56]杜敏,高荣杰,魏绪均.非晶态Ni-S合金阴极析氢反应.电源技术.2001,25(3):223-234
    [57] Paseka I.. Sorption of hydrogen and kinetics of hydrogen evolution on amorphous Ni-Sxelectrodes, Electrochemical Acta,1993,38(16):2449-2454
    [58] Raj I.A., Vasu K.I. Transition metal-based cathodes for hydrogen evolution in alkalinesolution: electrocatalysis on nickel-based ternary electrolytic codeposits, J. Appl.Electrochem.,1992,22(5):471-477
    [59] V land T., Burchardt T., Van der Meer S.F.. The hydrogen evolution and corrosion ofamorphous FeSxfilms, Corrosion Science,2001,43(1):147-156
    [60]李友遐,高诚辉,林有希,等.非晶态镍磷镀层析氢阴极活性的控制与机理.材料保护.2004,37(1):27-29(32)
    [61] De GIZ M.J., Tremiliosi-Filho G., Gonzaleze R., et al.. The hydrogen evolution reaction onamorphous nickel and cobalt alloys [J]. Hydrogen Energy,1995,20(6):423-427
    [62] Burchardt T.. Hydrogen evolution on NiPxalloys: the influence of sorbed hydrogen.Hydrogen Energy,2001,26(11):1193-1198.
    [63]王龙彪,黄清安,张洁,等.含磷的镍基合金对氢析出的电催化活性的研究.电镀与涂饰,1999,18(3):13-17.
    [64] Paseka I., Velicka J.. Hydrogen evolution and hydrogen sorption on amorphous smoothMe-P(x)(Me=Ni, Co and Fe-Ni) electrodes, Electrochemical Acta,1997,42(2):237-242
    [65] Panek J., Serek A., Budniok A., et al.. Ni+Ti composite layers as cathode materials forelectrolytic hydrogen evolution, Hydrogen Energy,2003,28(2):169-175
    [66]肖秀峰,刘榕芳.非晶态Ni-W-WC复合镀层的制备及镀层性能研究.材料保护.2003,36(4):46-47(50)
    [67] Magdalena Popczyk, Antoni Budniok, Andrzej Lasia. Electrochemical properties of Ni–Pelectrode materials modified with nickel oxide and metallic cobalt powders. HydrogenEnergy,2005,30:265–271
    [68] Albertini L.B., Angelo A.C.D., Gonzaleze R.. A nickel molybdenite cathode for thehydrogen evolution reaction in alkaline media [J], J. Applied Electrochemistry,1992,22:888-892
    [69] Fan Chonglun, Piron D.L, Paradis P. Hydrogen evolution on electrodepositednickel-cobalt-molybdenum in alkaline water electrolysis, Electrochemica Acta,1994,39(18):2715-2722
    [70]施晶莹,肖秀峰,朱则善.(Ni-Mo)-WC电极在碱性介质中的电催化析氢性能.福建师范大学学报(自然科学版),2002,18(3):46-49
    [71]范少华,蔡乃才,桂岳琼.含Ni-Mo和稀土储氢合金的电催化析氢电极.武汉大学学报(自然科学版),1998,44(4):703-706
    [72]李克锋,王为,鞠峰,等.电化学技术制备高效析氢电极.电镀与精饰,2004,26(1):27-30
    [73] Kreuter W., Hofmann H.. Electrolysis: The important energy transformer in a world ofsustainable energy. Hydrogen Energy,1998,2(8):661-666.
    [74] Jaksic M.M.. Advances in electrocatalysis for hydrogen evolution in the light of the BrewerEngel valance bond theory, Mol Catal,1986,38:161-202.
    [75]牛振江,吴廷华,杨防祖,等.非晶态Fe-Mo合金在碱性溶液中的电催化析氢活性.材料保护.2003,36(8):9-12
    [76] Jaksic M.M. Towards the reversible electrode for hydrogen evolution in industriallyimportant electrochemical processes. Hydrogen Energy,1986,11:519-532.
    [77] Chen L, Lasia A.. Hydrogen evolution reaction on nickel-molybdenum powder electrodes.Electrochem Soc,1992,139(12):3458-3464.
    [78] Richard S. Nicholson. Theory and application of cyclic voltammeter for measurement ofelectrode reaction kinetics, Analytical Chemistry,1965,37(11):1351-1355.
    [79] Hu C.C, Weng C.Y. Hydrogen evolution activity on nickel-molybdenum deposits usingexperimental strategies. Appl Electrochem,2000,30:499-506.
    [80] Hu W.K., Cao X.J., Wang F.P., Zhang Y.S. Short Communication: a novel cathode foralkaline water electrolysis, Hydrogen Energy.1997,22:441-443.
    [81]杨静,张存中,吴仲达.非晶态Ni-Mo-Co合金电极的制备和析氢性能.应用化学,2000,17(5):475-478
    [82]谢原寿,柳全丰.水溶液电解新阴极材料Ni-Co-S-Mo的研究.电化学,1998,4(4):434-438
    [83]黄令,许书楷,周绍民,等.纳米晶镍-钼合金电沉积层的结构与性能.应用化学,1999,16(2):38-41
    [84]罗北平,龚竹青,任碧野,等.纳米晶低钼高铁Fe-Ni-Mo合金的制备及其微观结构.中南大学学报:自然科学版,2006,37(4):692-697
    [85]胡伟康,张允什,宋德瑛,等.非晶态Ni-Mo-Fe合金作电解水析氢反应电极.功能材料,1995,26(5):456-458.
    [86]黄令,杨防阻,许书楷,等.纳米晶Ni-Mo-Co合金镀层的结构与析氢行为.应用化学,2001,18(10):767-771
    [87]罗北平,龚竹青,任碧野,等.高析氢催化活性和稳定性的纳米晶Ni-Fe-Mo-Co合金.功能材料,2006,37(6):940-943
    [88] Jaksic J.M., Vojnovic M.V., Krstajic N.V.. Kinetic Analysis of Hydrogen Evolution atNi-Mo Alloy Electrodes, Electrochimica Acta.2000,45(19):4151-4158.
    [89]曾跃,姚素薇,郭鹤桐.非晶态Ni-Mo合金的电沉积.电镀与精饰,1994,16(3):9-12.
    [90]马洁,刘顺诚,江琳才,等.纳米晶Ni-Mo合金复合镀层中钼含量对析氢反应的影响.化学学报,1997,55:363-369.
    [91]谢支华,邱于兵,吴楼涛.一种新型活性阴极材料的制备和性能.材料研究学报,2003,17(1):83-86
    [92] Pawar S.H., Pendse M.H.. Electrodeposition of Dy-Ba-Cu alloyed films from aqueous bath,Materials Research Bulletin,1991,26(7):641-648.
    [93] Pawar S.H., Tonape M.M., Shinde V.N.. Pulse electrodeposition of Y-Ba Cu alloyed filmsfrom an aqueous bath, Materials Chemistry and Physics,1993,35(1):86-91.
    [94] Jundale S.B., Lokhande C.D.. Electrosynthesis of Sm-Te films, Materials Chemistry andPhysics,1994,37:333-337.
    [95] Jundale S.B, Lokhande C.D.. Studies on electrosynthesis of Sm-Se films, MaterialsChemistry and Physics,1994,38:325-331.
    [96] Lokhande C.D.. Electrodeposition of yttrium from aqueous bath, Electrochemical Society ofIndia,1992,41(4):221-224.
    [97]刘淑兰,覃奇贤,成旦红,等.电沉积Ni-La合金上的阴极析氢行为.应用化学,1995,12(5):115-116
    [98]吴俊,黄清安,喻敬贤.电沉积Ni-La-P合金上析氢的研究.应用化学,1999,16(6):17-20
    [99]邵光杰,秦秀娟,于升学,等.稀土对电沉积Ni-P合金镀层显微组织的影响.中国有色金属学报,2000,10(S1):239-241.
    [100]杜先智,丁秀芬,张亚增.镍磷非晶合金的诱导共沉积及其缺陷.稀土.1997,18(3):44-46.
    [101]肖友军,钟洪鸣,钟一平.镧-钼合金电镀及其析氢电催化性能.材料保护,2003,36(9):69-70
    [102]足立吟也.稀土及其应用原理浅说.北京:中国稀土学会,1993
    [103] Simpraga R., Bai L., Conway B.E.. Real area and electrocatalysis factors in hydrogenevolution kinetics at electrodeposited Ni-Mo and Ni-Mo-Cd composites: effect of Cdcontent and nature of substrate, J. Appl. Electrochem.,1995,25(7):628-641.
    [104]汪继红,费锡明,李伟.稀土铈对镍-钴-磷合金电极的析氢催化性能的影响.材料保护.2004,37(1):9-10
    [105]何圣静,高莉如.非晶态材料及其应用.北京:机械工业出版社,1987.
    [106]高诚辉.非晶态合金镀及其镀层性能.北京:科学出版社,2004.
    [107]渡边辙,等编著.于维平,李荻译.非晶态电镀方法及应用.北京:北京航空航天大学出版社,1992.
    [108]秦绪波,张妍宁,鲁剑林.原子尺寸差异与非晶形成能力.物理化学学报.2003,19(12):1163-1166.
    [109]张国英,胡壮麒,张海峰.合金化对非晶形成能力影响的电子理论计算.中国有色金属学报.2003,13(1):106-110.
    [110] Stout D.A., Lumsden J.B., Staehle R.W.. An investigation of pitting behavior ofiron-molybdenum binary alloys.Corrosion,1979,35(4):141-147
    [111] Paseka. I.. Influence of hydrogen absorption in amorphous Ni-P electrode on double layercapacitance and charge transfer coefficient of hydrogen evolution reaction, ElectrochemicalActa,1999,44(25):4551-4558.
    [112] Podesta J.J., Piatti R.C.V., Arvia A.J., et al.. The behavior of Ni-Co-P base amorphous alloysfor water electrolysis in strongly alkaline solutions prepared through electroless deposition,Hydrogen Energy,1992,17(1):9-22.
    [113] Popczyk Magdalena, Budniok Antoni, Lasia Andrzej.. Electrochemical properties of Ni-Pelectrode materials modified with nickel oxide and metallic cobalt powders, HydrogenEnergy,2005,30(3):265–271
    [114] Arul Raj I. Nickel-based, binary-composite electrocatalysts for the cathodes in theenergy-efficient industrial production of hydrogen from alkaline-water electrolytic cells, J.Appl. Electrochem.,1993,28(16):4375-4382.
    [115]章磊,宣天硼,黄芹华.稀土元素对钴-镍-硼合金化学沉积的影响,化工之友,2006,9:5-6
    [116]王森林.Fe-Ni-B合金的化学镀和磁性能(英文),功能材料,2006,36(7):1153-1155(59)
    [117]赵健,丁志敏,石子源,等.化学镀Ni-B非晶箔性能的研究,电镀与环保,2005,25(4):30-32
    [118]王昕,张春丽.Ni-B合金电沉积工艺性能研究,表面技术,2004,33(1):48-48(69)
    [119] Smith G.V., Brower W.E., Matyjaszczyk M.S., etal. Metallic glasses: new catalyst systems
    [R], Proc.7th int. Congr. Catalysis (eds Seiyana T.&Tanabe, K.)355-363(Elsevier, NewYork,1981).
    [120] Van Wonterghem J., Morup S., Koch C.J.W, etal. Formation of ultra-fine amorphous alloyparticles by reduction in aqueous solution, Nature,1986,322(6080):622-623.
    [121] Shen J.Y, Hu Z., Zhang L.F., et al.. The preparation of Ni-P ultrafine amorphous alloyparticles by chemical reduction, Appl. Phys. Lett,1991,59(27):3545-3546.
    [122] Yuze E., Matsuda M., Ohtsuka K., et al. Preparation of amorphous Co-P spherical powderby chemical reduction method, Funtaioyobi Funmatsu Yakin,1996,43(11):1294-1299.
    [123]陆关兴,陈绯,奕英豪.非晶态合金带力学性能的评价.玻璃钢/复合材料,1995(3):28-31.
    [124]李凝,高诚辉.非晶纳米复合镀层的摩擦学性能.电镀与环保,2008,28(2):4-8
    [125] Osaka T., Kaoki N., Koiwa I.A. Preparation of perpendicular magnetic recording media byan electroless plating method, J. Electrochem. Soc.,1983,130(3):568-571
    [126]姜晓霞,沈伟.化学镀理论及实践.北京:国际工业出版社,2000.
    [127]王森林.多元合金的化学沉积及镀层结构与性能研究[D].厦门:厦门大学化学系,2005.
    [128] Stephane Ruggeri, Cyril Lenain, Lionel Roue.. Mechanically driven crystallization ofamorphous MgNi alloy during prolonged milling: applications in Ni-MH batteries, J. AlloysComp.,2002,339:195-201.
    [129] Lei Y.Q., Wu Y.M., Yang Q.M., et a1.. Electrochemical behavior of some mechanicallyalloyed Mg-Ni based amorphous hydrogen storage alloys. Z Phys. Chem.1994,183:379-384.
    [130] Orimo S., Fujii H.. Material science of Mg-Ni-based new hydrides, Appl. Phys. A: MaterialsScience&Processing,2001,72(2):167-186.
    [131] Molnar A., Smith G.V., Bartok M.. New catalytic materials from amorphous metal alloys.Adv. Catal.,1989,36(3):329-393.
    [132] Varga M., Mulas G., Cocco G., et al. Binary and ternary amorphous palladium alloys:Characterization, activity and selectivity in hydrogenation of dienes. Materials Science andEngineering A,2001,304-306:462-466.
    [133] Shen J., Hu Z., Zhang Q., Zhang L., etal. Investigation of nickel-phosphorus-boron ultrafineamorphous alloy particles produced by chemical reduction. J. Appl. Phys.,1992,71(10):5217-5221.
    [134] Deng J.F., Yang J., Sheng S., et al.. The study of ultrafine Ni-B and Ni-P amorphous alloypowders as catalysts, J. Catal.,1994,150(2):434-438.
    [135]马延风,李伟,张明慧,等.以次磷酸镍为原料制备NiP和NiPB非晶态合金的新方法.物理化学学报,2002,18(10):938-942.
    [136] Lee S. P., Chen Y W. Catalytic properties of Ni-B and Ni-P ultrafine materials, J. Chem.Tech. Biotech.,2000,75(11):1073-1079.
    [137] Lee S. P., Chen Y. W. Selective hydrogenation of furfural on Ni-P, Ni-B and Ni-P-B ultrafinematerials, Ind. Eng. Chem. Res.,1999,38(7):2548-2556.
    [138] Chen H.S.. The Glass Transition temperature in glassy Alloys: Effects of atomic sizes andthe Heats of Mixing. Acta Metal.,1974,22(7):897-900
    [139] Paseka I.. Hydrogen evolution reaction on amorphous Ni-P and Ni-S electrodes and theinternal stress in a1ayer of these electrodes, Electrodchimica Acta.,2001,47(7):921-931.
    [140]张翼,方永奎,段吉国.非晶态Ni-Mo-P镀层的组织结构与晶化过程,金属热处理,2003,28(3):28-32
    [141]袁宝林.非晶态Ni-Mo合金的电沉积及其物性腐蚀与防护,腐蚀与防护,1994,15(4):176-181
    [142]路学丽,马洁,姚忠科,等.Ni-Mo-P非晶态合金电沉积工艺及镀层耐蚀性,材料开发与应用,2005,20(6):27-29(37).
    [143] Deng J.F., Li H.X., Wang W.J.. Progress in design of new amorphous alloy catalysts,Catalysis Today,1999,51:113-125
    [144] Steif P.S., Spaepen F., Hutchinson J.W.. Strain Localization in Amorphous Metals, ActaMetall.1982,30:447-455
    [145]曾跃,姚素薇,郭鹤桐.从氨性柠檬酸溶液中电沉积Ni-Mo的机理研究,物理化学学报,1995,11(4):351-355
    [146]郑仰存.Ni-(Mo)-P/Cu多层交替镀层的制备及其热稳定性[硕士学位论文],湖南师范大学,2004:24-26.
    [147]克鲁格H.P.,亚历山大L.E.著,盛世雄等译,X射线衍射技术:多晶体和非晶质材料,北京:冶金工业出版社,1986
    [148]范康年.谱学导论.北京:高等教育出版社,2001
    [149] Liu H.X., Sun S.Q., Lv G.H., etal. Study on Angelica and its different extracts by Fouriertransform infrared spectroscopy and two-dimensional correlation IR spectroscopy.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2006,64(2):321-326
    [150]刘永辉.电化学测试技术,北京:北京航空学院出版社,1987
    [151]曹楚南,张鉴清著.电化学阻抗谱导论,北京:科学出版社,2002
    [152] Rodriguez-Valdez L.M, Estrada-Guel I., Almerayacalderon F., et al.. Electrochemicalperformance of hydrogen evolution reaction of Ni-Mo electrodes obtained by mechanicalalloying, Hydrogen Energy,2004,29(11):1411-1415.
    [153] Luo H M, Wang C, Yan Y S. Synthesis of mesostructured titania with controlled crystallineframework. Chem. Mater.,2003,15(20):3841-3846
    [154] Luciana S. Sanches, Sergio H. Domingues, Claudia E.B. Marino, et al. Characterization ofelectrochemically deposited Ni-Mo alloy coatings, J. Electrochemistry Communications,2004,6(6):543–548
    [155] Alexis Damian, Sasha Omanovic.. Ni and Ni-Mo hydrogen evolution electrocatalystselectrodeposited in apolyaniline matrix. J. Power Sources,2006,158:464–476.
    [156] Shunsuke Yagi, Akira Kawakami, Kuniaki Murase, et al. Ni–Mo alloying of nickel surfaceby alternating pulsed electrolysis using molybdenum(VI) baths, J. Electrochimica Acta,2007,52:6041-6051.
    [157] Gennero de Chialvo M.R., Chialvo A.C.. Hydrogen evolution reaction on smooth Ni1-x-Moxalloys (0≤x≤0.25). J. Electroanalytical Chemistry,1998,448:87-93
    [158] Stasov A.A., Pasechnik S.Ya., Izv. Vyssh. Ucheb. Zaved., et al. Electrodeposition ofnickel-molybdenum plating from a pyrophosphate electrolyte, Ser. Chem. And Chem.Technol.,1973,16:600-603
    [159] Huang L., Yang F.Z., Sun S.G., et al. Studies on structure and electrocatalytic hydrogenevolution of nanocrystalline Ni-Mo-Fe alloy electrodeposit electrodes. Chinese Journal ofChemistry,2003,21:382-386.
    [160] Elvira Gómez, Eva Pellicer, Elisa Vallés.. An approach to the first stages ofcobalt–nickel–molybdenum electrodeposition in sulphate-citrate medium, ElectroanalyticalChemistry,2005,580:222–230
    [161]陈彩虹,贺泽全,沈裕军,等.电沉积镍铁合金工艺研究,矿冶工程,2000,20(2):31-33
    [162]李凝,高诚辉,杨素珍.碱性镀液电沉积纳米晶Ni-Mo合金层的制备及其结构.材料热处理学报,2008,29(6):144-148
    [163] Fotis Paloukis, Spyros Zafeiratos, Vasilis Drakopoulos, et al. Neophytides Electronicstructure modifications and HER of annealed electrodeposited Ni overlayers on Mopolycrystalline surface, Electrochimica Acta,2008,53(27):8015-8025.
    [164] Krstajic N.V., Jovic V.D., Gajic-Krstajic Lj., et al. Electrodeposition of Ni-Mo alloy coatingsand their characterization as cathodes for hydrogen evolution in sodium hydroxide solution,Hydrogen Energy,2008,33:3676-3687.
    [165] Jolanta Niedba a, Antoni Budniok, Eugeniusz giewka.. Hydrogen evolution on thepolyethylene-modified Ni-Mo composite layers, Thin Solid Films,2008,516(18):6191-6196.
    [166] Goswami R.U., Herman H., Sampath S., et al. Plasma sprayed Mo-Mo oxidenanocomposites: synthesis and characterization, Surface and Coatings Technology,2001,141:220-226
    [167] Jiao J., Bu S.Y., Wang G.C., et al. Characterization of methanethiolate on some transitionmetals: A first-principle density functional theory study, J. Molecular Structure: Theochem.,2008,862(1-3):80-84.
    [168] Koteski V., Mahnke H.-E., Belo evi-avor J., et al. Experimental and theoretical study oflattice relaxation around refractory atoms in nickel, Acta Materialia,2008,56(17):4601-4607.
    [169]罗北平,武鹄,余红霞,等.Fe-Ni-Mo合金镀层表面化学状态及微观结构.湖南理工学院学报(自然科学版).2006,19(2):55-58.
    [170] Huang J.Z., Xu Z., Li H.L., et al. Effects of sputtering conditions on electrochemicalbehavior and physical properties of Ni-Mo alloy electrode, Trans. Nonferrous Met. Soc.China,2006,16(5):1092-1096.
    [171] Mikolaj Donten, Henrikas Cesiulis, Zbigniew Stojek.. Electrodeposition ofamorphous/nanocrystalline and polycrystalline Ni-Mo alloys from pyrophosphate baths,Electrochimica Acta,2005,50(6):1405–1412.
    [172] Murphy S., Usov V., Shvets I.V.. Morphology of Ni ultrathin films on Mo(110) and W(100)studied by LEED and STM, Surf. Sci.2007,601(23):5576-5584
    [173] Berry L.G.(Ed.) Powder Diffraction File Joint Committee on Powder Diffraction Standards,1973.Ni: File4-850, Ni4Mo: File3-1036, Ni3Mo: File17-572
    [174]李凝,高诚辉.非晶态合金催化析氢阴极材料的研究进展.材料保护.2008,41(2):47-52
    [175]刘小兵.电沉积Ni-P-WC复合镀层在KOH溶液中析氢行为的研究[硕士学位论文].上海:上海大学,2003.
    [176] Miguel A. Dominguez, Magdalena Plata, Aide M. torres, etal. Electrocatalytic activity ofnano-crystalline Ni-Co-Mo-Fe alloys on the oxygen evolution reaction, ElectrochemicalSociety,2006,3(9):135-148.
    [177] Han Q, Liu K.R., Chen J.S., et al.. A study of the electrodeposited Ni–S alloys as hydrogenevolution reaction cathodes, Hydrogen Energy,2003,28(11):1207-1212
    [178] Han Q, Chen J.S., Liu K.R., et al.. The heat-treatment effect of amorphous Ni–S(La)electrode on the hydrogen evolution reaction in an alkaline media, Hydrogen Energy,2004,29(6):597-603
    [179] Lazukov V.N., Marcano N., Tiden N.N., etal. Role of Ce-Ni interaction in CeNi ground stateformation, Physica B: Condensed Matter,,2006,378-380:760-761
    [180] Palumbo M., Borzone G., Delsante S., etal. Thermodynamic analysis and assessment of theCe–Ni system, Intermetallics,2004,12(12):1367-1372
    [181]杜朝军,李金辉,郑盛会.电沉积钼合金及其析氢电催化性能研究,化工技术与开发.2004,33(5):8-9(15).
    [182] Zinkevich M., Solak N., Nitsche H., etal. Stability and thermodynamic functions oflanthanum nickelates, J. Alloys and Comp.,2007,438:92-99
    [183] Lazukov V.N., Alekseev P.A., Bewley R., etal. Correlations between Ce unstable-valenceions in CeNi compound, Physica B: Condensed Matter,2005,359-361:245-247
    [184] Jiang Q.K., Zhang G..Q., Yang L., etal. La-based bulk metallic glasses with critical diameterup to30mm, Acta Materialia,2007,55(13):4409-4418
    [185]董俊,史鸿运,邓洁,等.电沉积法制备镍与镧、铈的非晶态合金及其晶化动力学.物理化学学报.2001,17(11):1053-1056
    [186]史鸿运,邓洁,张云黔,等.电沉积法制备钴与镧、饰的非晶态合金及其晶化动力学研究.无机材料学报.2002,17(6):1124-1128
    [187]张云黔,史鸿运,邓洁,等.电沉积法制备Fe与La、Ce的非晶态合金及其晶化动力学研究.无机化学学报.2002,18(8):807-810
    [188] Itoh K., Shoumura T., Mori K., etal. Structure of amorphous LaNi5D3.3studied by neutronand X-ray diffraction, J. Non-Crystalline Solids,2007,353(18-21):1975-1978
    [189] Bach H.T., Venhaus T.J., Paglieri S.N., et al. The effect of surface state on the kinetics ofcerium-hydride formation, J. Alloys and Comp.,2007,446-447:567-570
    [190]李凝,高诚辉,杨素珍.稀土(La、Ce)铁组基非晶态合金的电化学性能.材料导报.2008,22(3):52-54(59).
    [191]王森林,顾俊龙.镍-镧合金的电沉积及其晶化行为与析氢性能.中国稀土学报.2007,25(3):368-372.
    [192]宣天鹏,章磊,黄芹华.稀土铈对化学沉积Co-Ni-B合金镀层结构和性能的影响.稀有金属,2003,27(3):399-402.
    [193] Zhuang Y, Podlaha E.J. NiCoFe Ternary Alloy Deposition: I. An Experimental Kinetic Study.J. Electrochemical Society,2000,147(6):2231-2236.
    [194]李凝,高诚辉,杨素珍.稀土La对非晶/纳米晶Ni-Mo合金性能的影响.中国稀土学报.2009,27(2):251-256
    [195] Shi S.Q., Ouyang C.Y., Lei M.S.. Crystal structure and electrochemical characteristics ofnon-AB5type La–Ni system alloys, J. Power Sources,2007,164(2):911-915
    [196]邵光杰,秦秀娟.稀土对电沉积Ni-P合金液性能的影响,中国稀土学报,2002,20(1):88-90.
    [197]陈立新,李露,王新华,等. V2.1TiNi0.4Zrx(x=0~0.06)储氢电极合金的相结构及电化学性能,物理化学学报,2006,22(5):523-527
    [198] Shi S.Q., Li C.R., Tang W.H.. Crystallographic and electrochemical performances ofLa-Mg-Ni-Al-Mo-based alloys as anode materials for nickel-metal hydride batteries, J.Alloys and Comp.,2009,476(1-2):874-877
    [199] Gervasoni J.L., Corso H.L., Peretti H.A., et al. Volume of solution of hydrogen in lanthanumhydrides, Hydrogen Energy,2008,33(13):3447-3450.
    [200] Mukhtarov Sh., Dudova N., Valitov V.. Processing and mechanical properties of bulknanostructured nickel-based alloys, Materials Science and Engineering: A,2009,503(1-2):181-184
    [201] Tomoyoshi Suenobu, Isao Tanaka, Hirohilco Adachi, etal. Correlation between theelectronic structure and hydrogen absorption characteristics in rare earth intermetalliccompound hydrides, J. Alloys and Comp.,1995,221:200-206
    [202] Tomas C., Stepanovskyi S., Klein Sz., et al. The adsorption of Ni on the Mo(111) crystalface, Vacuum,2009,83:1368–1375.
    [203] Zeng Y., Ma M., Xiao X.M., et al. Kinetic model of induced codeposition of Ni-Mo alloys,Chinese Journal of Chemistry,2000,18(1):29-34
    [204] Kuriyama N, Sakai T, Miyamuia H, et al.. The iufluence of small amounts of addedelements on various anode performance characteristics for LaNi2.5Co2.5-based alloys, J.Alloys Comp.,1993,202:183-197
    [205] Peter Atkins. Julio de paula. Atkins’ physical chemistry. Higher Education Press.2006
    [206]曾跃,于尚慈,李则林,等.乙醇在Ni-Mo合金电极上氧化的动力学模型(英文),物理化学学报,2000,16(11):1013-1021
    [207] Li H.X., Zhang S.Y., Luo H.S.. A Ce-promoted Ni–B amorphous alloy catalyst (Ni–Ce–B)for liquid-phase furfural hydrogenation to furfural alcohol, Materials Letters,2004,58(22-23):2741-2746
    [208] Young-Joon Baik, Duk N. Yoon. The effect of curvature on the grain boundary migrationinduced by diffusional coherency strain in mo-ni alloy. Acta Metallurgica,1987,35(9):2265-2271
    [209] Tanaka Y., Kamei M., Gotoh Y.. Surface structures of Ce adsorbed on a Mo(110) surface,Surface Science,1995,336(1-2):13-18
    [210] Tanaka Y., Kamei M., Gotoh Y.. Submonolayer structures of Ce adsorbed on Mo(110)surface [J], Surface Science,1996,360(1-3):74-80
    [211] Tanaka Y., Kamei M., Gotoh Y.. Growth of Ce thin film on a Mo(110) surface, J. CrystalGrowth,1996,169(2):299-303
    [212] Tian L.P., Zhao X.H., Zhao J.M., etal. Electrochemical behaviors of anodic alumina sealedby Ce-Mo in NaCl solutions, Trans. Nonferrous Met. Soc. China,2006,16(5):1178-1183
    [213] Kuang W.X., Fan Y.N., Chen Y.. Structure and reactivity of ultrafine Ce-Mo oxide particles.Catalysis Today,2001,68(1-3):75-82
    [214] Lee Byong-Taek, Han Jae-Kil, Gain Asit Kumar, etal. TEM microstructure characterizationof nano TiO2coated on nano ZrO2powders and their photocatalytic activity, MaterialsLetters,2006,60(17-18):2101-2104
    [215] N fe H., Subasri R.. Indication of bivariance in the phase system sodium zirconate/zirconia,J. Chem. Thermodynamics,2007,39(6):972-977
    [216] Teng L D, Wang F M, Li W C. Thermodynamics and microstructure of Ti-ZrO2metal-ceramic functionally graded materials. Materials Science and Engineering: A.2000,293(1-2):130-136.
    [217] Zhang Y.L., Jin X.J., Rong Y.H., etal. The size dependence of structural stability innano-sized ZrO2particles, Materials Science and Engineering A,2006,438–440:399-402
    [218] Qin W., Nam C., Li H.L., Szpunar J.A. Effects of local stress on the stability of tetragonalphase in ZrO2film,.J. Alloys and Comp.,2007,437:280-284
    [219] Jung Yeon-Gil, Ha Chang-Gi, Shin Jong-Ho, etal. Fabrication of functionally gradedZrO2/NiCrAlY composites by plasma activated sintering using tape casting and it's thermalbarrier property. Materials Science and Engineering; A.2002,323(1-2):110-118.
    [220]王宏智,姚素薇,张卫国,等.Ni/ZrO2梯度镀层的制备和性能,材料研究学报,2003,17(5):505-509
    [221]张文峰,朱获.Ni-ZrO2纳米复合电镀层的制备及其耐蚀性研究.腐蚀科学与防护技术.2006,18(5):325-328
    [222]杨防祖,马兆海,黄令,等.电沉积非晶态Ni-W-B/ZrO2复合镀层及其结构与性能,物理化学学报,2004,20(12):1411-1416
    [223] Ramesh T.N.. Crystallite size effects in stacking faulted nickel hydroxide and itselectrochemical behaviour, Materials Chemistry and Physics,2009,114(2-3):618-623
    [224]张文峰,朱荻.基于电铸技术的Ni-ZrO2纳米复合材料制备工艺,金属热处理,2004,29(8):4-7.
    [225]黄步松,李凝.电沉积Ni-ZrO2复合镀层的耐蚀性能研究,矿冶工程.2009,29(1):97-100.
    [226] Qin W., Nam C., Li H.L., et al. Tetragonal phase stability in ZrO2film formed on zirconiumalloys and its effects on corrosion resistance, Acta Materialia,2007,55(5):1695-1701.
    [227] Shibli S.M.A., Dilimon V.S., Deepthi T. ZrO2-reinforced Ni–P plate: An effective catalyticsurface for hydrogen evolution, Applied Surface Science,2006,253(4):2189-2195
    [228]郑冀等.材料物理性能.天津:天津大学出版社,2008.
    [229] Raval K.G., Lad Kirit N., Pratap Arun, et al. Crystallization kinetics of a multicomponentFe-based amorphous alloy using modulated differential scanning calorimetry,Thermochimica Acta,2005,425(1-2):47-57.
    [230] Li N., Gao C.H.. Formation and crystallization kinetics of amorphous alloys. AdvancedTribology (CIST2008and ITS-IFToMM2008). Tsinghua University Press&Springer,2009,688-694
    [231]袁宝林.用氨-柠檬酸盐镀液电沉积法制取Ni-Mo非晶合金镀层及镀层的特性.上海钢研,1991,6:23-30
    [232] Alexis Damian; Sasha Omanovic. Ni and NiMo hydrogen evolution electrocatalystselectrodeposited in a polyaniline matrix, J. Power Sources,2006,158(1):464-476.
    [233] Masatoshi Nagai. Transition-metal nitrides for hydrotreating catalyst-Synthesis, surfaceproperties, and reactivities, Applied Catalysis A: General,2007,322:178-190.
    [234] Evard E.A., Kurdumov A.A., Berseneva F.N., et al. Permeation of hydrogen throughamorphous ferrum membrane, Hydrogen Energy,2001,26(5):457-460.
    [235] Kurt Binder, Walter Kob. Glassy materials and disordered solids: An introduction to theirstatistical mechanics. World Scientific Publishing Company,2005,10
    [236] Nan Z. Carr, Rex B. McLellan. The thermodynamic and kinetic behavior ofmetal–vacancy–hydrogen systems, Acta Materialia,2004,52(11):3273-3293.
    [237] Zhou S.H., Wang Y., Jiang C.,etal, First-principles calculations and thermodynamicmodelining of the Ni-Mo syatem, Materials Science and Engineering A,2005,397:288-296
    [238] Das S.K., Thomas G., Order-Disorder Trans-formations in Alloys, Phys. Status Solidi (a),1974,21:177-190.
    [239] Wang Y., Woodward. C. Zhou S.H., etal, Structure stability of Ni-Mo compounds fromfirst-principles caculations, Scripta Materialia,2005,52:17-20
    [240]许向华,胡维军.氢原子与团簇Ni7的结合位.五邑大学学报(自然科学版).2006,20(1):48-52
    [241] Highfield J.G., Claude E., Oguro K.. Electrocatalytic synergism in Ni/Mo cathodes forhydrogen evolution in acid medium: a new model, Electrochen Acta.1999,44(16):2805-2814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700