用户名: 密码: 验证码:
“All-in-One”TiO_2复合光催化剂的制备及对水体中典型有机污染物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多硝基酚和染料类化合物是一类毒性大、难生化降解的有机污染物,这些有机污染物随着人类生产和生活活动进入环境,对水质、土壤以及自然生态系统造成严重危害。因此,研究多硝基酚和染料废水的处理方法和技术具有重要的理论和现实意义。利用TiO2光催化氧化技术处理有机废水是近20年发展起来的新兴水处理技术。TiO2光催化剂由于具有廉价无毒、化学稳定性好、光催化活性高、降解有机污染物彻底等特点而日益受到人们的关注。但是,TiO2光催化也存在可见光利用率低、光量子效率低、与有机污染物界面相容性差,在溶液中易团聚、分离回收困难等缺陷,这些缺陷成为制约TiO2光催化技术进一步发展的瓶颈问题。为了解决上述问题,人们通常对TiO2光催化进行改性,使其具有可见光响应、高催化活性、对有机污染物吸附性强、稳定性良好且易于分离回收。本文采用掺杂、敏化、智能载体负载以及表面修饰等方法制备多种改性TiO2复合光催化剂,有效提高了Ti02光催化剂的可见光响应范围、有机污染物吸附性能与光催化活性。在此基础上,以模拟太阳光为光源,以复合光催化材料在可见光照射下催化降解二硝基酚和染料类化合物为探针反应,系统研究考察了所制备复合光催化剂的催化活性及其影响因素,考察了复合光催化剂的降解机理。主要研究结果如下:
     1、利用掺杂改性的方法,通过溶胶-凝胶法制备了石墨烯掺杂改性的TiO2-GO复合光催化剂。利用XRD、SEM、TEM、FT-IR、UV-vis、TG-DTA等分析测试方法对所制备的光催化剂进行了结构表征。结果显示,GO的加入使复合光催化剂的吸收带较纯TiO2发生了明显红移。GO提高了TiO2纳米粒子的分散度和对有机污染物的吸附性能。以模拟太阳光为光源,研究所制备的TiO2-GO复合光催化剂对2-仲丁基-4,6-二硝基苯酚(DNBP)的光催化降解行为。系统考察了溶液pH值、光催化剂用量、溶液初始浓度、光照时间等不同因素对复合光催化剂的催化活性影响。可见光照射下TiO2-GO复合光催化剂可以有效降解DNBP, TiO2-GO复合光催化剂对DNBP的吸附和光催化降解能力明显高于纯Ti02样品。根据Langmuir-Hinshelwood方程,在低浓度下光催化降解反应符合一级反应动力学。借助GC-MS及离子色谱分析仪器对降解过程中间产物的分析,提出了合理的DNBP光催化降解反应途径。
     2、利用导电聚合物敏化的方法,通过紫外光引发制备了聚邻苯二胺(PoPD)敏化的PoPD-TiO2-GO复合光催化剂。利用XRD、SEM、TEM、FT-IR、UV-vis等分析测试方法对所制备的光催化剂进行了结构表征。结果显示,在PoPD-TiO2-GO复合光催化剂中,Ti02粒子表面形成了厚度适中的致密PoPD层,增强了Ti02催化剂对有机污染物的吸附作用和对可见光的使用效率。考察了PoPD-TiO2-GO复合光催化剂在模拟太阳光下对亚甲基蓝(MB)染料废水的降解脱色作用及其影响因素。在最佳的降解条件下,复合光催化剂对染料的吸附和光降解脱色率明显高于纯TiO2样品。在低浓度下光催化降解脱色反应符合准一级反应动力学方程。PoPD-TiO2-GO具有良好的循环使用性。
     3、利用染料光敏化和智能水凝胶聚合物负载的方法,通过自由基聚合首次合成出具有可见光响应、温度及pH敏感型复合光催化剂Poly(NIPAM-co-AAc-co-CoMPc)/(TiO2-GO)。利用XRD、TEM、FT-IR、UV-vis等分析测试方法对所制备的复合光催化剂进行了表征。对所制备的复合光催化剂的温度及pH敏感性进行了研究。结果表明,Ti02粒子成功负载在智能载体Poly(NIPAM-co-AAc-co-CoMPc)上。Poly(NIPAM-co-AAc-co-CoMPc)/(TiO2-GO)复合光催化剂在可见光区域有较强的吸收,复合光催化剂中TiO2-GO纳米粒子分散均匀,与聚合物结合紧密。以模拟太阳光为光源,研究了所制备的复合光催化剂在可见光作用下对DNBP的光催化降解性能及影响因素。研究显示,所合成的复合光催化剂不但具有可见光响应,有效提高了Ti02光量子效率,而且催化剂具有的温度及pH敏感性质可以实现催化剂的方便回收和循环利用。
     4、以三聚氯氰和苯甲醚为原料,合成出2,4-双(2,4-二羟基苯基)-6-(4-甲氧基苯基)-1,3,5-三嗪等系列紫外吸收化合物。应用表面修饰方法,制备了三嗪修饰的TiO2-GO光催化剂。研究表明,三嗪化合物修饰TiO2-GO光催化剂对DNBP有良好的吸附性能。
Environmental pollution by toxic compounds can be detrimental to human health and the environment. Dinitrophenolic compounds and dyestuffs are widely avknowledged to be two types of hazardous compounds. These hazardous compounds are introduced into environment from its manufacturing and application processes. Although much benefits is obtained from their uses, dinitrophenolic compounds and dyestuffs have some undesirable side effects, such as toxicity and carcinogenity, and these hazardous compounds can be hardly destroyed by using conventional wastewater treatment methods. Therefore, the removal of dinitrophenolic compounds and dyestuffs from aqueous solution is necessary and very important. The direct photocatalytic reaction by using semiconductor particles as photocatalyst has attracted much attention as a promising method to degrade organic pollitants in recent20years. Among these semiconductor materials, TiO2as photocatalyst has been widely used to photodegrade organic pollutants for its relatively high catalytic reactivity, nontoxicity, physical and chemical stability, avirulence and cost-effectiveness. However, uses of TiO2nanoparticles in applications such as wastewater treatment have been limited because there are major bottleneck drawbacks associated with TiO2photocatalysts, namely, low photo-quantum efficiency arising from the fast recombination of photo-generated electrons and holes, low efficiency for utilizing solar light due to its large band gap, low capacity for the adsorption of organic pollutants and the problem of separation and recovery of nanometer sized TiO2particles from water. The preparation of TiO2composite photocatalysts by using doping, sensitizing, intelligent polymeric hydrogel supporting and surface modification methods are reported in this work. The application of these TiO2composite photocatalysts in the photocatalytic degradation of dinitrophenols and dyes containing wastewater is also investigated thoroughly in the thesis. The main results are as follows:
     1. The TiO2-GO composite photocatalyst was prepared by doping graphene oxide (GO) into the nanosized TiO2particles. The microstructure and morphology of the photocatalyst were characterized by XRD, SEM, TEM, FT-IR, UV-vis and TG-DTA techniques. The results showed that the addition of GO can enhance the degree of dispersion and adsorption capacity of TiO2particles can be enhanced significantly by doping TiO2with GO. The TiO2-GO composite photocatalyst can cause an obvious red shift of UV-vis spectra compared with pure TiO2. The photocatalytic degradation of2-.sec-butyl-4,6-dinitrophenol (DNBP) was studied with TiO2-GO composite photocatalyst under visible light illumination. The effect of experimental parameters such as pH values, initial concentration of DNBP, catalyst dosage, irradiation time, etc. on the photocatalytic degradation efficiency of DNBP were systematically studied in the work. The results indicated that the TiO2-GO composite photocatalyst showed much higher adsorption capacity and photocatalytic degradation efficiency than the pure TiO2catalyst. The photocatalytic reaction was discussed in terms of Langmuir-Hinshelwood model and followed pseudo-first order kinetics in low concentration of DNBP. A plausible DNBP degradation pathway was also suggested on the basis of analysis of degradation products.
     2. Poly-o-phenylenediamine (PoPD) sensitized TiO2-GO composite photocatalyst (PoPD-TiO2-GO) was successfully synthesized by'in situ'polymerization ofPoPD in the presence of TiO2-GO particles with ultraviolet light photoinitiating method. The prepared PoPD-TiO2-GO composite photocatalyst was characterized by XRD, SEM, TEM, FT-IR, UV-vis techniques. The results demonstrated that a dense conductive PoPD layer with reasonable thickness deposited on the surface of TiO2-GO composite particles, which can enhance adsorption of organic pollutants and make more use of visible light. The photocatalytic decolorizadation of methylene blue (MB) was evaluated with PoPD-TiO2-GO composite photocatalyst under visible light irradiation. The effect of experimental parameters such as pH values, initial concentration of DNBP, catalyst dosage, irradiation time, etc. on the photocatalytic decolorizadation of MB were systematically investigated. In terms of Langmuir-Hinshelwood model the photocatalytic decolorization reaction followed pseudo-first order kinetics in low concentration. The PoPD-TiO2-GO composite photocatalyst showed much higher adsorption capacity and photocatalytic degradation efficiency than the pure TiO2catalyst. Moreover, the composite photocatalyst has high reusable ability.
     3. A novel composite photocatalyst of Poly(N-isopropylacrylamide-co-acrylic acid-co-cobalt tetra(N-carbonylacrylic) aminephthalocyanine)/(titanium dioxide-graphene oxide)(Poly(NIPAM-co-AAc-co-CoMPc)/(TiO2-GO)) was successfully prepared via free radical polymerization method. The microstructure and morphology of the photocatalyst were characterized by XRD, TEM, FT-IR, UV-vis techniques. The results show that TiO2particles were successfully encapsulated in the copolymer carrier in spherical shapes and the composite photocatalyst was activated by visible light. The thermo-and pH-responsive properties of the composites were investigated by using swelling ratio measurements. The photocatalytic activity of obtained Poly(NIPAM-co-AAc-co-CoMPc)/(TiO2-GO) composite catalyst in visible light was estimated by measuring the degradation efficiency of DNBP in an aqueous solution. The effect of pH of the solution, catalyst concentration, irradiation time and initial DNBP concentration were examined as operational parameters. The thermo and pH sensitive composite photocatalysts exhibited easy separation and less deactivation after several runs. The results showed the feasible and potential use of the multisensitive composites in photodegradation of organic pollutants by controlling temperature and pH simply.
     4. A series of triazine. compounds such as2,4-bis(2,4-dihydroxyphenyl)-6-(4-methoxyphenyl)-1,3,5-triazine were successfully synthesized by using anisole and cyanuric chloride as raw materials. The synthesized triazine compounds can be used as ultraviolet absorbers. TiO2-GO composite photocatalyst modified with the synthesized triazine compounds showed much higher adsorption capacity than the pure TiO2catalyst.
引文
[1]陈崧哲,张彭义,祝万鹏等.可见光响应光催化剂研究进展[J].化学进展,2004,16(4):613-619.
    [2]Kim T K, Lee M N. Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification [J]. Thin Solid Films,2005, 475(1-2):171-177.
    [3]高濂,郑珊,张青红.纳米氧化钛催化材料及应用[M].北京:化学工业出版社,2002.
    [4]任达森.溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究[D].上海:复旦大学,2004.
    [5]Mohammad M, Hemant K S, Detlf B. Semiconductor-mediated photocatalysed degradation of two selected priority organic pollutants, bezidine and 1,2-diphenylhydrazine in aqueous suspension [J]. Chemosphere,2002,49(2):193-203.
    [6]Fujishim A, Rao T N, Tryk D A J. Titanium dioxide photocatalysis Photochemistry Reviews[J]. Photochem. Photobiol. C:Photoehem. Rev,2000,1:19-21.
    [7]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展[J].科学通报,2001,46(4):265-272
    [8]Wang Y Q, Hao Y Z, Cheng H M, et al. The photoelectrochemistry of transition metal-ion-doped TiO2 nanoervstalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode [J]. J. Mater. Sci.,1999,34(12):2773-2779.
    [9]Kolen'Ko Y V, Buurkhin A A, Churagulov B R, et al. Synthesis of nanocyrstalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions [J]. Mater. Lett., 2003,57:1124-1129.
    [10]汪国忠,汪春昌,张立得.纳米TiO2的制备及其性能[J].材料研究学报,1997,11(5):527-530.
    [11]Maira A J, Yeung K L, Lee.C Y, et al. Size effects in gas phase photo-oxidation of trichloroethylene using nanometer sized TiO2 catalysts [J]. J. Cataly. Lett.,2000, 192:185-188.
    [12]Wang H, Wang H L, Jiang W F, et al. Photocatalytic degradation of 2,4-dinitrophenol (DNP)by multi-walled carbon nanotubes (MWCNTs)/TiO2composite in aqueous solution under solar irradiation [J]. Water Res.,2009,43(1):204-210.
    [13]Wang H., Wang H L, Jiang W F. Solar photocatalytic degradation of 2,6-dinitro-p-rcresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)-Ti02 composite photocatalysts [J].Chemosphere,2009,75(8):1105-1111.
    [14]张建峰,郑强.溶胶-凝胶法制备高分子/无机复合材料[J].功能材料,2000,31(4):357-360.
    [15]Li G L, Mang G H. Synthesis of nanometer-sized Tio2 particles by microemulsion methods [J]. Nano Structure Materials,1999,11(5):663-665.
    [16]Muscat J, Swamy V, Harrison N M. First-principles calculation of the phase stability TiO2 [J]. Phys. Rev. B,2002,65:224112-224127.
    [17]Mitsuhashi T, Kleppa 0 J. Transformation enthalpies of the TiO2 polymorphs [J].J. Ceram.Soc,1979,62:356-357
    [18]Anpo M, Shima T. Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates [J]. J. Phys. Chem,1987,91(16):4305-4310.
    [19]Behanemann D. Synthesis and characterization of magne-tite/titaniumdioxide composite nanoparticles [J]. Solar. Energy. Mater,1991,24:564-583.
    [20]Blake W. Kinetic and mechanistic overview of TiO2-photocatalyzed oxidation reactions in aqueous solution [J]. Solar. Energy. Mater,1991,24:584-593.
    [21]Wang H L, Liang W Z, Jiang W F. Solar photocatalytic degradation of 2-sec-buty1-4,6-dinitrophenol (DNBP) using TiO2/SiO2 aerogel composite photocatalysts [J]. Mater. Chem.& Phys.,2011,130(3):1372-1379.
    [22]Roee T L, Nanjundiah C. Rate enhancement of photooxidation of cyanide anion with titanium dioxide particles [J]. J. Phvs. Chem,1986,89:3766-3773.
    [23]Puden A L,Ol1is A F. Degradation of cholorform by photoassisted heterogeneous catalysis in dilute aqueous suspension of titanium dioxide [J]. Environ. Sci.Technol,1983, (17):628-631.
    [24]Harada H. Semiconductor effect on the selective photocatalytic reaction of α-hydroxycarboxyxylic acid [J]. J. Phys. Chem,1989,93:1542-1548.
    [25]Nelsen S F, Teasely M F, Kapp P L. Radical cation chain oxygenation of dienes by triplet oxygen [J].J. Am. Chem. Soc,1986,108:5503-5506.
    [26]Amy L, Linsebigler, Lu G, John T, et al. Photocatalysis on TiO2 surfaces:Principles, Mechanisms, and Selected Results [J]. Chem. Rev,1995,95:735-758.
    [27]Cao G X, Li Y G, Zhang Q H, et al. Self-supporting La- and F-codoped TiO2 with high durability for continuous flow visible light photocatalysis [J]. J. Am. Ceram. Soc, 2010,93 (5):1252-1255.
    [28]William A, Tisdale, Kenrick J, et al. Hot-electron transfer from semiconductor nanocrystals [J]. Science,2010,328:1543-1547.
    [29]Anders H, Michael G. Light-Induced Redox reactions in nanocrystalline systems [J]. Chem. Rev,1995,95(1):49-68.
    [30]Gopidas K R, Maria B, Prashant V K. Photophysical and photochemical aspects of coupled semiconductors:charge transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems [J]. J. Phys.Chem,1990,94(16):6435-6436.
    [31]Li S X, Zheng F Y, Liu X L, et al. Photocatalytic degradation of p-nitrophenol on nanometer size titanium dioxide surface modified with 5-sulfosalicylic acid [J]. Chemosphere,2005,61(4):589-594.
    [32]Xagas A P, Bernard M C, Goff A H L, et al. Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid [J]. J. Photochem. Photobiochem. A:Chem,2000,132:115-120.
    [33]Molinari A, Amadelli R, Antolini L, et al. Photoredox and photocatalytic process on Fe(III)-porphyrin surface modified nanocrystalline TiO2 [J]. J. Mol. Catal. A:Chem, 2000,158:521-531.
    [34]郑凤英,李顺兴,钱沙华,邓南圣.水杨酸和5-磺基水杨酸表面修饰纳米TiO2吸附去除对硝基苯酚[J].环境科学学报,2007,27(1):64-68.
    [35]Coutinho C A, Gupta V K. Formation and properties of composites based on mocrogels of a responsive polymer and TiO2 nanoparticles [J]. J. Colloid Interface Sci.,2007,315: 116-122.
    [36]Coutinho C A, Gupta V K. Photocatalytic degradation of methyl orange using polymer-titania microcomposites [J]. J. Colloid. Interface Sci.,2009,333:457-464.
    [37]Wang H L, Li Y, Pang L, Zhang W Z, et al. Preparation and application of thermosensitive poly (NIPAM-co-MAH-β-CD)/(TiO2-MWCNTs) composites for photocatalytic degradation of dinitro butyl phenol (DNBP) under visible light irradiation [J]. Appl. Catal. B:Environ.,2013,130-131:132-142.
    [38]Liang Q, Liu J, Xu W Z. Optimization of the optical performance of Ag/TiO2 multilayers for warm climates[J]. Adv. Mater. Res.,2011:168-170.
    [39]Amy D, Kamat P V. Semiconductor-metal nanocomposites photoinduced fusion and photocatalysis of gold-capped Ti02(Ti02/Gold) naanoparticles [J]. J. Phys. Chem. B,2001,105(5):960-966.
    [40]Bowker M, James D. Catalysis at the metal-support interface exemplified by the photocatalytic reforming of methanol on Pd/TiO2 [J]. J. Catal.,2003,217:427-433.
    [41]Yao B H, Wang L M, Wang C H, et al. Preparation and performance of RuO2/TuO2 films photocatalyst supported on float pearls[J]. J. Chem. Phys.,2007,20 (6):789-795.
    [42]Sasaki T, Koshizaki N, Yoon J W, et al. Preparation of Pt/TiO2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors [J]. J. Photochem. Photobiol.A:Chem.,2001,145(1-2):11-16.
    [43]张立昆,吴波,王敏,等.Co和Ag掺杂对TiO2的改性作用研究[J].福州大学学报(自然科学版),2012,40(3):1-6.
    [44]悉艳霞,王甲亮,孟中岳.Rh/TiO2体系中金属-担体的相互作用[J].石油学报,1993,9(1):28-33.
    [45]Anderson C, Bard A. Improve photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials [J]. J. Phys. Chem. B,,1997,101:2611-2616.
    [46]Anderson C, Bard A. Improve photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis [J]. J. Phys. Chem.,1995,99:9882-9885.
    [47]Fu P F, Luan Y, Dai X G. Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity [J]. J. Mol. Catal. A: Chem.,2004,221:81-88.
    [48]罗晓云,秦海燕.光辐照Ti02层柱粘土处理有机废水的研究[J].环境污染与防治,2006,28(2):152-155.
    [49]潘杰,刘素文,王彦敏,等.纳米TiO2/ZrO2/Ce2O3.复合薄膜制备与光催化性能研究[J].玻璃与搪瓷,2005,33(5):10-13.
    [50]Zhang M L, An T C, et al. Preparation of a high-activity Zn0/Ti02 photocatalyst via homogeneous hydrolysis method with low temperature crystallization [J]. Mater. Lett.,2010,64:1883-1886.
    [51]Lee S W, Aum H S, Hur B. Y. Formation and characterization of plasma sprayed photocatalytic TiO2-ZnO nano-compounded coatings [J]. J. Rare Earths,2004,22:162-166.
    [52]Yang H M, Shi R R, Zhang K, et al. Synthesis of W03/TiO2 nanocomposites via sol-gel method[J]. J. Alloys Compd.,2005,398(1-2):200-202.
    [53]李芳柏,古国榜,李新军,万洪富.W03/TiO2纳米材料的制备及光催化性能[J].物理化学学报,2000,16(11):997-1002.
    [54]Bessekhouad Y, Chaoui N, Trzpit M, et al. UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension [J]. J. photochem. Photobiol. A:Chem.,2006,183(1-2):218-224.
    [55]刘君子,王攀,何燕,等.CdS修饰Ti02纳米带制备及光催化降解有毒有机污染物[J].影像科学与光化学,2010,28(3):161-171.
    [56]Idriss B, Kamat P V. Capped Semiconductor Colloids. Synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites [J]. J. Phys. Chem., 1995,99(22):9182-9188.
    [57]Liu J, Yang R, Li S. Preparation and characterization of the TiO2-V2O6 photocatalyst with visible-light activity[J]. Rare Metals,2006,25(6):636-642.
    [58]Zhang J C, Li Q, Cao W L. Preparation of Ti02-Mo03 nanocomposite photocatalyst by supercritical fluid dry method [J].J. Environ. Sci.-China,2005,17(2):350-352.
    [59]Choi W, Termin A. The role of metal ion dopants in quantum-sized Ti02:correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem.,1994,98(51):13669-13679.
    [60]Kashif Naeem.金属离子掺杂二氧化钛光催化苯酚类化合物降解的研究[D].中国:哈尔滨工业大学环境科学与工程,2009.
    [61]Yamashita H, Harada M, Misaka J, et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts [J]. J. photochem. Photobiol. A:Chem.,2002,148:257-261.
    [62]Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation [J]. J. Photochem. Photobiol. A:Chem.,2001,141:209-217.
    [63]Jeon M S, Yoon W S, et al. Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst [J]. Appl. surface sci.,2000,165:209-216.
    [64]Xie Y, Yuan C, Li X. Photosensitized and photocatalyzed degradation of azo dye using Lnn--TiO2 sol in aqueous solution under visible light irradiation [J]. Mater. Sci. Eng., B,2005,117(3):325-333.
    [65]Wilke K, Breuer H D. The influence of transition metal doping on the physical and photocatalytic properties of titania [J]. J. Photochem. Photobiol. A:Chem.,1999, 121:49-53.
    [66]Arroyo R, Cordoba G. Influence of manganese ions on the anatase-rutile phase transition of TiO2 prepared by the sol-gel process [J]. Mater. Lett.,2002,54:397-401.
    [67]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders [J]. J. Phys. Chem. B,2003,107:5483-5486.
    [68]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angew. Chem. Int. Ed.,2003,42:4908-4911.
    [69]Irie H, Watanake Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst [J].Chem. Lett.,2003,32(8):772-773.
    [70]赵秀峰,张志红,孟宪锋,等.B掺杂TiO2/AC光催化剂的制备及活性[J].分子催化,2003,17(4):292-296.
    [71]Umebayashi T, Yamaki T, Tanaka S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2 [J]. Chem. Lett.,2003,32(4):330-331.
    [72]Yamaki T, Sumita T, Yamamoto S. Formation of TiO2-xFx, compounds in fluorine-implanted TiO2 [J]. J. Mater. Sci. Lett.,2002,21:33-35.
    [73]Asahi R,Ohwaki T, Aoki K, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293,269-271.
    [74]Watanabe T,Fujishima A, Tatsuoki 0, Honda K. pH-dependence of spectral sensitization at semiconductor electrodes[J]. Bull. Chem. Soc. Jpn,1976,49(1):8-12.
    [75]Qu P,Zhao J C, Zhang L. Enhancement of the photoinduced electron transfer from cationic dyes to colloidal TiO2 particles by addition of an anionic surfactant in acidic media[J]. Colloids and surface. A,1998,138:39-46.
    [76]Vinodgopal K, Wynkoop D E, Kamat P V. Environmental photochemistry on semiconductor surface:photosensitized degradation of a textile Azo Dye, Acid Orange 7, on TiO2 particles using visible light[J]. Environ. Sci. Technol,1996,30:1660-1669.
    [77]Ranjit K T, Itamar W. Iron (Ⅲ) Phthalocyanine-Modified Titanium Dioxide:A Novel photocatalyst for the enhanced photodegradation of organic pollutants [J]. J. Phys. Chem. B,1998,102:9397-9405.
    [78]Liu W J, Wang Y, Gui L L. Preparation and Characterization of Novel Nanoscopic Titanium Dioxide/phthalocyanine Complex Films[J]. Langmuir,1999,15:2130-2138.
    [79]Hong A P, Bahnemann D W, Hoffmann M R. Cobalt(Ⅱ)tetrasulfophthalocyanine on titanium dioxide:A new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions [J]. J. Phys. Chem.1987,91:2109-2116.
    [80]HidakaH, Ajisaka K. Comparative assessment of the efficiency of TiO2/OTE thin films electrodes fabricated by three deposition methods:Photoelectrochemical egradation of the DBS anionic surfactant[J]. J. Photochem. Photobbio. A:Chem,2001,138:185-192.
    [81]Hen Y C, Wang L, Lu Z H. Characterization of dye-doped TiO2 films prepared by spray-pyrolysis[J].Thin Solid Films,1995,257:144-153.
    [82]Hoffman A S. Hydrogels for biomedical applications [J]. Adv. Drug. Deliv. Rev,2002, 43:3-12.
    [83]姚康德,彭涛,高伟.智能性水凝胶[J].高分子通报,1994,(2):103-111.
    [84]Shamim N, Hong L, Hidajat K, et al. Thermosensitive polymer coated nanomagnetic particles for separation of bio-molecules [J]. Sep. Purif. Technol.,2007,53:164-170.
    [85]Lien Y H, Wu T M, Wu J H, et al. Cytotoxicity and drug release behavior of PNIPAM grafted on silica-coated iron oxide nanoparticles [J]. J. Nanopart. Res.,2011,13: 5065-5075.
    [86]Narain R, Gonzales M, Hoffman A S, et al. Synthesis of monodisperse biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin [J]. Langmuir,2007,23:6299-6304.
    [87]Komori K, Matsui H, Tatsuma T, et al. Control of heme peptide activity by using phase transition polymers modified with inhibitors [J]. Bioelectrochem.,2005,65:129-134.
    [88]Wang Y, Zhang J, Zhang W, et al. Pd-catalyzed C-C cross-coupling reactions within a thermoresponsive and pH-responsive and chelating polymeric hydrogel [J]. J. Org. Chem., 2009,74:1923-1931.
    [89]Tanaka T,Hirokawa Y.Volume-phase transitions of ionized N-isopropylacylamide gels [J]. Chem. Phys,1987,81(2):1392-1395.
    [90]Kishi R, Hirasa O, Ichijo H. Thermo-responsive polymer gels and thermotropic liquid-crystalline polymer Gels[J], Zairyo Kagaku,1995,32(2):64-67.
    [91]王昌华,曹维孝.温敏水凝胶[J].化学通报,1996,(1):34-35.
    [92]Yang M C, Song H Y,Zhu C S, He S Q. Radiation synthesis and characterization of polyacrylic acid hydrogel[J]. Nuclear Science and Techniques,2007,18(2):7-10.
    [93]Yang M C, Song H Y, Zhu C S,He S Q, Gao Y. Radiation synthesis and characterization of poly(acrylic acid-co-N-vinyl-2-pyrrolidone)hydrogels[J]. The 1st Aslanpacific symposium On Radiation chemistry,2006,9:140.
    [94]陈文明,阎立峰.P(AA-co-DMMC)水凝胶的辐射合成及pH敏感特性研究[J].核技术,2000,23(8):545-547.
    [95]Michael D D, James P C, et al. Synthesis and characterization of temperature and pH-Responsive pentablock copolymers[J]. Polymer,2005,46:6933-6946.
    [96]Zhao X, Ding X, Deng Z, et al. A kind of smart gold nanoparticle-hydrogel omposite with tunable thermo-switchable electrical properties[J].New. J. Chem,2006,30:915-920.
    [97]Zhang J, Peppas N A. Synthesis and characterization of pH-and temperature-sensitive Poly(methacrylic acid)/Poly(N-isopropylacrylamide) interpenetrating polymeric networks[J]. Macromolecules,2000,33(1):102-107.
    [98]陈延锋,伊敏.含甲基丙烯酸-N,N-二甲基氨基乙酯水凝胶的紫外辐射合成及其性质研[J].高分子学报,2001,(2):215-218.
    [99]Sahoo S K, De T K, Ghosh P K, et al. pH-and thermo-sensitive hyrogel nanoparticles[J], J.Colloid Interface.Sci,1998,206(2):361-368.
    [100]Jennifer H W,Nicholas A P. Preparation of controlled release systems by free radical UV polymerizations in the presence of a drug[J]. J.Control. Release,2001,71(2):183-192.
    [101]Kubota H, Fukuda A. Photopolymerization synthesis of poly(N-isopropylacrylamide)hydrogels[J]. J. Appl. Polym. Sci,1997,65(7):1313-1318.
    [102]刘鹏飞,彭静,吴季兰.辐射交联制备改性CMC水凝胶的溶胀行为研究[J].高分子学报,2002,(6):756-759.
    [103]Karim K, Gupta S K. Effects of alternative carbon sources on biological transformation of nitrophenols[J]. Biodegradation,2002,13(5):353-360.
    [104]Takahashi K, Hojo H, Aoyama H, et al. Comparative studies on the spermatotoxic effects of dinoseb and its structurally related chemicals [J]. Reproductive Toxicology,2004,18 (4):581-588.
    [105]Uberoi V, Bhattacharya S K. Toxicity and degradability of nitrophenol in anaerobic systems [J]. Water Environ. Res.,1997,69(2):146-156.
    [106]Erol Ayranci, Numan Hoda. Absorption kinetics and isotherms of pesticides onto activated carbon-clot [J]. Chemosphere,2005,60(11):1600-1607.
    [107]唐登勇,杨洋,郑正,郭照冰.pH和盐对活性炭纤维吸附2,4-二硝基酚的影响[J].环境科学与技术,2009,32(6):41-44.
    [108]Wang H L, Jiang W F. Adsorption of dinitro butyl phenol (DNBP) from aqueous solution by fly ash [J]. Ind. Eng. Chem. Res.,2007,46:5405-5411.
    [109]刘晓超,张丽丽.含芳香族硝基化合物废水处理技术的现状及发展前景[J].化工环保,2004,24(1):33-37.
    [110]邵德智,张瑛瑛.4,6-二硝基邻仲丁基苯酚生产废水的处理方法:中国,200610014584.3[P].2006,12,27.
    [111]邵德智,王焰新,张瑛瑛,陈晓英.DNBP生产废水处理工艺探讨[J].环境科学与技术,2008,31(9):129-132.
    [112]Li N N. Separating hydrocarbons with liquid membrane:US,3410794 [P].1968.
    [113]栾金义,李昕,王宜军.液膜法处理含硝基酚废水试验研究[J].化工环保2003,23(4):195-199.
    [114]Bruhn C, Lenke H, Knaekmuss H J. Nitrosubstituted aromatic compounds as a nitrogen source for bacteria [J]. Appl. Environ. Microbiol.,1987,53:208-210.
    [115]Hammill. Degradation of 2-sec-butyl-4,6-dinitrophenol(dinoseb) by Clostridium bifermentans KMR-1[J]. Appl. Environ. Microbiol.,1996,62(5):1842-1846.
    [116]吴美玲,佘宗莲等.废水中2,6-二硝基酚厌氧毒性和降解动力学研究[J].环境污染治理技术与设备,2006,7(9):31-34.
    [117]Zhang Q, Wang H L, Jiang W F. Oxidative degradation of dinitro butyl phenol (DNBP)utilizing hydrogen peroxide and solar light over a Al2O3-supportedFe(Ⅲ)-5-sulfo-salicylic acid (ssal) catalyst [J]. J. Hazard. Mater.,2010,176(13):1058-1063.
    [118]张文兵,肖贤明等.UV/H2O2降解水中硝基酚及影响因素[J].环境科学学报,2001,14(6):9-15.
    [119]苏金钰.活性炭负载TiO2催化臭氧氧化去除水中的酚[D].长沙:湘潭大学环境工程,2005.
    [120]李艳,国海峰,柳艳修.芳香族化合物绿色氧化技术研究进展[J].石油技术与应用,2009,27(1):72-77.
    [121]邹家庆.工业废水处理技术(第一版)[M].北京:化学工业出版社,2003.
    [122]Zhou Q X. Chenieal pollution and transport of organic dyes in water-soil-crop systems of Chinese coast [J]. Bull, of Environ. Coutam. Toxic.,2001, (6):784-793.
    [123]Nigam P, Armour G, Banat I M, et al. Physieal removal of textile dyes from effiuents and solid-state fermentation of dye-adsothedagneul turalresidues [J]. Bioresour. Technol., 2000,72:219-226.
    [124]Galindo C, Jacques P, Kalt A. Photooxidation of the phenylazonaphthol A020 on TiO2:kinetic and mechanistic investigations [J]. Chemosphere,2001,45:997-1005.
    [125]刘晓超,张丽丽.含芳香族硝基化合物废水处理技术的现状及发展前景仁[J].化工环保,2004,24(1):33-37.
    [126]张宇峰,滕洁,张雪英,等.印染废水处理技术的研究进展明[J].工业水处理2003,23(4):23-27.
    [127]甘光奉,甘莉.高分子絮凝剂研究进展闭[J].工业水处理,1999,19(2):6-7.
    [128]肖锦.我国絮凝剂发展现状与对策明[J].现代化工,1997,17(12):6-9.
    [129]Smith J S, Valsaraj K T, Thilbodeaux L J. Bubble column reactors for wastewater treatment.1. Theory and modeling of continuous countercur rent solvent sublation [J]. Ind. Eng. Chem. Res.1996,35(5):1688-1699.
    [130]Ososkov V, Kebbekus B, Chen M. Emission of volatile organic compounds to the atmosphere in the solvent sublation process:Ⅰ. Toluene [J]. Sep. Sci. Technol.,1996, 31(2):213-227.
    [131]吴永强,任永中,孟昭.高浓度染料及染料中间体生产废水的治理方法[J].河北建筑工程学院学报,2002,20(4):11-15.
    [132]罗学辉,秦炜,符钰,等.络合萃取法处理磺酸类染料中间体工业废水的研究[J].化学工程,2003,31(2):51-54.
    [133]Banat I M, Datel S, Singh D, et al. Microbial decolorization of textile dye containing effluents:A review [J]. Biores. Technol.,1996,58:217-227.
    [134]Wouter D, Cliona O, Freda R, et al. Anaerobie treatment of textile effluents: A review [J]. J. Chem. Technol. Biotechnol.,1998,73:323-335.
    [135]Masayuki N, Chizuko Y, Norihisa I, et al. Putative ACP phosphodiesterase gene (acpD) encodesan azoreductase [J]. J. Bio. Chem.,2001,276(49):46394-446399.
    [136]Chang J S, Chou C, Chen S Y. Decolorization of azo dyes with immobilized pseudomonas luteola [J]. Process Biochem.,2001(36):757-763.
    [137]罗志腾,刘美侠.酵母036对一种偶氮染料废水的降解与脱色[J].中国给水排水,1996,12(4):12-20.
    [138]刘生浩,史玉英,娄无忌,等.青霉菌P-93对偶氮染料的降解特性研究[J].应用与环境生物学报,1995,1(2):168-172.
    [139]徐文东,文湘华,付莉燕.偶氮染料派拉丁蓝RRN脱色细菌的选育与研究[J].环境科学学报,2001,21:127-132.
    [140]张金平,阚振荣,李彦芹,等.染料脱色菌与芳胺降解菌的筛选及降解染料研究[J].生物技术,2006,16(1):68-70.
    [141]徐林,郑海荣,石建锋.甘肃黄芪根瘤菌耐盐性及化学试剂和染料的抗性研究[J].甘肃联合大学学报(自然科学版),2011,25(5):45-51.
    [142]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull, of Environ. Coutam. Toxic. 1976,16(6):697-701.
    [143]超声强化臭氧氧化分散蓝染料废水的研究[J].浙江工业大学学报,2006,34(3):306-309.
    [144]Fenton H J H. Oxidation of tartaric acid in the presence of iron[J]. Chem. Soc. Trans.1894,65:899-910.
    [145]Kritzer P, Bloukis N, Dinjus E. Factors controlling corrosion in high-temperature aqueous solutions:A contribution to the dissociation and solubility data influencing corrosion processes [J]. Supercrit. Fluids,1999,15:205-227.
    [146]颜婉茹,牛古丹,张艳.含染料废水的超临界水氧化工艺及动力学分析[J].2007,12(4):123-130.
    [147]Fox M A, Dulay M T. Heterogeneous photocatalysis [J]. Chem. Rev.,1993,93 (1):341-357.
    [148]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95 (1):69-96.
    [149]Park H, Choi W. Photocatalytic reactivities of Nafion-Coated TiO2 for the degradation of charged organic compounds under UV or visible light [J]. J. Phys. Chem. B, 2005,109, (23):11667-11674.
    [150]Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2 nanopartieles [J]. Nano Letters,2003,3(8):1049-1051.
    [151]郝晶玉.纳米二氧化钛光催化材料的合成及其改性研究[D].陕西:陕西师范大学,2007.
    [152]颜秀茹,白天,韩芳,等.SO42-/TiO2-SiO2的制备及对甲基橙的光催化降解[J].无机化学学报,2003,19(10):1125-1128.
    [153]Wei F Y, Ni L S, Cui P. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity [J]. J. Hazard Mater.,2008,156 (1-3):135-140.
    [154]张喜梅,李琳,郭祀远,等.用溶胶-凝胶法制备纳米粒子时聚集现象的探讨[J].化学工业与工程,2003,3:155-159.
    [155]Rinco'n, A G, Pulgarin, C.2004. Effect of pH, inorganic ions matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2. Implications in solar water disinfection. Appl.Catal., B:Environ.,2004,51(4):283-302.
    [156]OLLIS D F, HSIAO C Y, et al. Heterogeneous photoassisted catalysis-conversion of Perchloroethylene, Dichloroethane, Chloroacetic Acids, and Chloorobenzenes[J]. J.Catal.,1984,88(1):89-96.
    [157]Somani P R, Marimuthu R, Mulik U P, et al. High piezoresistivity and its origin in conducting polyaniline/TiO2 composites [J]. Synth. Met.,1999,106(1):45-52.
    [158]Mills A, Davies R H, Worsley D. Water purification by semiconductor photocatalysis [J]. Chem. Soc. Rev.,1993,22:417-425.
    [159]Lopez-Ramon M V, Stoeckli F, Moreno-Castilla C, et al. On the characterization of acidic and basic surface sites on carbons by various techniques [J]. Carbon,1999,37:1215-1221.
    [160]范山湖,孙振范,呜泉周,等.偶氮染料吸附和光催化氧化动力学[J].物理化学学报,2003,19(1):25-29.
    [161]Nikazar M, Gholivand K, Mahanpoor K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst [J]. Desalination, 2008,219:293-300.
    [162]Ammar H, Hinda L, Mohamed K, et al. Photocatalytic degradation pathway of methylene blue in water.2001,31(2):145-157.
    [163]Ritter J J, Kalish J. A New Reaction of Nitriles Unsaturated Amides [J]. J. Am. Chem. Soc,1948,70:4048-4051.
    [164]潘勇.新型金属酞菁及其温敏聚合物的合成和仿酶催化性能[D].浙江:浙江大学材料与化工学院,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700