用户名: 密码: 验证码:
甲醛的“存储—氧化”脱除与室温催化氧化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛是一种常见的现代室内空气污染物,对环境和人类的健康造成了极大的危害。如何有效消除甲醛污染已经成为人们广泛关注的研究课题。
     目前应用比较广泛的脱除甲醛的技术有吸附法和催化氧化法。吸附法虽然简单易行,但是存在易受其他组分竞争吸附、吸附时间短且吸附剂再生困难等问题。催化氧化法虽然能够将甲醛完全氧化为无污染的二氧化碳和水,但是针对目前的研究来看,只有负载贵金属Pt的催化剂能在室温将甲醛完全氧化,而非贵金属则需要较高的温度。
     鉴于此,本论文开展了一种新的“存储-氧化”循环净化方法脱除室内空气污染物甲醛。利用催化剂的氧化功能,在一个具有“双功能”的负载银催化剂上完成整个“存储-氧化”循环,解决了空气中共存组分水与甲醛的竞争吸附问题,解决了催化剂原位再生问题。另外,通过制备不同种类载体负载的金催化剂,研究了甲醛在室温下的催化氧化。论文取得了如下研究成果:
     (1)建立了甲醛“存储-氧化”循环消除的新方法:利用非贵金属氧化物催化剂对甲醛的部分氧化性能,在室温下首先将甲醛部分氧化并存储在催化剂上;存储饱和后再将催化剂适当升温,催化活性提高,存储物种被完全氧化为C02和H20,催化剂得以再生。在此过程中,甲醛经历从气相到表面,反应后产物从催化剂表面脱附再进入气相的净化过程。我们研制了一种具有“存储-氧化”双功能的Ag-MnOx-CeO2催化剂。在存储阶段,这种双功能催化剂在室温下就能富集低浓度的甲醛并将其部分氧化为甲酸盐存储在催化剂上,H20的存在不仅没有与甲醛发生竞争吸附,而是促进了甲醛的部分氧化。在氧化阶段,催化剂适当升温(290℃),催化活性提高,存储的甲酸盐被完全氧化为C02和H20,催化剂得以再生。在甲醛浓度为17ppm、体积空速为30,000h-1、相对湿度为50%的模拟空气反应条件下,Ag-MnOx-CeO2催化剂上甲醛的单次吸附穿透时间超过20小时(1275min),催化剂历经五个“存储-氧化”循环依然保持高存储量和再生活性,且无二次污染产生。
     (2)采用沉积沉淀法分别以尿素和氢氧化钠为沉淀剂制备了Ce02负载的金催化剂。表征结果表明催化剂的活性受Au与载体之间的相互作用影响,以尿素为沉淀剂制备的Au/CeO2催化剂上金与载体之间的相互作用强,产生了更多的活泼表面活性氧物种,故其具有室温完全氧化甲醛的活性。原位漫反射红外光谱研究表明甲醛在Au/CeO2催化剂上的完全氧化需要经历两个步骤:甲醛首先被氧化为甲酸盐,然后甲酸盐被进一步完全氧化为二氧化碳和水;表面中间物种的完全氧化是Au/CeO2催化剂催化氧化甲醛的速率控制步骤。同时,利用原位漫反射红外光谱技术还系统研究了水的存在对反应中间物种的生成和消耗的影响。
     (3)采用共沉淀法制备了FeOx负载的Au催化剂,研究了焙烧温度和反应气氛中水对室温催化氧化甲醛活性的影响。研究表明,200℃焙烧的催化剂结晶度较差且表面含有大量羟基,Au和FeOx的相互作用较强,Au保持高度分散(平均粒径为3-4nm),并促进了载体FeOx的低温还原,故其在室温下有最佳甲醛氧化活性。原位漫反射红外光谱研究表明,反应气氛中水的存在显著提高了甲酸盐完全氧化这一速率控制步骤的反应速率,因此Au/FeOx催化剂在湿气中的催化活性高于在干气中的活性。
     (4)突破以可还原性载体负载贵金属为甲醛室温氧化催化剂的传统思路,首次研究了γ-Al2O3负载的Au催化剂甲醛室温氧化性能,结果表明,载体表面的羟基在反应中起重要作用:稳定Au并参与甲醛的部分氧化和完全氧化,从而使1wt%Au/γ-Al2O3催化剂在室温、有水条件下具有很好的甲醛氧化活性。
Formaldehyde is one of the most common and most toxic indoor gaseous pollutants. Long-term exposure to indoor air containing HCHO may cause adverse effects on human health. Significant efforts have been made to remove low concentration of HCHO.
     Physical absorption and heterogeneous catalytic oxidation are regarded as the most promising HCHO removal technology. However, HCHO oxidation requires the use of elevated temperatures for most of the catalysts reported to date, though several supported noble metal catalysts have been demonstrated to be effective for HCHO oxidation at room temperature. The way of removal of indoor HCHO by adsorption is limited for a short life time and the absorbents'regeneration.
     In this work, a novel "storage-oxidation" cycling process was applied to remove HCHO based on a bi-functional catalyst. The bi-functions of the catalysts should include storage and partial oxidation of HCHO into the formates during the storage period at room temperature; and complete oxidation of the stored HCHO into CO2and H2O at elevated temperatures. Through the "storage-oxidation" cycling process, the catalyst could be in situ regenerated and the problem of competitive adsorption of H2O with HCHO was resolved. In addition, the different types of oxides supported Au catalysts prepared by deposition-precipitation and co-precipitation were investigated as catalysts for complete oxidation of HCHO at room temperature. The results were summarized as follows:
     (1) Catalytic removal of indoor HCHO was proposed to proceed in a "storage-oxidation" cycling process. At room temperature, HCHO is partially oxidized into the formate species over non-noble metals and stored on the catalyst. When the catalyst reaches saturation, it is regenerated in situ by heating, and the stored formate species are completely oxidized into CO2and H2O. Due to the highly dispersed silver clusters formed and its good redox properties, the Ag-MnOx-CeO2catalyst showed better HCHO oxidation properties in both the storage phase (HCHO partial oxidation to the formate at room temperature) and oxidation-regeneration phase (total oxidation of the formates into CO2and H2O at elevated temperatures). The presence of H2O (RH=50%,25℃) was found to enhance the HCHO storage capacity for Ag-MnOx-CeO2catalyst, while competitive adsorption of HCHO with H2O was observed over Ag/HZSM-5catalyst. The results of DRIFTS indicate that the partial oxidation of HCHO into the formate is accelerated by the presence of H2O over the Ag-MnOx-CeO2catalyst. The breakthrough time of the Ag-MnOx-CeO2catalyst was-20h (1275min) under the condition of17ppm HCHO/21%O2/H2O(RH=50%,25℃))/N2. Moreover, the "storage-oxidation" capacity of the Ag-MnOx-CeO2catalyst remained virtually unchanged for the five test cycles.
     (2) Two kinds of Au/CeO2, prepared by deposition-precipitation (DP) using urea (U) or NaOH (N) as precipitants were investigated as catalysts for HCHO oxidation. H2-TPR and XPS techniques were used to characterize the Au/CeO2samples. Due to the generation of increased amounts of active surface oxygen species resulting from the strong Au-Ce interaction, the Au/CeO2(DPU) catalyst showed higher activity than the Au/CeO2(DPN) catalyst, achieving100%conversion of HCHO into CO2and H2O at room temperature, even in the presence of water and at high GHSV (143,000h-1); moreover, the conversion was stable for at least60h. The reaction mechanism and the rate limiting steps for HCHO oxidation over the Au/CeO2catalysts were identified by means of in situ DRIFTS studies. The influence of oxygen and water on the formation and consumption of the formate reaction intermediates was also investigated.
     (3) FeOx-supported Au catalysts prepared by co-precipitation (CP) using Na2CO3as precipitant were investigated for catalytic HCHO oxidation. The applied calcination temperature was found to greatly influence both the chemical properties and microstructure of the catalysts. Characterization using XRD, H2-TPR and XPS suggested that lower calcination temperature improves the reducibility of the catalysts, and favors the presence of surface hydroxyl groups. Consequently, an Au/FeOx catalyst calcined at200℃afforded100%conversion of HCHO into CO2and H2O at room temperature and under humid air. In situ DRIFTS studies suggested that the moisture was essential for deep oxidation of the formate intermediates into CO2and H2O, this being the rate limiting step for catalytic HCHO oxidation.
     (4) Au supported on γ-Al2O3prepared by deposition-precipitation (DP) using urea is found to be a highly active catalyst for the total oxidation of HCHO at room temperature under humid air, without the need for a reducible oxide as support. In-situ DRIFTS studies suggested that the surface hydroxyl groups played key role in the partial oxidation of HCHO into the formate intermediates, which can be further oxidized into CO2and H2O with participation of nano-Au. This study challenges the traditional idea of supporting noble metals on reducible oxides for HCHO oxidation at room temperature.
引文
[1]张秀芝,辛雨家,何鑫巍,等.甲醛的危害及检测[J].山西建筑,2013(07):208-209.
    [2]张秀芝,辛雨家,何鑫巍,等.室内甲醛清除的误区和控制[J].山西建筑,2013(06):191-192.
    [3]PEI J J, ZHANG J S. Critical review of catalytic oxidation and chemisorption methods for indoor formaldehyde removal [J]. HVAC&R Research,2011,17 (4):476-503.
    [4]CHANG H, WU Z X. Experimental Study on Adsorption of Carbon Dioxide by 5 A Molecular Sieve for Helium Purification of High-Temperature Gas-Cooled Reactor [J]. Industrial & Engineering Chemistry Research,2009,48 (9):4466-4473.
    [5]BHATIA S, ABDULLAH A Z, WONG C T. Adsorption of butyl acetate in air over silver-loaded Y and ZSM-5 zeolites:experimental and modelling studies [J]. Journal of Hazardous Materials,2009,163 (1):73-81.
    [6]HUANG H, LEUNG D Y C, YE D. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation [J]. Journal of Materials Chemistry,2011,21 (26):9647.
    [7]HUANG H, LEUNG D Y C. Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature [J]. Journal of Catalysis,2011,280 (1):60-67.
    [8]TANG X, LI Y, HUANG X, et al. MnO,-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature [J]. Applied Catalysis B: Environmental,2006,62 (3-4):265-273.
    [9]MAO C. Formaldehyde Oxidation over Ag Catalysts [J]. Journal of Catalysis,1995,154 (2):230-244.
    [10]IMAMURA S, UCHIHORI D, UTANI K, et al. Oxidative Decomposition of Formaldehyde on Silver-Cerium Composite Oxide Catalyst [J]. Catalysis Letters,1994,24 (3-4):377-384.
    [11]YEGIAZAROV Y, CLARK J, POTAPOVA L, et al. Adsorption-catalytic process for carbon disulfide removal from air [J]. Catalysis Today,2005,102-103 (0):242-247.
    [12]BAEK S W, KIM J R, IHM S K. Design of dual functional adsorbent/catalyst system for the control of VOC's by using metal-loaded hydrophobic Y-zeolites [J]. Catalysis Today,2004,93 95 (0):575-581.
    [13]HARUTA M, YAMADA N, KOBAYASHI T, et al. Gold catalysts prepared by co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. Journal of Catalysis,1989,115 (2):301-309.
    [14]LEUNG D Y C, FU X, YE D, et al. Effect of oxygen mobility in the lattice of Au/TiO2 on formaldehyde oxidation [J]. Kinetics and Catalysis,2012,53 (2):239-246.
    [15]LI C, SHEN Y, JIA M, et al. Catalytic combustion of formaldehyde on gold/iron-oxide catalysts [J]. Catalysis Communications,2008,9 (3):355-361.
    [16]JIA M L, BAI H F, ZHAORIGETU, et al. Preparation of Au/CeO2 catalyst and its catalytic performance for HCHO oxidation [J]. Journal of Rare Earths,2008,26 (4):528-531.
    [17]孙湛,王蔚茹,张扬.新装修住宅室内空气甲醛污染状况及影响因素[J].中国公共卫生管理,2013(01):92-93.
    [18]MUHIC S, BUTALA V. The influence of indoor environment in office buildings on their occupants: expected-unexpected [J]. Building and Environment,2004,39 (3):289-296.
    [19]程铁柱.装修几年后甲醛未必少[J].报刊荟萃,2013(01):9.
    [20]佟冬青,黄胜勇.温州市某居民区新装修房屋甲醛污染状况调查分析[J].当代医学(学术版),2008(20):179-180.
    [21]唐幸福.锰-铈固溶体催化剂上甲醛完全氧化反应的研究[D].大连:中国科学院研究生院(大连化学物理研究所),2006.
    [22]KIM M G, YOUNG NO B, LEE S M, et al. Examination of selected synthesis and room-temperature storage parameters for wood adhesive-type urea-formaldehyde resins by 13C-NMR spectroscopy. V [J]. Journal of Applied Polymer Science,2003,89 (7):1896-1917.
    [23]肖力光,刘刚,李媛,等.酚醛泡沫塑料性能的研究[J].吉林建筑工程学院学报,2013(02):1-3.
    [24]陈刚,段为棵,涂川俊,等.酚醛和丁腈橡胶配比对铝基复合材料用树脂基摩擦材料性能的影响[J].非金属矿,2013(01):77-80.
    [25]李高卿.室内装修甲醛的来源与防治[J].现代装饰(理论),2013(03):20.
    [26]陈曦.装修后居室空气中甲醛污染研究[J].凯里学院学报,2008(06):52-54.
    [27]李翠红.分子筛吸附剂对甲醛分子吸附性能的研究[D].大连:大连理工大学,2005.
    [28]申屠杭,王明娣,徐祥宽,等.燃用新型甲醇和碳五燃料对厨房空气污染调查[J].浙江预防医学,1995(06):21.
    [29]李淑荣,田园.“烟民”泛滥现象透视[J].新长征,2001(06):37-39.
    [30]丛俏.新装修房屋室内空气中甲醛污染状况的调查[J].辽宁城乡环境科技,2005(01):16-18.
    [31]李艳莉,尹诗,黄宝妍.室内甲醛污染来源及其对人体的危害[J].佛山科学技术学院学报(自然科学版),2003(01):49-52.
    [32]谢虹,闫文生,应晨江,等.解剖学实验室空气中甲醛污染及个体接触量与防制措施[J].中国公共卫生学报,1994(01):63.
    [33]金永堂,张海燕,祁家骥.室内空气甲醛污染对神经及呼吸系统症状的影响[J].卫生研究,1995(04):221-223.
    [34]COLLINS J J, LINEKER G A. A review and meta-analysis of formaldehyde exposure and leukemia [J]. Regulatory Toxicology and Pharmacology,2004,40 (2):81-91.
    [35]罗晓红,顾艳.室内甲醛污染对人类健康影响的研究进展[J].职业与健康,2011(21):2501-2503.
    [36]高月华.等离子体催化脱除室内空气中甲醛及其副产物的研究[D].大连:大连理工大学,2008.
    [37]江中发,袁文菊,张本延.空气中的甲醛污染与白血病关系的研究进展[J].环境与健康杂志,2008(03):276-278.
    [38]刘雪松.Mnq复合氧化物上甲醛和一氧化碳催化氧化性能研究[D].金华:浙江师范大学,2009.
    [39]钱华,戴海夏.室内空气污染与人体健康的关系[J].环境与职业医学,2007(04):426-430.
    [40]ROFFAEL E, DIX B, KEHR E. Moisture and Hydrolysis Resistance of Particleboards, Bonded with Unmodified and Modified Low Formaldehyde UF-Resins Using Different Catalyst Systems.4.Some Chemical-Properties of Particleboards Bonded with Unmodified and Modified UF-Resins, Holz Als Roh-und Werkst.1995,53(5):315-320.
    [41]GIESE M, BAUER-DORANTH U, LANGEBARTELS C, et al. Detoxification of Formaldehyde by the Spider Plant (Chlorophytum comosum L.) and by Soybean (Glycine max L.) Cell-Suspension Cultures [J]. Plant Physiology,1994,104 (4):1301-1309.
    [42]白雁斌,刘兴荣.吊兰净化室内甲醛污染的研究[J].海峡预防医学杂志,2003(03):26-27.
    [43]许桂芳.植物盆栽在净化室内甲醛污染中的应用[J].中国园艺文摘,2012(10):19-21.
    [44]杨帆,秦丽,赵树凯,等.甲醛清除剂类产品及行业发展概况[J].绿色科技,2013(01):75-76.
    [45]ERIKSSON B, JOHANSSIN L, I S. proceedings of the Filtration of formaldehyde contaminated indoor air, The Nordest Symposium On Air Pollution Abatement by Fitration and Respiratory Protection,1980 [C]. Copenhagen.
    [46]周先海.甲醛祛除剂:中国,02148708.1[P].2004,06,02.
    [47]邵宇,张子重,王绪绪.室内空气中甲醛的去除[J].暖通空调,2005(10):36-39.
    [48]柳海兰.甲醛捕捉剂的研究进展[J].科技信息,2012(36):571.
    [49]MYERS G E. How mole ratio of UF resin affects formaldehyde emission and other properties:a literature critique [J]. Forest Products Journal,1984,34 (5):35-41.
    [50]HAYASHI A, FUJIMOTO Y, OGAWA Y, et al. Adsorption of gaseous formaldehyde and carboxylic acids by ammonium-ion-exchanged a-zirconium phosphate [J]. Journal of Colloid and Interface Science,2005,283 (1):57-63.
    [51]赵化桥.等离子体化学与工艺[M].合肥:中国科技大学出版社,1993.
    [52]DING H X, ZHU A M, YANG X F, et al. Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas [J]. Journal of Physics D:Applied Physics,2005,38 (23): 4160-4167.
    [53]SHIMIZU K, SUGIYAMA T, SAMARATUNGE M N L. Study of Air Pollution Control by Using Micro Plasma Filter [J]. Industry Applications, IEEE Transactions on,2008,44 (2):506-511.
    [54]CHANG M B, LEE C C. Destruction of Formaldehyde with Dielectric Barrier Discharge Plasmas [J]. Environmental Science and Technology,1995,29 (1):181-186.
    [55]李坚,李洁,梁文俊,等.等离子体法去除甲醛的实验研究[J].高电压技术,2007(02):171-173.
    [56]丁慧贤.大气压下等离子体与催化协同低温脱除气相中甲醛研究[D].大连:大连理工大学,2008.
    [57]王文超.改性活性炭吸附甲醛的研究[D].山东:山东科技大学,2006.
    [58]张月.催化剂负载活性炭的甲醛吸附、转化研究[D].广州:华南理工大学,2012.
    [59]王彬,单丽丽,周小舟.硝酸改性活性炭对甲醛吸附性能影响的研究[J].绿色科技,2012(12):57-59.
    [60]蔡健,胡将军,张雁.改性活性炭纤维对甲醛吸附性能的研究[J].环境科学与技术,2004(03):.16-19.
    [61]范树景,张杨,肖昊轩,等.焙烧及改性对沸石吸附甲醛性能的影响[J].佳木斯大学学报(自然科学版),2010(01):95-96.
    [62]LEE K J, SHIRATORI N, LEE G H, et al. Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent [J]. Carbon,2010,48 (15): 4248-4255.
    [63]CLANDER L, JOHANSSON R, JOHANSOON J. Proceedings of the Proceeding 4th International Conference On Indoor Air Quality and Climate,1987 [C]. West Germany:West Berlin.
    [64]程琰,尹华强,刘勇军,等.多孔炭材料在室内空气污染控制中的应用[J].林产化学与工业?2004(02):93-97.
    [65]景盛翱,戴海夏,钱华.光催化技术及其在室内空气净化方面研究现状[J].上海环境科学,2010(0]):21-25.
    [66]QI H, SUN D Z, CHI G Q. Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode [J]. Journal of Environmental Sciences,2007,19 (9):1136-1140.
    [67]ZHANG M, AN T, FU J, et al. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor [J]. Chemosphere,2006, 64 (3):423-431.
    [68]聂龙辉.大气压介质阻挡放电冷等离子体合成纳米晶Ti02的研究[D].大连:大连理工大学,2007.
    [69]SUN S, DING J, BAO J, et al. Photocatalytic Oxidation of Gaseous Formaldehyde on TiO2:An In Situ DRIFTS Study [J]. Catalysis Letters,2010,137 (3-4):239-246.
    [70]齐虹.光催化氧化技术降解室内甲醛气体的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [71]SHIRAISHI F, YAMAGUCHI S, OHBUCHI Y. A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus [J]. Chemical Engineering Science,2003,58 (3-6):929-934.
    [72]YUAN R, ZHENG J, GUAN R, et al. Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,254 (1-3):131-136.
    [73]DI L B, LI X S, SHI C, et al. Atmospheric-pressure plasma CVD of TiO2 photocatalytic films using surface dielectric barrier discharge [J]. Journal of Physics D:Applied Physics,2009,42 (3):032001.
    [74]LIU H, LIAN Z, YE X, et al. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide [J]. Chemosphere,2005,60 (5):630-635.
    [75]贾钧琳.纳米金催化剂低温催化甲醛氧化的研究[D].北京:北京化工大学,2008.
    [76]SALEH J M, HUSSIAN S M. Adsorption, desorption and surface decomposition of formaldehyde and acetaldehyde on metal films nickel, palladium and aluminium [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1986,82 (7):2221-2234.
    [77]SEKINE Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature [J]. Atmospheric Environment,2002,36 (35):5543-5547.
    [78]TANG X, CHEN J, LI Y, et al. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts [J]. Chemical Engineering Journal,2006,118 (1-2):119-125.
    [79]TANG X, HUANG X, SHAO J, et al. Synthesis and Catalytic Performance of Manganese Oxide Octahedral Molecular Sieve Nanorods for Formaldehyde Oxidation at Low Temperature [J]. Chinese Journal of Catalysis,2006,27 (2):97-99.
    [80]安霓虹.负载型铂催化剂上甲醛的CO低温催化氧化反应性能研究[D].吉林:吉林大学,2012.
    [81]SHI C, WANG Y, ZHU A, et al. MnxCoO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde [J]. Catalysis Communications,2012,28 (0):18-22.
    [82]王莹莹.金基催化剂催化若干重要化学反应过程的理论研究[D].山东:山东大学,2010.
    [83]HUANG H, LEUNG D Y C. Complete Oxidation of Formaldehyde at Room Temperature Using TiO2 Supported Metallic Pd Nanoparticles [J]. Acs Catalysis,2011,1 (4):348-354.
    [84]ZHANG C, LIU F, ZHAI Y, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures [J]. Angewandte Chemie International Edition,2012, 51 (38):9628-9632.
    [85]PARK S J, BAE I, NAM I-S, et al. Oxidation of formaldehyde over Pd/Beta catalyst [J]. Chemical Engineering Journal,2012,195-196:392-402.
    [86]ZHANG C, HE H, TANAKA K I. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature [J]. Applied Catalysis B:Environmental,2006,65 (1-2):37-43.
    [87]TANG X, CHEN J, HUANG X, et al. Pt/MnOx-CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature [J]. Applied Catalysis B:Environmental,2008,81 (1-2): 115-121.
    [88]AN N, YU Q, LIU G, et al. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method [J]. Journal of Hazardous Materials,2011,186 (2-3):1392-1397.
    [89]IMAMURA S, UEMATSU Y, UTANI K, et al. Combustion of formaldehyde on ruthenium/cerium(IV) oxide catalyst [J]. Industrial & Engineering Chemistry Research,1991,30 (1):18-21.
    [90]CHUANG K T, ZHOU B, TONG S. Kinetics and Mechanism of Catalytic Oxidation of Formaldehyde over Hydrophobic Catalysts [J]. Industrial & Engineering Chemistry Research,1994,33 (7): 1680-1686.
    [91]ALVAREZGALV N M C, DELAPE AO'SHEA V A, FIERRO J L G, et al. Alumina-supported manganese- and manganese-palladium oxide catalysts for VOCs combustion [J]. Catalysis Communications,2003,4 (5):223-228.
    [92]JIA M, SHEN Y, LI C, et al. Effect of Supports on the Gold Catalyst Activity for Catalytic Combustion of CO and HCHO [J]. Catalysis Letters,2005,99 (3-4):235-239.
    [93]SHEN Y, YANG X, WANG Y, et al. The states of gold species in CeO2 supported gold catalyst for formaldehyde oxidation [J]. Applied Catalysis B:Environmental,2008,79 (2):142-148.
    [94]ZHANG J, JIN Y, LI C, et al. Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation [J]. Applied Catalysis B:Environmental,2009,91 (1-2):11-20.
    [95]HONG Y C, SUN K Q, HAN K H, et al. Comparison of catalytic combustion of carbon monoxide and formaldehyde over Au/ZrO2 catalysts [J]. Catalysis Today,2010,158 (3-4):415-422.
    [96]MA C, WANG D, XUE W, et al. Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4-CeO2 catalysts at room temperature:effective removal and determination of reaction mechanism [J]. Environmental Science and Technology,2011,45 (8):3628-3634.
    [97]LIU B, LIU Y, LI C, et al. Three-dimensionally ordered macroporous Au/CeO2-Co3O4 catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde [J]. Applied Catalysis B: Environmental,2012,127 (0):47-58.
    [98]孙权,李飞,张勇,等.室内甲醛污染控制技术研究进展[J].工业催化,2012(10):1-7.
    [99]何运兵,纪红兵,王乐夫.室内甲醛催化氧化脱除的研究进展[J].化工进展,2007(08):1104-1109.
    [100]ZHAO D Z, LI X S, SHI C, et al. Low-concentration formaldehyde removal from air using a cycled storage-discharge (CSD) plasma catalytic process [J]. Chemical Engineering Science,2011,66 (17): 3922-3929.
    [101]GUILLEMOT M, MIJOIN J, MIGNARD S, et al. Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system [J]. Applied Catalysis B:Environmental,2007,75 (3-4): 249-255.
    [102]SHIN S, SONG J. Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon [J]. Journal of Hazardous Materials,2011,194 (385-392.
    [103]魏国强,徐高,胡文祥.金催化化学概况及新进展[J].化学通报,2011(02):99-105.
    [104]陈鹏,彭峰.纳米金催化剂的研究进展[J].工业催化,2009(04):15-20.
    [105]齐世学,邹旭华,安立敦.负载型金催化剂[J].化学通报,2002(11):734-741.
    [106]张娜.负载型金催化剂上甲醛低温氧化性能研究[D].金华:浙江师范大学,2012.
    [107]李洪芳.负载型金催化剂上甲醛低温氧化性能研究[D].金华:浙江师范大学,2010.
    [108]秦晓霞.负载Au催化乙二醇氧化酯化的尺寸效应和载体效应[D].西安:陕西师范大学,2012.
    [109]王东辉,郝郑平,程代云,等.金催化剂的研究进展及在环保催化中的应用[J].自然科学进展,2002(08):12-17.
    [110]SCIR S, LIOTTA L F. Supported gold catalysts for the total oxidation of volatile organic compounds [J]. Applied Catalysis B:Environmental,2012,125 (0):222-246.
    [111]李辛玉,邓谦.纳米金催化剂的研究与应用[J].湘潭师范学院学报(自然科学版),2006(02):55-60.
    [112]刘广亮.金催化正丙醇氧化制丙酸甲酯的研究[D].大连:大连理工大学,2009.
    [113]刘艳霞.纳米金催化剂室温氧化CO及其再生研究[D].大连:大连理工大学,2011.
    [114]HARUTA M, UEDA A, TSUBOTA S, et al. methanol and its decomposed derivatives over supported gold catalysts [J]. Catalysis Today,1996,29 (1-4):443-447.
    [115]KECSK S T, RASK J, KISS J. FTIR and mass spectrometric studies on the interaction of formaldehyde with TiO2 supported Pt and Au catalysts [J]. Applied Catalysis A:General,2004,273 (1-2):55-62.
    [116]LI C Y, SHEN Y N, HU R S, et al. Catalytic activity of Au/Fe-PILC and Au/Fe-oxide catalysts for catalytic combustion of formaldehyde [J]. Transactions of Nonferrous Metals Society of China,2007, 17:sl 107-sllll.
    [117]ZHANG Y, SHEN Y, YANG X, et al. Gold catalysts supported on the mesoporous nanoparticles composited of zirconia and silicate for oxidation of formaldehyde [J]. Journal of Molecular Catalysis A:Chemical,2010,316(1-2):100-105.
    [118]LI H, ZHANG N, CHEN P, et al. High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation [J]. Applied Catalysis B:Environmental,2011,110:279-285.
    [119]FAN H Y, SHI C, LI X S, et al. High-efficiency plasma catalytic removal of dilute benzene from air [J]. Journal of Physics D:Applied Physics,2009,42 (22):225105.
    [120]INGLEZAKIS V J. The concept of "capacity" in zeolite ion-exchange systems [J]. Journal of Colloid and Interface Science,2005,281 (1):68-79.
    [121]SHI C, CHENG M, QU Z, et al. On the correlation between microstructural changes of Ag-H-ZSM-5 catalysts and their catalytic performances in the selective catalytic reduction of NOx by methane [J]. Journal of Molecular Catalysis A:Chemical,2005,235 (1-2):35-43.
    [122]LI Z J, FLYTZANI-STEPHANOPOULOS M. On the promotion of Ag-ZSM-5 by cerium for the SCR of NO by methane [J]. Journal of Catalysis,1999,182 (2):313-327.
    [123]LIU X, LU J, QIAN K, et al. A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts [J]. Journal of Rare Earths,2009,27 (3):418-424.
    [124]LOCHAR V. FT-IR study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst [J]. Applied Catalysis A:General,2006,309 (1):33-36.
    [125]LI C, DOMEN K, MARUYA K, et al. Adsorption and Decomposition of Formic-Acid, Methanol, and Formaldehyde on Cerium Oxide [J]. Journal of Catalysis,1990,125 (2):445-455.
    [126]LI C, SAKATA Y, ARAI T, et al. Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1:Formation of carbonate species on dehydroxylated CeO2, at room temperature [J]. Journal of the Chemical Society,1989,85 (4):929.
    [127]BUSCA G, LAMOTTE J, LA VALLEY J C, et al. FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces [J]. Journal of the American Chemical Society,1987,109 (17): 5197-5202.
    [128]MEUNIER F C. The power of quantitative kinetic studies of adsorbate reactivity by operando FTIR spectroscopy carried out at chemical potential steady-state [J]. Catalysis Today,2010,155 (3-4): 164-171.
    [129]HE Y, JI H. In-Situ DRIFTS Study on Catalytic Oxidation of Formaldehyde over Pt/TiO2 under Mild Conditions [J]. Chinese Journal of Catalysis (Chinese Version),2010,31 (2):171-175.
    [130]JIN T, ZHOU Y, MAINS G J, et al. Infrared and Xray Photoelectron Spectroscopy Study of CO and CO on Pt/CeO2 [J]. Journal of Physical Chemistry,1987,91:5931-5937.
    [131]ZHANG C B, SHI X Y, GAO H W, et al. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature [J]. Journal of Environmental Sciences-China,2005,17 (3):429-432.
    [132]YU Q Q, LI Y, ZOU X H, et al. Effect of Alkali Metal Promoters on Water-Gas Shift Activity over Au-Pt/CeO2 Catalyst [J]. Chinese Journal of Catalysis,2010,31 (6):671-676.
    [133]LAGUNA O H, ROMERO SARRIA F, CENTENO M A, et al. Gold supported on metal-doped ceria catalysts (M=Zr, Zn and Fe) for the preferential oxidation of CO (PROX) [J]. Journal of Catalysis, 2010,276 (2):360-370.
    [134]LIU B, LI C, ZHANG Y, et al. Investigation of catalytic mechanism of formaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2 catalyst [J]. Applied Catalysis B:Environmental, 2012,111-112(0):467-475.
    [135]TANAKA A, HASHIMOTO K, KOMINAMI H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light [J]. Journal of the American Chemical Society,2012,134(35):14526-14533.
    [136]BOUCHER M B, GOERGEN S. YI N, et al.'Shape effects' in metal oxide supported nanoscale gold catalysts [J]. Physical Chemistry Chemical Physics,2011,13 (7):2517-2527.
    [137]MA S, ZHAO X, RODRIGUEZ J A, et al. STM and XPS Study of Growth of Ce on Au(111) [J]. Journal of Physical Chemistry C,2007,111 (9):3685-3691.
    [138]LARA CHI F, PIERRE J, ADNOT A, et al. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts [J]. Applied Surface Science,2002,195 (1-4):236-250.
    [139]KASTEN L S, GRANT J T, GREBASCH N, et al. An XPS study of cerium dopants in sol-gel coatings for aluminum 2024-T3 [J]. Surface & Coatings Technology,2001,140 (1):11-15.
    [140]SCIRE S, MINICO S, CRISAFULLI C, et al. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts [J]. Applied Catalysis B:Environmental,2003,40 (1):43-49.
    [141]SERRE C, GARIN F, BELOT G, et al. Reactivity of Pt/Al2O3 and Pt/CeO2-Al2O3 Catalysts for the Oxidation of Carbon Monoxide [J]. Journal of Catalysis,1993,141 (1):1-8.
    [142]BUSCA G, ELMI A S, FORZATTI P. Mechanism of selective methanol oxidation over vanadium oxide-titanium [J]. The Journal of Physical Chemistry,1987,91 (20):5263-5269.
    [143]ZHENG Z, TEO J, CHEN X, et al. Correlation of the catalytic activity for oxidation taking place on various TiO2 surfaces with surface OH groups and surface oxygen vacancies [J]. Chemistry,2010,16 (4):1202-1211.
    [144]DATE M, OKUMURA M, TSUBOTA S, et al. Vital role of moisture in the catalytic activity of supported gold nanoparticles [J]. Angewandte Chemie International Edition,2004,43 (16): 2129-2132.
    [145]QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx [J]. Nature Chemistry,2011,3 (8):634-641.
    [146]XU H, FU Q, YAO Y, et al. Highly active Pt-Fe bicomponent catalysts for CO oxidation in the presence and absence of H2 [J]. Energy & Environmental Science,2012,5 (4):6313
    [147]QIAO B, WANG A, LIN J, et al. Highly effective CuO/Fe(OH)x catalysts for selective oxidation of CO in H2-rich stream [J]. Applied Catalysis B:Environmental,2011,105 (1-2):103-110.
    [148]QIAO B, ZHANG J, LIU L, et al. Low-temperature prepared highly effective ferric hydroxide supported gold catalysts for carbon monoxide selective oxidation in the presence of hydrogen [J]. Applied Catalysis A:General,2008,340 (2):220-228.
    [149]DANIELLS S T, OVERWEG A R, MAKKEE M, et al. The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts:a combined Mossbauer, FT-IR, and TAP reactor study [J]. Journal of Catalysis,2005,230 (1):52-65.
    [150]HUTCHING S G J. HALL M S, CARLEY A F, et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold [J]. Journal of Catalysis,2006,242 (1):71-81.
    [151]DANIELLS S T, MAKKEE M, MOULIJN J A. The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts [J]. Catalysis Letters,2005,100 (1-2):39-47.
    [152]CARABINEIRO S A C, BOGDANCHIKOVA N. TAVARES P B, et al. Nanostructured iron oxide catalysts with gold for the oxidation of carbon monoxide [J]. RSC Advances,2012,2 (7):2957-2965.
    [153]NERI G, VISCO A M, GALVAGNO S. et al. Au/iron oxide catalysts:temperature programmed reduction and X-ray diffraction characterization [J]. Thermochimica Acta,1999,329 (1):39-46.
    [154]ILIEVA L I, ANDREEVA D H, ANDREEV A A. TPR and TPD investigation of Au/a-Fe2O3 [J]. Thermochimica Acta,1997,292 (1-2):169-174.
    [155]LI L, WANG A, QIAO B, et al. Origin of the high activity of Au/FeO* for low-temperature CO oxidation:Direct evidence for a redox mechanism [J]. Journal of Catalysis,2013,299 (0):90-100.
    [156]BONELLI R, LUCARELLI C, PASINI T, et al. Total oxidation of volatile organic compounds on Au/FeO, catalysts supported on mesoporous SBA-15 silica [J]. Applied Catalysis A:General,2011, 400 (1-2):54-60.
    [157]ZOU X H, QI S X, SUO Z H, et al. Activity and deactivation of Au/Al2O3 catalyst for low-temperature CO oxidation [J]. Catalysis Communications,2007,8 (5):784-788.
    [158]LEBA A, DAVRAN C T, ONSAN Z I, et al. DRIFTS study of selective CO oxidation over Au/y-A12O3 catalyst [J]. Catalysis Communications,2012,29 (0):6-10.
    [159]KANTCHEVA M, SAMARSKAYA O, ELIEVA L, et al. In situ FT-IR investigation of the reduction of NO with CO over Au/CeO2-Al2O3 catalyst in the presence and absence of H2 [J]. Applied Catalysis B:Environmental,2009,88 (1-2):113-126.
    [160]M.C. RAPHULU J M, E. VAN DER LINGEN, J.A. ANDERSON, M.S. SCURRELL. Investigation of the active siteof AuTiO2 catalyst deactivation using DRIFTS [J]. Gold Bulletin,2010,43 (1):21-28.
    [161]CENTENO M A, HADJIIVANOV K, VENKOV T, et al. Comparative study of Au/Al2O3 and Au/CeO2-Al2O3 catalysts [J]. Journal of Molecular Catalysis A:Chemical,2006,252 (1-2):142-149.
    [162]SCHUMACHER B, DENKWITZ Y, PLZAK V, et al. Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst [J]. Journal of Catalysis,2004,224 (2):449-462.
    [163]GLUHOI A C, TANG X, MARGINEAN P, et al. Characterization and catalytic activity of unpromoted and alkali (earth)-promoted Au/Al2O3 catalysts for low-temperature CO oxidation [J]. Topics in Catalysis,2006,39 (1-2):101-110.
    [164]VEITH G, LUPINI A, PENNYCOOK S, et al. Nanoparticles of gold on A12O3 produced by dc magnetron sputtering [J]. Journal of Catalysis,2005,231 (1):151-158.
    [165]GARC A J. Au-Al2O3 nanocomposites:XPS and FTIR spectroscopic studies [J]. Solar Energy Materials and Solar Cells,2004,82 (1-2):291-298.
    [166]HUANG J, DAI W L, LI H, et al. Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to y-butyrolactone [J]. Journal of Catalysis,2007,252 (1):69-76.
    [167]HAN Y F, ZHONG Z, RAMESH K, et al. Effects of Different Types of γ-Al2O3 on the Activity of Gold Nanoparticles for CO Oxidation at Low-Temperatures [J]. Journal of Physical Chemistry C, 2007,111 (7):3163-3170.
    [168]XU B, SHANG J, ZHU T, et al. Heterogeneous reaction of formaldehyde on the surface of γ-Al2O3 particles [J]. Atmospheric Environment,2011,45 (21):3569-3575.
    [169]ATSUSHIOGATA H. Catalytic Oxidation of Benzene in the Gas Phase over Alumina-Supported Silver Catalysts [J]. Environmental Science& Technology,2010,44:2612-2617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700