用户名: 密码: 验证码:
纳米Cu_2O、植物组织基酶电极的制备、分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文主要分为纳米Cu2O及其修饰电极的制备、光电催化降解中间产物电分析应用,和以植物组织为基础的酶燃料电池、纳米马达的研究两大部分。首先在新体系Cu(Ⅱ)-柠檬酸溶液中分别研究了用脉冲电沉积法和液相还原法制备纳米Cu2O。利用粉末X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)等手段对产品的结构、成分、尺寸及形态进行了表征,开关灯开路电位实验考察了Cu2O的光电化学性质。旋转环盘电极(RRDE)法研究了Cu2O纳米粒子修饰电极对对硝基苯酚(pNP)的光电催化降解中间产物的分析应用性能。此外,我们还开发了用香蕉果肉制作的酶燃料电池和马铃薯组织的纳米马达。论文主要内容如下:
     1.花状Cu2O纳米粒子的制备及其电催化性能研究
     采用脉冲电沉积技术,在Cu(Ⅱ)-柠檬酸电解质溶液中制备了高度分散的花状Cu2O纳米粒子。扫描电子显微镜形貌(SEM)分析显示花状Cu2O粒子的成因是Cu2O(111)沿着立方Cu2O(100)方向连续生长所致。用XRD和XPS对沉积物的结构及化学组成进行了分析。用紫外/可见-漫反射(UV/Vis-DRS)光谱技术研究了Cu2O的光学性能和禁带宽度。开关灯不同条件下的开路电位~时间技术研究表明花状Cu2O纳米粒子具有明显的p-型半导体光电性质;循环伏安法(CV)实验研究证明所制备的花状纳米Cu20对对硝基苯酚(pNP)有明显的电催化作用。
     2.Cu2O纳米粒子修饰的旋转环盘电极(RRDE)对对硝基苯酚(pNP)的光电催化降解行为研究
     在非模板法水合肼(N2H4·H2O)还原Cu(Ⅱ)-柠檬酸络合物制备Cu20纳米粒子的基础上,将所得纳米Cu2O修饰于Pt-RRDE盘电极上(盘、环电极均为Pt材质),然后采用动力学差示脉冲伏安(HDPV)技术原位检测了pNP在可见光照射下的光电化学行为。实验证明了pNP在Nano-Cu2O修饰的盘电极上首先经历光电催化降解、产生电活性的对羟胺基苯酚,然后该对羟胺基苯酚被强制对流传质输送到Pt环电极表面,从而在0.05V处检测到其氧化信号。以此信号为基础建立了对pNP的电催化测定方法。在优化的条件下电催化测定pNP,氧化峰电流与pNP的浓度在1.0×10-5~1.0×10-3M范围内呈线性关系,检测限为1.0×10-7M。连续测定10次5.0×10-5MpNP的相对标准偏差(RSD)为2.8%。
     3.Cu2O纳米空心球、纳米片和八面体的非模板法制备及形貌关联的半导体性能分析
     通过微调溶液pH值的方法,柠檬酸铜盐配合体系中水热合成了不同形貌的纳米Cu2O(空心球、薄片和八面体形状)。用XRD.SEM和HRTEM对所得纳米Cu2O的晶体结构和形貌进行了表征。这种微调溶液pH值控制形成不同形貌的机理与奥氏熟化有关。光电化学实验表明在pH8-11范围内形成的Cu2O空心结构显示n-型半导体特性。相对地,在更碱性条件下(如pH大于或等于12)形成的实心的Cu2O八面体具有p-型半导体性能。
     4.以植物组织电极为基础的高效酶生物燃料电池
     香蕉组织富含多酚氧化酶(PPO),这种酶能够还原氧气为水,可用作生物燃料电池的阴极催化剂,我们以此为基础证明了第一个以葡萄糖脱氢酶(GDH)为阳极,香蕉修饰的碳糊电极为阴极的葡萄糖燃料电池。梅尔多拉蓝(MDB)用作阳极GDH的电子传递物质,而香蕉组织内酚类成分作为生物阴极PPO的电子传递物质。以香蕉组织为基础的生物燃料电池的最大输出功率和开路电压分别为57μW/cm2与0.46V。与纯酪氨酸酶(Tyr)制作的生物阴极相对比,香蕉组织为基础的燃料电池每单位成本的输出功率提高了9354倍(166502μW/$vs.17.8μW/$)。此香蕉生物燃料电池的寿命可达2周以上。我们并且提出并证明了构建以发芽的番茄种子为阳极,香蕉电极为阴极的纯天然不需外加燃料的生物燃料电池的设想。发芽的番茄种子含有乙醇脱氢酶(ADH),NAD+和乙醇,将番茄种子的碳糊电极作为生物阳极(bioanode)与香蕉生物阴极(biocathode)相组合。
     5.自推进化学驱动的植物组织生物马达
     描述了以植物组织为基础的自推进式生物催化马达,分别制备了马铃薯、胡萝卜组织和小米粒的小马达。此组织马达依赖于它们自身丰富的过氧化氢酶的活性,可催化分解过氧化氢燃料并产生气泡的推力。与以纯酶(过氧化氢酶)修饰制备的生物马达相比,这种天然的生物马达不需要进行酶的修饰,具有很好的生物兼容性且成本低廉,寿命长并表现出可观的运动速度和操作稳定性。
In this thesis, it includes the fabrication of Cu2O and its modified electrodes, photoelectrocatalytic degradation intermediates electroanalytic application, and the plant tissue based biofuel cells and nanomotors. Nano-CU2O were fabricated from new system Cu (Ⅱ)-citrate using pulsed electrodeposition and solution reduction method, respectively. The structures, compositions, sizes and morphologies were characterized by using some techniques such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photoelectrochemical properties of CU2O were characterized by light switch open circuit potential (OPC-t) experiments. The photoelectrocatalytic performance of Cu2O nanoparticles for p-nitrophenol (pNP) was studied using rotating ring-disk electrode (RRDE). In addition, the plant tissue based biofuel cells made with banana pulp and potato tissue micromotors were developed. The main contents are as follows:
     1. Preparation of flower-like Cu2O nanoparticles and their electrocatalytic application
     Pulsed electrodeposition technique was employed for preparation of highly dispersed flower-like CU2O nanoparticles from Cu (Ⅱ)-citrate solution. The morphology analysis of the particles using SEM reveals that the flower-like particles were from sequential growth of Cu2O along the (111) direction on the cubic Cu2O (100). The structure and the chemical composition of the deposits were characterized by XRD and XPS. Optical property and band gap of the Cu2O was investigated using UV/vis diffuse reflection spectra (DRS). The dark and light open circuit potential-time characterization study showed that the flower-like Cu2O nanoparticles exhibited good photoelectric response. Cyclic voltammetry carried out in the presence of p-nitrophenol (pNP) shows that the electrocatalytic performance of the CU2O particles for the reduction of pNP. The influence of the incidence of light on the electrocatalysis is also discussed.
     2. Investigation of photoelectrocatalytic degration behavior of Cu2O nanoparticles for pNP using Cu2O modified RRDE
     Cu2O nanoparticles were obtained by reducing the copper-citrate complex with hydrazine hydrate (NaH4·H2O) in a template-free process. A Cu2O nanoparticles modified Pt RRDE was successfully fabricated, the hydrodynamic differential pulse voltammetry (HDPV) technique was applied for in situ monitor the photoelectrochemical behavior of pNP under visible light. pNP undergoes photoelectrocatalytic degradation on nano-Cu2O modified disk to give electroactive p-hydroxylamino phenol species which is compulsive transported and can only be detected at ring electrode at around0.05V with oxidation signal. This signal can be used for the electrocatalytic determination of pNP. The effects of illumination time, applied bias potential, rotation rates and pH of the reaction medium have been discussed. Under optimized conditions for electrocatalytic determination, the anodic current is linear with pNP concentration in the range of1.0×10-5to1.0×10-3M, with a detection limit of1.0×10-7M and good precision (RSD=2.8%, n=10).
     3. Template-free Fabrication of Nano-sized Cu2O Hollow Spheres, Sheets and Octahedrons and their Morphology-dependent Semiconductor Type
     Nano-sized cuprous oxide (Nano-Cu2O) materials with different morphologies such as hollow spheres, two-dimensional (2D) sheets and octahedrons were synthesized using a simple hydrothermal method in a Cu-citrate complex solution by making small adjustments to the solution's pH value under alkaline conditions. The morphology and crystalline features of the Cu2O was observed using XRD, SEM and HRTEM. The formation mechanism is associated with localized Ostwald ripening. The photoelectrochemical experiments showed that the hollow Cu2O structure synthesized under a pH range of8-11exhibited n-type semiconductor characteristics. Alternatively, solid octahedral Cu2O formed in the presence of strong alkaline conditions (i.e. pH greater than or equal to12) and exhibited p-type behavior.
     4. High-Power Low-Cost Plant Tissue-Based Biofuel Cell
     The banana tissue rich with polyphenol oxidase (PPO), an enzyme able to reduce oxygen to water, which can be used as catalyst for the biocathode. We demonstrate the first example of using plant tissues for the operation of biofuel cells (BFC), the banana modified carbon paste electrode as biocathode and glucose dehydrogenase (GDH) as bioanode. Meldola's blue (MDB) were used as anode mediator, while the phenolic constituents of the banana serve as mediator for PPO. The maximum power output and open circuit voltage (OCV) of the banana-based tissue biofuel cell were57μW/cm2and0.46V, respectively. Cost analysis of this tissue biofuel cell system indicates dramatic improvements in terms of the power-output/dollar compared to the use of pure enzyme tryosinase (166502μW/$vs.17.8μW/$, i.e.,9354times improvement). The banana-based biofuel cell displayed an extended lifetime of over2weeks. We also demonstrate a fuel-free full plant-tissue based BFC concept, combining the banana biocathode with a bioanode based on germinated tomato-seeds that contain alcohol dehydrogenase (ADH), NAD+and ethanol.
     5. Self-propelled chemically-powered plant-tissue biomotors
     Self-propelled biocatalytic motors based on plant tissues are described. The potato, carrots and millet motors were developed. The tissue motors rely on their rich catalase activity towards biocatalytic decomposition of the H2O2fuel and generation of the bubble thrust. Compared with the pure enzyme (catalase) biomotors, these biomotors obviate the need for pure enzymes, and offer a remarkably low cost, good lifetime, good biocompatibility and thermostability.
引文
[1]B. D. Yuhas, P. Yang, Nanowire-based all oxide solar cells. J. Am. Chem Soc. 2009,131 (10), 3756-3761.
    [2]K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, T. Sakuri, Thin Film Deposition of Cu2O and Application for Solar Cells. Sol. Energy 2006,80,715-722.
    [3]C.-H. Kuo, C.-H. Chen, M. H. Huang, Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm, Adv. Funct. Mater.,2007,17, 3773-3780.
    [4]A. E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide. Solid State Electronics,1986,29 (1),7-17.
    [5]A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi, Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl. Phys. Lett,2006,88 (16),163502/1-163502/3.
    [6]兰玉成,车广灿,吴非,陈红,贾顺莲,董成,赵忠贤,用Cu2O合成Y-123超导体的研究,低温物理学报,1996,18(4),257-261.
    [7]C. M. McShane, W. P. Siripala, K.-S. Choi, Effect of Junction Morphology on the Performance of Polycrystalline Cu2O Homojunction Solar Cells, J. Phys. Chem. Lett. 2010,1,2666-2670
    [8]T. Jiang, T. Xie, W. Yang, H. Fan, D. Wang, Photoinduced charge transfer process in p-Cu2O/n-Cu2O homojunction film and its photoelectric gas-sensing properties,J. Colloid Interf. Sci.,2013,405,242-248.
    [9]T. Takata, S. Ikeda, A. Tanaka, M. Hara et al, Mechano-catalytic overall water splitting On some oxides (Ⅱ), Appl. CataL A:Gen.,2000,200 (1-2),255-262.
    [10]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Taracon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature,2000,407,496-499.
    [11]R. N. Briskman, A study of electrodeposited cuprous oxide photovoltaic cells, Sol. Energy Mater. Sol. Cells,1992,27,361-368.
    [12]R. Liu, E. A. Kulp, E. E. Oba, W. Bohannan, F. Ernst, J. A. Switzer, Epitaxial Electrodeposition of High-Aspect-Ratio Cu2O (110) Nanostructures on InP (111), Chem. Mater. 2005,17,725-729.
    [13]X. Li, H. Gao, C. J. Murphy, L. Gou, Nanoindentation of Cu2O, Nano Lett.,2004,4, 1903-1907.
    [14]L. Zhang, H. Li, Y. Ni, J. Li, K. Liao, G. Zhao, Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing, Electrochem. Commun. 2009(11),812-815.
    [15]J. Ramirez-Ortiz, J. Ogura, J. Medina-Valtierra, S.E. Acosta-Ortiz, P. Bosch, J. A. Reyes, A catalytic application of Cu2O and CuO films deposited over fiberglass, AppL Surf. Sci.2001 (174), 177-184
    [16]S.K. Li, F.Z. Huang, Y. Wang, Y.H. Shen, L.G. Qiu, Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures:Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants,J. Mater. Chenu,2011,21,7459-7466.
    [17]Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation, Environ. Sci. TechnoL,2009,43 (3),858-863.
    [18]A. R. Katritzky, M. Karelson, S. Salvov, C. D. Hall, Quantitative Correlation of Physical and Chemical Properties with Chemical Structure:Utility for Prediction, Chem. Rev.,2010,110 (10), 5714-5789.
    [19]柏振海,罗兵辉,氧化亚铜粉末的制备,粉末冶金材料科学与工程,2001,6(4),286-289.
    [20]张意霞,何家成,氧化铜火法还原为氧化亚铜的研究,湖南有色金属,1987(5),22-25.
    [21]A.O. Musa, T. Akomolafe, M.J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, SoL Energ. Mat SoL C., 1998,51(3-4),305-316.
    [22]. H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties, Adv. Funct. Mater.2007,17(15),2766-2771.
    [23]. Z. Ai, L. Zhang, S. Lee, W. Ho, Interfacial Hydrothermal Synthesis of Cu@Cu2O Core-Shell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity,J. Phys. Chem. C, 2009,113 (49),20896-20902
    [24]陈德明,徐刚,Cu20薄膜磁控溅射制备及特性分析,功能材料,2007增刊38卷1502-1504.
    [25]H. Zhu, J. Zhang, C. Li, F. Pan, T. Wang, B. Huang, Cu2O thin films deposited by reactive direct current magnetron sputtering, Thin Solid Films,2009,517(19),5700-5704.
    [26]D. Barreca, E. Comini, A. Gasparotto, C. Maccato, Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors, Sensor. Actuat B-Chem.,2009(141),270-275.
    [27]J. Medina-Valtierra, J. Ramirez-Ortiz, V. M. Arroyo-Rojas, Cyelohexane oxidation Over Cu2O-CuO and CuO thin film deposited by CVD process on fiberglass, Appl. Catal. A-Gen.,2002, 238(1),1-9.
    [28]A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition., Vacuum,2009,83,927-930
    [29]N. Kikuchi, K. Tonooka, Electrical and structural properties of Ni-doped Cu2O films prepared by pulsed laser deposition, Thin Solid Films,2005,486,33-37.
    [30]W. Z. Wang, G. H. Wang, X. S. Wang, Y. J. Zhan, C. L. Zheng, Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route, Adv. Mater.,2002,14,67-69.
    [31]X. J. Zhang, Z. L. Cui, One-pot growth of Cu2O concave octahedron microcrystal in alkaline solution, Mater. Sci. Eng., B,2009,162,82-86.
    [32]S. Jiao, L. Xu, K. Jiang, D, Xu, Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating, Adv. Mater.2006,18, 1174-1177.
    [33]J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly Monodisperse Cu2O and CuO Nanospheres:□ Preparation and Applications for Sensitive Gas Sensors, Chem. Mater.2006,18, 867-871.
    [34]S. Ram, C. Mitra, Formation of stable Cu2O nanocrystals in a new orthorhombic crystal structure, Mater.ScL Eng.,,2001, A304-306,805-809.
    [35]翟纪伟,高荣杰,姜魁光,孙明志,均相还原法制备氧化亚铜微晶及粒径控制,材料导报,2009,23,107-112.
    [36]张萍,李大成,刘恒等,亚硫酸钠还原法制备超细氧化亚铜粉末,四川有色金属,1998(2),16-18.
    [37]L. Xu, L. P. Jiang, J. J. Zhu, Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures, Nanotechnology,2009,20,045605-145611.
    [38]L. Gou, C. J. Murphy, Controlling the size of Cu2O nanocubes from 200 to 25 nm,J. Mater. Chem.,2004,14,735-738
    [39]C.R. Sekhar, Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties, Sol. Energ. Mater. Sol. Cells.,2001,68(3-4),307-312.
    [40]P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, Cu2O:Electrodeposition and Characterization, Chem. Mater.1999,11,3512-3517
    [41]R. Liu, E.A. Kulp, F. Oba, E.W. Bohannan, F. Ernst, J.A. Switzer, Epitaxial electrodeposition of high-aspect-ration Cu2O (110) nanostructures on InP(111), Chem. Mater., 2005,17,725-729.
    [42]S. Bijani, M. Gabas, L. Martinez, J.R. Ramos-Barrado, J. Morales, L. Sanchez, Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries, Thin Solid Films 2007,515,5505-5511.
    [43]R.P. Wijesunder, M. Hidaka, K. Koga, M. Sakai, W. Siripalad, Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films, Thin Solid Films 2006,500,241-246
    [44]F. Sun, Y. Guo, W. Song, J. Zhao, L. Tang, Z. Wang, Morphological control of Cu2O micro-nanostructure film by electrodeposition,J. Cryst Growth,2007,304,425-429
    [45]F. Sun, Y. Guo, Y. Tian, J. Zhang, X. Lv, M. Li, Y. Zheng, Z. Wang, The effect of additives on the Cu2O crystal morphology in acetate bath by electrodeposition,J. Cryst Growth 2008,310, 318-323
    [46]C. M. Mcshane, K. S. Choi, Photocurrent enhancement of n-type Cu2O Electrodes Achieved by Controlling Dendritic Branching Growth,J. Am. Chem. Soc.,2009,131,2561-2569.
    [47]J. Eskhult, M. Herranen, L. Nyholm, On the origin of the spontaneous potential oscillations observed during galvanostatic deposition of layers of Cu and Cu2O in alkaline citrate solutions, J. ElectroanaL Chem.,2006,594,35-49
    [48]Jonas Eskhulta, Christian Ulrich, Fredrik Bjorefors, Leif Nyholm, Current oscillations during chronoamperometric and cyclic voltammetric measurements in alkaline Cu(II)-citrate solutions, Electrochim.Acta 2008,53,2188-2197
    [49]J. Eskhult, L. Nyholm, Pulsed Galvanostatic and Potentiostatic Electrodeposition of Cu and Cu2O Nanolayers from Alkaline Cu(II)-Citrate Solutions,J. Electrochem. Soc,2008,155, D115-D122.
    [50]C. H. Sean, S. Mridha, L. H. Chan, Fabrication of D.C.-plated nanocrystalline copper electrodeposits.J. Mater. Process. TechnoL,1999,89-90,432-436.
    [51]P. E. Bradley, D. Landolt, Pulse-plating of copper-cobalt alloys, Electrochim. Acta,1999,45, 1077-1087.
    [52]吴正翠,邵明望,张文敏等,微波辐照下均分散氧化亚铜超细粒子的制备[J],安徽师范大学学报,2001,24(4),356-358
    [53]Z. Wu, M. Shao, W. Zhang, Y. Ni, Large-scale synthesis of uniform Cu2O stellar crystals via microwave-assisted route,J. Cryst. Growth,2004,260,490-493.
    [54]Xia Z, XiaoJun T, Zhi-Shen Z, et al. Synthesis and Characterization of Cu2O Single-Crystal by Sonochemical Method, Chin. J. Inorg. Chem.,2005,21(7),1098-1100
    [55]He P, Shen X, Gao H. Size controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, J Colloid Interf Sci,2005,28,510-515
    [56]陈祖耀,金属学报,1997,33(3),330
    [57]W. Z. Wang, O. K. Varghese, Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates, Mater. Res.,2003,18(12),2756-2759.
    [58]J.F. Groves, Y. Du, I. Lyubinetsky, D.R. Baer, Focused ion beam directed self-assembly (Cu2O on SrTiO3):FIB pit and Cu2O nanodot evolution, Superlattices. Microstruct.,2008,44, 677-685
    [59]张丽,杨迎春,氧化亚铜可见光催化降解罗丹明B的初步研究,成都信息工程学院学报,2006,21,711-714.
    [60]刘小玲,陈金毅,周文涛等,纳米氧化亚铜太阳光催化氧化法处理印染废水,华中师范大学学报(自然科学版),2002,36(4):476-477
    [61]陈金毅,刘小玲,李间轮等,纳米氧化亚铜可见光催化分解亚甲基蓝,华中师范大学学报(自然科学版),2002,36(2),200-203
    [62]刘洪禄,张爱茜,吴海锁,黄智,王连生,氧化亚铜光催化降解对硝基苯酚,环境化学,2004,23,490-494.
    [63]张诺,半导体纳米氧化亚铜光电催化在含氮农药降解分析中的应用[D],兰州大学硕士学位论文,2010.
    [64]X. Zhang, G. Wang, A. Gua, H. Wu, B. Fang, Preparation of porous Cu2O octahedron and its application as L-Tyrosine sensors, Solid State Commun.,2008,148,525-528
    [65]X. Zhang, G. Wang, W. Zhang, Y. Wei, B. Fang, Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor, Biosens. Bioelectron.,2009,24,3395-3398.
    [66]L. Zhang, H. Li, Y. Ni, J. Li, K. Liao, G. Zhao, Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing, Electrochem. Commun., 2009,11,812-815.
    [67]X. Yang, R. Yuan, Y. Chai, Y. Zhuo, C. Hong, Z. Liu, H. Su, Porous redox-active Cu2O-SiO2 nanostructured film:Preparation, characterization and application for a label-free amperometric ferritin immunosensor, Talanta,2009,78,596-601.
    [68]王现全,杀菌组合物,中国专利,CN1276157,2000,12-13
    [69]近藤保夫,金田润也,青野泰久等,复合材料及其应用,中国专利,CN1377079,2002
    [70]杨颖,王婧超,杨丽雪,江超,史克英,Cu20多面体的制备及其气敏性能研究,电子元件与材料,2013,7,009.
    [71]P. Poizot, S. Laruelle, S. Grugeon, L Dupont, J. M. Taracon, Nano-sized transition-metal oxides as a materials for lithium-ion batteries, Nature,2000,407,496.
    [72]魏明真,霍建振,伦宁,马西骋,温树林,一种新型的半导体光催化剂—纳米氧化亚铜,材料导报,2007,21(6),130-133
    [73]S. C. Barton, J. Gallaway, P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev.,2004 (104),4867-4886.
    [74]A. Heller, Potentially implantable miniature batteries, AnaL Bioanal. Chem.,2006 (385), 469-473.
    [75]J. Kim, H. Jia, P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells, BiotechnoL Adv.,2006,24,296-308.
    [76]A. Ramanavicius, A. Kausaite, A. Ramanaviciene, Biofuel cell based on direct bioelectrocatalysis, Biosens. Bioelectron.,2005,20,1962-1967.
    [77]D. Ivnitski, B. Branch, P. Atanassov, C.Apblett, Glucose oxidase anode for biofuel cell based on direct electron transfer, Electrochem. Commun.,2006,8,1204-1210
    [78]包玥,吴霞琴,生物燃料电池的研究进展,电化学,2004,10,1-8.
    [79]C.-M. Yu, M.-J. Yen, L.-C.. Chen, A bioanode based on MWCNT/protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells, Biosens. Bioelectron.,2010,25 (11),2515-1521.
    [80]I. Willner, E. Katz, F. Patolsky et al.J. Chem. Soc.,1998.1817-1826
    [81]Pizzariello A, Stred' ansky M, Miertus S. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix, Bioelectrochem.,2002,56,99-105.
    [82]N. S. Hudak, S. C. BARTON, Mediated biocaialytic cathode for direct methanol membrane-electrode assemblies,J. Elearochem. Soc.,2005,152(5), A 876-A 881.
    [83]Y. Liu, M. K. Wang, F. Zhao, B. F. Liu, S. J. Dong, A low-cost biofuel cell with pH-dependent power output based on Porous Carbon as Matrix, Chen. Eur. J.,2005,11,4970-4974.
    [84]A. Heller, Miniature Biofuel Cell, Phys. Chem. Chem. Phys.,2004,6 (2),209-216
    [85]E. Katz, I. Willner, A. B. Kotlyar, A non-compartmentalized glucose/O2 biofuel cell by bioengineered electrode surfaces, J. ElectroanaL Chem.,1999,479,64-68.
    [86]N. Mano, F. Mao, A. Heller, Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant, J.Am. Chem. Soc. 2003,125,6588-6594
    [87]Nicolas Mano, Fei Mao, Woonsup Shin, Ting Chen and Adam Heller, A miniature biofuel cell operating at 0.78 V, Chem Commun.2003,0,518-519.
    [88]Nicolas Mano, Fei Mao, and Adam Heller, A miniature biofuel cell operating in a physiological buffer J.Am. Chem. Soc.,2002,124,12962-12963.
    [89]L. Deng, L. Shang, D.Wen, J. Zhai, S. Dong, A membraneless biofuel cell powered by ethanol and alcoholic beverage, Biosens. Bioelectron.2010,26,70-73,
    [90]C.-M. Yu, M.-J. Yen, L.-C. Chen, A bioanode based on MWCNT/protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells, Biosens. Bioelectron.,2010,25,2515-2521.
    [91]Jun Ge, Romana Schirhagl, and Richard N. Zare* Glucose-Driven Fuel Cell Constructed from Enzymes and Filter Paper, J. Chem. Educ,2011,88,1283-1286.
    [92]Shah, K., Shin, W. C., and Besser, R. S. (2003) Novel microfabrication approaches for directly patterning PEM fuel cell membranes.J. Power Sources,2003,123,172-181.
    [93]R. Ferrigno, A. D. Strook, T. D. Clark, M. Mayer and G. M. Whitesides,J. Am. Chem. Soc., 2002,124,12930-12931.
    [94]T. Chen, S. C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H. H. Kim and A. Heller, J. Am. Chem. Soc,2001,123,8630-8631.
    [95]N. Mano and A. Heller, A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions,J. Electrochem. Soc.,2003,150, A1136-A1138.
    [96]C. M. Moore, S. D. Minteer and R. S. Mart, Microchip-based ethanol/oxygen biofuel cell, Lab Chip,2005,5,218-225.
    [97]M. Rasmussen, R. E. Ritzmann, I. Lee, A. J. Pollack, D. Scherson, An Implantable Biofuel Cell for a Live Insect, J. Am. Chem. Soc.2012,134,1458-1460
    [98]L. Halamkova, J. Halamek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, Implanted Biofuel Cell Operating in a Living Snail, J. Am. Chem. Soc.2012,134,5040-5043
    [99]P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, S. Cosnier, A Glucose BioFuel Cell Implanted in Rats, PLos One,2010,5, e10476.
    [100]M. Falk, V. Andoralov, Z. Blum, J. Sotres, D. B. Suyatin, T. Ruzgas, T. Arnebrant, S. Shleev, Biofuel cell as a power source for electronic contact lenses, Biosens. Bioelectron.,2012,37, 38-45.
    [101]W. Z. Jia, G. Valdes-Ramirez, A. J. Bandodkar, J. R. Windmiller, J. Wang, Epidermal Biofuel Cells:Energy Harvesting from Human Perspiration, Angew. Chem. Int Ed.2013,52,1-5
    [102]L. de la Garza, G. Jeong, P. A. Liddell, T. Sotomura,T. A. Moore, A. L. Moore, and D. Gust, Enzyme-Based Photoelectrochemical Biofuel Cell, J. Phys. Chem. B,2003,107,10252-10260
    [103]A. Brune, G. Jeong, P. A. Liddell, T. Sotomura,T. A. Moore, A. L. Moore, and D. Gust, Porphyrin-Sensitized Nanoparticulate TiO2 as the Photoanode of a Hybrid Photoelectrochemical Biofuel Cell, Langmuir,2004,20,8366-8371
    [104]M. Hambourger, M. Gervaldo, D. Svedruzic, P. W. King, D. Gust, M. Ghirardi, A. L. Moore, T. A. Moore, [FeFe]-Hydrogenase-Catalyzed H2 Production in a Photoelectrochemical Biofuel Cell, J.Am. Cem. Soc. 2008,130,2015-2022
    [105]L. Han, L. Bai, C. Zhu, Y. Wang, S. Dong, Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode, Chem. Commun., 2012,48,6103-6105.
    [106]D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K. M. Manesh, G. Flechsig, J.Wang, Chemical Sensing Based on Catalytic Nanomotors:Motion-Based Detection of Trace Silver, J.Am. Cem. Soc.,2009,131,12082-12083.
    [107]J. Orozco, S. Campuzano, D. Kagan, M. Zhou, W. Gao, J. Wang, Dynamic Isolation and Unloading of Target Proteins by Aptamer-Modified Microtransporters, Anal. Chem.2011,83, 7962-7969.
    [108]D. Kagan, S. Campuzano, S. Balasubramanian, F. Kuralay, G. Flechsig, J. Wang, Functionalized Micromachines for Selective and Rapid Isolation of Nucleic Acid Targets from Complex Samples, Nano Lett.2011,11,2083-2087.
    [109]S. Balasubramanian, D. Kagan, C. Hu, S. Campuzano, M. J. Lobo-Castanon, N. Lim, D. Y. Kang, M. Zimmerman, L. F. Zhang, J. Wang, Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media, Angew. Chem. Int. Ed.,2011,50,4161-4164.
    [110]R. F. Ismagilov, A. Schwartz, N. Bowden, G. M. Whitesides, Autonomous Movement and Self-Assembly, Angew. Chem. Int. Ed.,2002,41,652-654.
    [111]W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. S. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, Catalytic Nanomotors:□ Autonomous Movement of Striped Nanorods,J. Am. Chem. Soc.,2004,126 (41),13424-13431
    [112]W. Gao, S. Sattayasamitsathit, A. Uygun, A. Pei, A. Ponedal, J. Wang, Polymer-based tubular microbots:role of composition and preparation, Nanoscale,2012,4,2447-2453.
    [113]W. Gao, S. Sattayasamitsathit, K. M. Manesh, D. Weihs, J. Wang, Magnetically Powered Flexible Metal Nanowire Motors, J.Am. Chem. Soc.,2010,132,14403-14405.
    [114]R. Laocharoensuk, J. Burdick, J. Wang, Carbon-Nanotube-Induced Acceleration of Catalytic Nanomotors,ACS Nano,2008,2,1069-1075.
    [115]W. Gao, S. Sattayasamitsathit, J. Wang, Catalytically Propelled Micro-/Nanomotors:How Fast Can They Move? Chem. Rec.,2012,12,224-231.
    [116]Y. Mei, A. A. Solovev, S. Sanchez, O. G. Schmidt, Rolled-up nanotech on polymers:from basic perception to self-propelled catalytic microengines, Chem. Soc. Rev.2011,40,2109-2119.
    [117]J. G. Gibbs,Y. Zhao, Self-Organized Multiconstituent Catalytic Nanomotors, Small,2010,6, 1656-1662.
    [118]N. S. Zacharia, Z. S. Sadeq and G. A. Ozin, Enhanced speed of bimetallic nanorod motors by surface roughening, Chem. Commun.,2009,5856-5858.
    [119]G. Loget, A. Kuhn, Electric field-induced chemical locomotion of conducting objects, Nature Commun.,2011,2,1-6.
    [120]T. R. Kline, W. F. Paxton, T. E. Mallouk, A. Sen, Catalytic Nanomotors:Remote-Controlled Autonomous Movement of Striped Metallic Nanorods,Angew. Chem. Int. Ed.2005,44,744-746.
    [121]Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen, T. E. Mallouk, Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions, Langmuir,2006,22 (25),10451-10456.
    [122]R. Liu, A. Sen, Autonomous Nanomotor Based on Copper-Platinum Segmented Nanobattery,J. Am. Chem. Soc.,2011,133 (50),20064-20067.
    [123]Y. Y. Hong, M. Diaz, U. M. Cordova-Figueroa, A. Sen, Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems, Angew. Chem. Int. Ed.2010,20,1568-1576.
    [124]M. L., T. Zentgraf, Y. M. Liu, G. Bartal, X. Zhang, Light-driven nanoscale plasmonic motors, Nature Nanotechnol.,2010,5,570-573.
    [125]H.-R. Jiang, N. Yoshinaga, M. Sano, Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam, Phys. Rev. Lett.2010,105,268302-268306.
    [126]J. B. Brzoska, F. Brochard-Wyart, F. Rondelez, Motions of droplets on hydrophobic model surfaces induced by thermal gradients, Langmuir,1993,9,2220-2224.
    [127]D. Kagan, M. J. Benchimol, J. C. Claussen, E. Chuluun-Erdene, S. Esener, J. Wang, Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation, Angew. Chem. Int. Ed.2012,51,7519-7522.
    [128]K. M. Manesh, M. Cardona, R. Yuan, M. Clark, D. Kagan, S. Balasubramanian, J. Wang, Template-Assisted Fabrication of Salt-Independent Catalytic Tubular Microengines, ACS Nano, 2010,4,1799-1804.
    [129]W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes,J. Am. Chem. Soc.,2011,133, 11862-11864.
    [130]S. Fournier-Bidoz, A. C. Arsenault, I. Manners, G. A. Ozin, Synthetic self-propelled nanorotors, Chem. Commun,2005,441-443.
    [131]A. A. Solovev, Y. Mei, E. Bermudez Urena, G. Huang, O. G. Schmidt, Catalytic Microtubular Jet Engines Self-Propelled by Accumulated Gas Bubbles, Small,2009,5, 1688-1692.
    [132]W. Gao, A. Uygun, J. Wang, Hydrogen-Bubble-Propelled Zinc-Based Microrockets in Strongly Acidic Media,J. Am. Chem. Soc.,2012,134 (2),897-900.
    [133]W. Gao, A. Pei, J. Wang, Water-Driven Micromotors, ACS Nano,2012,6 (9),8432-8438
    [134]W. Gao, X. Feng, A. Pei, Y.-e Gu, J. Li, J. Wang, Seawater-Driven Magnesium based Janus Micromotors for Environmental Remediation, Nanoscale.2013,5(11),4696-700.
    [135]Y. Mei, A. A. Solovev, S. Sanchez and O. G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines, Chenu Soc. Rev.,2011,40, 2109-2119.
    [136]J.-X. Li, B.-R. Lu, Z. Shen, Z. Xu, H. Li, J. Wen, Z. Li, X.-P. Qu, Y. Mei, R. Liu, Magnetic and meniscus-effect control of catalytic rolled-up micromotors, Microelectron. Eng.,2011,88 (8), 1792-1794.
    [137]D. Pantarotto, W. R. B. and B. L. Feringa, Autonomous propulsion of carbon nanotubes powered by a multienzyme Ensemble, Chem Commun.,2008,1533-1535.
    [138]J. Orozco, V. Garcia-Gradilla, M. D'Agostino, W. Gao, A. Cortes, J. Wang, Artificial Enzyme-Powered Microfish for Water-Quality Testing, ACS Nano,2013,7(1),818-824
    [139]J. Orozco, A. Cortes, G. Cheng, S. Sattayasamitsathit, W. Gao, X. Feng, Y. Shen, J. Wang, Molecularly Imprinted Polymer-Based Catalytic Micromotors for Selective Protein Transport,J. Am. Chem. Soc.,2013,135 (14),5336-5339.
    [140]M. Guix, J. Orozco, M. Garcia, W. Gao, S. Sattayasamitsathit, A. Merkoci, A. Escarpa, J. Wang, Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil, ACS Nano,2012,6,4445-4451.
    [1]U.S. Environmental Protection Agency, Nitrophenols, Ambient Water Quality Criteria, Washington DC,1980.
    [2]E. W. Bohannan, M.G. Shumsky, J.A. Switzer, Epitaxial electrodeposition of copper (Ⅰ) oxide on single-crystal gold (100), Chem. Mater.,1999,11,2289-2291.
    [3]C.A.N. Fernando, T.M.W.J. Bandara, S.K. Wethasingha, H2 evolution from a photoelectrochemical cell with n-Cu2O photoelectrode under visible light irradiation, Sol. Energ. Mater. SoL Cells,2001,70,121-129.
    [4]S. Somasundaram, C. Raman Nair Chenthamarakshan, N.R. de Tacconi, K. Rajeshwar, Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors, Int. J. Hydrogen Energ.,2007,32,4661-4669.
    [5]J.-N. Nian, C.-C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination, Int. J. Hydrogen Energy,2008,33, 2897-2903.
    [6]K. Han, M. Tao, Electrochemically deposited p-n homojunction cuprous oxide solar cells, Sol. Energ. Mater. Sol. Cells,2009,93,153-157.
    [7]K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, T. Sakurai, Thin film deposition of Cu2O and application for solar cells, SoL Energ.,2006,80,715-722.
    [8]P.E. De Jongh, D. Vanmaelbergh, J.J. Kelly, Photoelectrochemistry of Electrodeposited Cu2O, J. Electrochen. Soc.,2000,147,486-489.
    [9]L.J. Fu, J. Gao, T. Zhang, Q. Cao, L.C. Yang, Y.P. Wu, R. Holze, H.Q. Wu, Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries,J. Power Sources,2007,174,1197-1200.
    [10]L. Huang, F. Peng, H. Yu, H. Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci.,2009,11,129-138.
    [11]S.Q. Dong, S. Zhang, L. Chi, P. He, Q. Wang, Y. Fang, Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode, Anal. Biochem.,2008,381,199-204.
    [12]K.L. Chopra, S.R. Das, Thin Film Solar Cells, Plenum Press, New York (1983).
    [13]P.C. Andricacos, Copper on-chip interconnections:A breakthrough in electrodeposition to make better chips, Electrochem. Soc. Interface,1999,8,32-37.
    [14]F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari, J. A. Switzer, Epitaxial Growth of Cuprous Oxide Electrodeposited onto Semiconductor and Metal Substrates,J. Am. Ceram. Soc.,2005, 88,253-270.
    [15]H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles, Mater. Research Bull.,2006,41, 1310-1318.
    [16]P.E. de Jongh, D. Vanmaelbergh, and J.J. Kelly, Cu2O:Electrodeposition and Characterization, Chem. Mater.,1999,11,3512-3517.
    [17]R.P. Wijesundera, M. Hidaka, K. Koga, M. Sakai, W. Siripala, Growth and characterization of potentiostatically electrodeposited Cu2O and Cu thin films, Thin Solid Films,2006,500, 241-246.
    [18]P. Sharma, H.S. Bhatti, Synthesis of fluorescent hollow and porous Cu2O nanopolyhedras in the presence of poly (vinyl pyrrolidone), Mater. Chem. Phys.,2009,114,889-896.
    [19]W. Shang, X. Z. Shi, X. Zhang, C. Ma, C. Wang, Growth and characterization of electro-deposited Cu2O and Cu thin films by amperometric I-T method on ITO/glass substrate, AppL Phys. A,2007,87,129-135.
    [20]S. O. Pagotto Jr., C.M. de Alvarenga Freire, M. Ballester, Zn-Ni alloy deposits obtained by continuous and pulsed electrodeposition processes, Surf. Coat. Technol.,1999,122,10-13.
    [21]W. Ye, H. Tong, C. Wang, Study on microcontamination of silver onto p-type crystalline silicon (111) from an aqueous solution using cyclic voltammetry, Microchim. Acta,2005, 152,85-88.
    [22]J. E. a. nyholm, Pulsed Galvanostatic and Potentiostatic Electrodeposition of Cu and Cu2O Nanolayers from Alkaline Cu(II)-Citrate Solutions,J. Electrochem. Soc.,2008,2, D115-D122.
    [23]J.-N. Nian, C.-C. Tsai, P.-C. lin, H. Teng, Elucidating the conductivity-Type Transition mechanism of p-Type Cu2O Films from Electrodeposition,J. Electrochem. Soc.,2009,156, H567-H573.
    [24]S. Matthew J, C. Kyoung-shin, Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution, Adv. Mater.,2004,16,1743-1746.
    [25]S. Matthew J, C. Kyoung-shin, Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals,J. Am. Chem. Soc.,2006,128,10356-10357.
    [26]D. Wang, M. Mo, D. Yu, L. Xu, F. Li, Y. Qian, Large-Scale Growth and Shape Evolution of Cu2O Cubes, Cryst. Growth Des.,2003,3,717-720.
    [27]J. A. Switzer, H. M. Kothari, E.W. Bohannan, Thermodynamic to Kinetic Transition in Epitaxial Electrodeposition,J. Phys. Chem. B.,2002,106,4027-4031.
    [28]E. W. Bohannan, M. G. Shumsky, J. A. Switzer, Epitaxial Electrodeposition of Copper (I) Oxide on Single-Crystal Gold (100), Chem. Mater.,1999,11,2289-2291.
    [29]T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. VanderWerf, R. A. Van Leeuwen, J. A. Switzer, Electrochemical Deposition of Copper(I) Oxide Films, Chem. Mater.,1996,8, 2499-2504.
    [30]C.D. Wager, W.M. Riggs, L.E. Davis, J.E. Moulder, G.E. Muilenber, Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer Corporation Physics Electronics Division, USA, 1979).
    [31]C. Wang, X. Zhang, X. Shi, W. Ye, C. Ma, Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material, AppL Phys. A,2009,94,381-386.
    [32]. J. Torrent, V. Barron, Encyclopedia of Surface and Colloid Science, (Marcel Dekker, Inc.: New York,2002).
    [33]M.-C. Li, H.-F. Wu, J.-Q. Hu, C.-A. Ma, Electroreduction Mechanism of p-Nitrophenol in Sulfuric Acid, Acta Phys.-Chim. Sin.,2008,24,1937-1940.
    [1]U. S. Environmental Protection Agency,4-nitrophenol, Health and Environmental Effects Profile No.135, Washington DC,1980.
    [2]S. Yi, W.-Q. Zhuang, B. Wu, S. T.-L. Tay, and J.-H. Tay, Biodegradation of p-Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor Environ. Sci. TechnoL,2006,40 (7),2396-2401
    [3]J. A. Herrera-Melian, J. M. Dona-Rodriguez, E. Tello Rendon, A. Soler Vila, M. Brunet Quetglas, A. Alvera Azcarate and L. Pascual Pariente, Solar Photocatalytic Destruction of p-Nitrophenol:A Pedagogical Use of Lab Wastes,J. Chem. Educ.,2001,78 (6),775
    [4]L. Bo, X. Quan, S. Chen, H. Zhao, Y. Zhao, Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Research,2006,40,3061-3068.
    [5]M. A. Quiroz, S. Reyna, C.A. Marti'nez-Huitle, S. Ferro, A. De Battisti, Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. AppL CataL B: Environmental,2005,59,259-266.
    [6]X. Wang, H. Zhao, X. Quan, Y. Zhao, S. Chen, Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation. J. Hazard. Mater.,2009,166,547-552.
    [7]M. A. Oturan, J. Peiroten, P. Chartrin, and A. J. Acher, Complete Destruction of p-Nitrophenol in Aqueous Medium by Electro-Fenton Method, Environ. ScL TechnoL,2000,34 (16), 3474-3479
    [8]S. Lupu, C. Lete, M. Marin, N. Totir, P. C. Balaure, Electrochemical sensors based on platinum electrodes modified with hybrid inorganic-organic coatings for determination of 4-nitrophenol and dopamine, Electrochim. Acta,2009,54,1932-1938.
    [9]R. d. C. S. Luz, F. S. Damos, A. B. d. Oliveira, J. Becb, Lauro T. Kubota, Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode, Talanta,2004,64,935-942
    [10]S. Zhu,W. Niu, H. Li, S. Han, G. Xu, Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample, Talanta,2009,79,1441-1445
    [11]F. C. Moraes, S. T. Tanimoto, G. R. Salazar-Band, S. A. S. Machado, L. H. Mascaro, A New Indirect Electroanalytical Method to Monitor the Contamination of Natural Waters with 4-Nitrophenol Using Multiwall Carbon Nanotubes, Electroanalysis,2009,21, No.9,1091-1098
    [12]Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold, Electrochem. Commun.,2009,11, 1365-1368
    [13]G. D. Liu and Y. H. Lin, Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents, Anal. Chem. 2005,77,5894-5901
    [14]J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky and M. T. Czyzyk, Electronic-structure of Cu2O and CuO, Phys. Rev. B,1988,38,11322-11330.
    [15]W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu, C. Zheng, Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route, Adv. Mater.,2002,14,67-69.
    [16]C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Xie, J. Ma, One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route, Adv. Mater.,2005,17,2562-2567.
    [17]J. T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Nearly Monodisperse Cu2O and CuO Nanospheres:□ Preparation and Applications for Sensitive Gas Sensors, Chem. Mater.,2006,18, 867-871.
    [18]L. Huang, F. Peng, H. Yu, H. Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci.,2009,11,129-138.
    [19]J.Y. Chen, P.J. Zhou, J.L. Li, Y. Wang, Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light, Carbohydr. Polym.,2008,72,128-132.
    [20]S. Kakuta and T. Abe, A Novel Example of Molecular Hydrogen Generation from Formic Acid at Visible-Light-Responsive Photocatalyst, Appl. Mat. interfaces,2009,1,2707-2710.
    [21]L. Zhang, H. Li, Y. Ni, J. Li, K. Liao, G. Zhao, Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem. Commun., 2009,11,812-815.
    [22]S. Q Dong, S. Zhang, L. Chi, P. He, Q. Wang, Y. Fang, Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode, Anal. Biochem., 2008,381,199-204.
    [23]Y.-e Gu, X. Su, Y. Du, C. M. Wang, Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application. AppL Surf. ScL,2010,256,5862-5866
    [24]B.Q. Su, Y. Ma, Y. Du, C. M. Wang, Study of photoelectrocatalytic degradation behavior of p-nitrophenol with nano-Ti02 modified film at a rotating ring-disk electrode. Electrochem. Commun.,2009,11,1154-1157.
    [25]K. C. Honeychurch, J. P. Hart, Voltammetric Behavior of p-Nitrophenol and Its Trace Determination in Human Urine by Liquid Chromatography with a Dual Reductive Mode Electrochemical Detection System, Electroanalysis,2007,19,2176-2184.
    [26]U. Collisi and H.-H. Strehblow, The formation of Cu2O layers on Cu and their electrochemical and photoelectrochemical properties, J. Electroanal. Chem.,1990,284,385-401.
    [27]A. J. Bard, L.R. Faulkner, Electrochemical methods:fundamentals and applications; John Wiley & Sons:New York,2001.
    [28]Q. Dai, L. Lei, X. Zhang, Enhanced degradation of organic wastewater containing p-nitrophenol by a novel wet electrocatalytic oxidation process:Parameter optimization and degradation mechanism Separation and Purification, Technology,2008,61,123-129
    [29]N. Yongian, L. Wang, K. Serge, Simultaneous determination of nitrobenzene and nitro-substituted phenols by differential pulse voltammetry and chemometrics, Anal. Chim. Acta, 2001,431,101-113.
    [30]R. Brdicka, ZElectrochem.1942,48,278-288.
    [31]R.H. Wopschall, I. Shain, Effects of adsorption of electroactive species in stationary electrode polarography, Anal. Chem.,1967,39,1514-1527.
    [32]Toyokichi Kitagawa and Kazuo Nomura, The Polarography of the Cadmium(II)-2-Carboxy-1-pyrrolidinecarbodithioate Chelate, Bull Chem.1 Soc. Jpn,1976,49 (12),3518-3523
    [1]H. L. Xu, W. Z. Wang, W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties.J. Phys. Chem. B,2006, 110(28),13829-13834.
    [2]L. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, Controlled cobalt oxide from two-dimensional films to one-dimensional nanorods and zero-dimensional nanoparticles:morphology-dependent optical carbon monoxide gas-sensing properties.J. Phys. Chem. C,2009,113(36),15948-15954.
    [3]J. Zhang, L. D. Sun, J. L. Yin, C. H. Yan, Control of ZnO morphology via a simple solution route. Chem. Mater.,2002,14(10),4172-4177.
    [4]R. N. Briskman, A study of electrodeposited cuprous oxide photovoltaic cells. SoL Energy Mater. Sol.Cells,1992,27(4),361-368.
    [5]E. D. Mishina, K. Nagai, S. Nakabayashi, Self-assembles Cu/Cu2O multilayers:deposition, structure and optical properties. Nano Lett.,2001,1,401-404.
    [6]C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Ma, One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route. Adv. Mater.,2005,17(21),2562-2567.
    [7]J. T. Zhang, J. F. Liu, Q. Peng, X. Wang,. Y. D. Li. Nearly monodisperse Cu2O and CuO nanospheres:preparation and applications for sensitive gas sensors. Chem. Mater.,2006,18, 867-871.
    [8]Y. W. Tan, X. Y. Xue, Q. Peng, Y.D. Li, Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett.,2007,7(12),3723-3728.
    [9]J. H. Zhong, G. R. Li, Z.L. Wang, Y.X. Tong, Facile electrochemical synthesis of hexagonal Cu2O nanotube arays and their application. Inorg. Chem.,2011,50,757-763.
    [10]Y. M. Sui, W. Y. Fu, Y. Zeng, H. B. Yang, Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature. Angew. Chem. Int. Ed.,2010,49(25), 4282-4285.
    [11]Y.S. Luo, Y.C. Tu, Q.F. Ren, X.J. Dai, Surfactant-free fabrication of Cu2O nanosheets from Cu colloids and their tunable optical properties.J. Solid State Chem.,2009,182,182-186.
    [12]L.S. Xu, X.H. Chen, Y.R. Wu, C.S. Chen, Solution-phase synthesis of single-crystal hollow Cu2O spheres with nanoholes. Nanotechnology,2006,17(5),1501-1505.
    [13]X.S. Fang, C.H. Ye, L.D. Zhang, J.X. Zhang, J.W. Zhao, P. Yan, Direct observation of the growth process of MgO nanoflowers by a simple chemical route. Small,2005,4,422-427.
    [14]H. Zhang, D. R. Yang, Y. J. Ji, X. Y. Ma, J. Xu, D. L. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B,2004,108(13),3955-3958.
    [15]A. E. Rakhshani, Investigation of photoelectrochemical characteristics of n-type Cu2O films. Solid-State Electron.,1986,29,7-17.
    [16]J. P. Hu, D. J. Payne, R. G. Egdell, P. A. Glans, T. Learmonth, N. M. Harrison, Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. Phys. Rev.B,2008,77,155115-155124.
    [17]C. A. N. Fernando, S. K. Wetthasinghe, Investigation of photoelectrochemical characteristics of n-type Cu2O films. Sol. Energy Mater. Sol. Cells,2000,63,299-308.
    [18]C. M. McShane, K. S. Choi, Photocurrent Enhancement of n-Type Cu2O Electrodes Achieved by Controlling Dendritic Branching Growth.J. Am. Chem. Soc.,2009,131,2561-2569.
    [19]C. Jayawardena, K. P. Hewaparakrama, D. L.A. Wijewardena, H. Guruge, Fabrication of n-Cu2O electrodes with higher energy conversion efficiency in a photoelectrochemical cell. Sol. Energy Mater. Sol. Cells,1998,56,29-33.
    [20]L. B. Xiong, S. Huang, X. Yang, Z. H. Chen, p-Type and n-type Cu2O semiconductor thin films:Controllable preparation by simple solvothermal method and photoelectrochemical properties. Electrochim. Acta,2011,56,2735-2739.
    [21]M. Kalliomaki, V. Meisalo, A. Laisaar, High pressure transfornations in cuprous oxide. Phys. Status Solidi A,1979,56, K127-K131.
    [22]H. T. Zhu, C. Y. Zhang, Y. S. Yin, Novel synthesis of copper nanoparticles:influence of the synthesis conditions on the particle size. Nanotechnology,2005,16,3079-3083.
    [23]Wu S.H., Chen D.H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface ScL,2003,259(2),282-286.
    [24]H. T. Zhu, J. X. Wang, G. Y. Xu, Fast Synthesis of Cu2O Hollow Microspheres and Their Application in DNA Biosensor of Hepatitis B Virus. Cryst. Growth Des.,2009,9,633-638.
    [25]C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Adv. Funct Mater.,2001,11,374-380.
    [26]L. L. Ma, Y. L. Lin, Y. Wang, M. Q. Qiu, Y. Yu, Aligned 2-D Nanosheet Cu2O Film: Oriented Deposition on Cu Foil and Its Photoelectrochemical Property, J. Phys. Chem. C,2008, 112,18916-18922.
    [27]H. C. Zeng, Ostwald ripening:a synthetic approach for hollow nanomaterials. Curr. Nanosci., 2007,3,177-181.
    [1]L. Halamkova, J. Halamek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, Implanted biofuel cell operating in a living snail,J. Am. Chem. Soc,2012,134,5040-5043.
    [2]F. Davis and S.P.J. Higson, Carbon nanotube-hydroxyapatite nanocomposite:A novel platform for glucose/O2 biofuel cell, Biosen. Bioelectron.,2007,22,1224-1235.
    [3]I. Willner, E. Katz, Integration of layered redox proteins and conductive supports for bioelectronic applications, Angew. Chem. Int. Ed.,2000,39,1180-1218.
    [4]M. T. Meredith, S. D. Minteer, Biofuel cells:enhanced enzymatic bioelectrocatalysis, Annu. Rev. Anal Chem.,2012,5,157-179.
    [5]N. Mano, F. Mao, A. Heller, Characteristics of a Miniature Compartment-less Glucose/O2 Biofuel Cell and Its Operation in a Living Plant,J. Am. Chem. Soc..,2003,125,6588-6594.
    [6]L. Halamkova, J. Halamek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, Implanted biofuel cell operating in a living snail, J. Am. Chem. Soc.,2012,134,5040-5043.
    [7]B. E. Logan, J. M. Regan, Microbial fuel cells-challenges and applications, Environ. Sci. Technol.,2006,40,5172-5180.
    [8]Y. C. Yong, X. C. Dong, M. B. Chan-Park, H. Song, P. Chen, Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells, ACS. Nano.,2012,6,2394-2400.
    [9]O. Schaetzle, F. Barriere, K. Baronian, Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity, Energy Environ. ScL, 2008, 1,607-620.
    [10]F. Zhao, R. C. T. Slade, J. R. Varcoe, Techniques for the study and development of microbial fuel cells:an electrochemical perspective, Chem. Soc. Rev.,2009,38,1926-1939.
    [11]R. Arechederra, S. D. Minteer, Organelle-based biofuel cells:Immobilized mitochondria on carbon paper electrodes, Electrochim. Acta,2008,53,6698-6703.
    [12]J. Wang, M. S. Lin, Horseradish-Root-Modified Carbon paste Bioelectrode, Electroanalysis, 1988,1,43-48.
    [13]S. Topcu, M.K. Sezginturk, E. Dincksya, Evaluation of a new biosensor-based mushroom (Agarcus bisporus) tissue homogenate:investigation of certain phenolic compounds and some inhibitor effects, Biosen. Bioelectron.,2004,20,592-597.
    [14]W. Oungpipat, P. W. Alexander, P. Southwell-keely, A reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus tissue and ferrocene mediation, Anal. Chim. Acta,1995,309,35-45.
    [15]D. Wijesuriya, G.A. Rechnitz, Mixed carbon paste-pea seedling electrochemical sensor for measuring plant growth-regulating activity of amines, Anal. Chim. Acta.,1991,243,1-8.
    [16]M. Campas, R. Carpentier, R. Rouillon, Biotechnol. Adv.,2008,26,370-378
    [17]P. Cinquin, C. Gondran, F. Giroud, S. Mazabrars, A. Pellissier, F. Boucher, J.P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathe, P. Porcu, S. Cosnier, Plos One.2010,5, e10476
    [18]K. Min, J. H. Ryu, Y. J. Yoo, Plant tissue-and photosynthesis-based biosensors, Biotechnol. Bioeng.,2010,15,371-375.
    [19]D. Leech, P. Kavanagh, W. Schuhmann, Enzymatic fuel cells:recent progress, Electrochim. Acta,2012, doi:10.1016/j.electacta.2012.02.087.
    [20]A. Sanchez-Ferrer, J. N. Rodriguez-Lopez, F. G. Canovas, F. Garcia-Carmona, Tyrosinase:a comprehensive review of its mechanism, Biochim. Biophys. Acta,1995,1247,1-11.
    [21]J. S. Sidwell, G. A. Rechnitz, BiotechnoL Letts.1985,7,419-422.
    [22]J. Wang, M. S. Lin, Horseradish-Root-Modified Carbon paste Bioelectrode, Electroanalysis, 1988,1,43-48.
    [23]J.D. Bewley, Seed germination and dormancy, The Plant Cell.1997,9,1055-1066.
    [24]E.A. Cossins, E.R. Turner, Losses of alcohol and alcohol dehydrogenase activity in germinating seeds, Annals of Botany 1962,26,591-597.
    [25]R. Govinda, S. Karki, Research Article Alcohol dehydrogenase (ADH) activity in soybean (Glycine max [L.] Merr.) under flooding stress, Elctronic J. Plant Breeding,2011,2,50-57.
    [26]M. Zhou, L. Deng, D. Wen, L. Shang, L.H. Jin, S.J. Dong, Highly ordered mesoporous carbons-based glucose/O2 biofuel cell Biosen. Bioelectron.2009,24,2904-2908.
    [27]M. Ozsoz, J. Wang, Tomato seed-based amperometric sensor for the determination of alcohols, Electroanalysis 1991,3,655-658.
    [28]M. Arechederra, C. Jenkins, R.A. Rincon, K. Artyushkova, P. Atanassov, S.D. Minteer, Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications, Electrochim. Acta 2010,55,6659-6664.
    [29]Y.C. Tsai, C.C. Chiu, Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds, Sens. Actuators, B 2007,125,10-16
    [30]D. Mohapatra, S. Mishra, N. Sutar, Banana and its by-product utilisation:an overview,J. Sci. Ind. Res.2010,69,323-329.
    [31]Y. Yan, W. Zheng, L. Su, L. Mao, Carbon-Nanotube-Based Glucose/O2 Biofuel Cells, Adv. Mater.2006,18,2639-2643.
    [32]T. Mikysek, I. Svancara, K. Kalcher, M. Bartos, K. Vytras, J. Ludvik, New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes, Anal. Chem.2009,81,6327-6333.
    [33]F. A. Ayaz, O. Demir, H. Torun, Y. Kolcuoglu, A. Colak, Characterization of polyphenoloxidase (PPO) and total phenolic contents in medlar (Mespilus germanica L.) fruit during ripening and over ripening Food Chem.2008,106,291-298.
    [34]A.M.C.N. Rocha, A.M.M.B. Morais, Polyphenoloxidase activity and phenolic content as related to browning of minimally processed 'Jonagored' apple,J. Sci. FoodAgric.2001,82,120-126.
    [35]P.C. Nien., J.Y. Wang, P.Y. Chen, L.C. Chen, K.C. Ho, Encapsulating benzoquinone and glucose oxidase with a PEDOT film:Application to oxygen-independent glucose sensors and glucose/O2 biofuel cells Bioresource Technol. 2010,101,5480-5486.
    [36]C. Queiroz, L. Mendes, L. Maria, L. Vera, M. Valente, Polyphenol oxidase:characteristics and mechanisms of browning control, Food Rev. Int.2008,24,361-375.
    [37]J. Wang, J. Liu, G. Cepra, Thermal stabilization of enzymes immobilized within carbon paste electrodes, Anal. Chem.1997,69,3124-3127.
    [1]J. Wang, Nanomachines:Fundamentals and Applications, Wiley-VCH, Weinheim,2013, (ISBN 978-3-527-33120-8).
    [2]T. E. Mallouk and A. Sen, Powering nanorobots, Sci. Am.,2009,300,72-77.
    [3]G. A. Ozin, I. Manners, S. B. Fournier and A. Arsenault, Dream Nanomachines, Adv. Mater., 2005,17,3011-3018.
    [4]J.Wang, Can man-made nanomachines compete with nature biomotors? ACS Nano,2009,3, 4-9.
    [5]Y. F. Mei, A. A. Solovev, S. Sanchez and O. G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines, Chem. Soc. Rev.,2011,40, 2109-2119.
    [6]J. Wang and W. Gao, Nano/microscale motors:biomedical opportunities and challenges, ACS Nano,2012,6,5745-5751.
    [7]H. Ke, S. Ye, R. L. Carroll and K. Showalter, Motion Analysis of Self-Propelled Pt-Silica Particles in Hydrogen Peroxide Solutions, J. Phys. Chem. A,2010,114,5462-5467.
    [8]Y. F. Mei, G. S. Huang, A. A. Solovev, E. B. Urena, I. Monch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu and O. G. Schmidt, Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers, Adv. Mater.,2008,20,4085-4090.
    [9]W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes,J. Am. Chem. Soc.,2011,133, 11862-11864.
    [10]S. Balasubramanian, D. Kagan, C. Hu, S. Campuzano, M. J. Lobo-Castanon, N. Lim, D. Y. Kang, M. Zimmerman, L. F. Zhang, J. Wang, Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media, Angew. Chem. Int. Ed.,2011,50,4161-4164.
    [11]S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao, S. Sattayasamitsathit, J. C. Claussen, A. Merkoci and J.Wang, Bacterial Isolation by Lectin-Modified Microengines Nano Lett.,2012, 12,396.
    [12]S. Sanchez, A. A. Solovev, Y. F. Mei and O. G. Schmidt, Dynamics of Biocatalytic Microengines Mediated by Variable Friction Control,J. Am. Chem. Soc.,2010,132, 13144-13145.
    [13]W. Gao, S. Sattayasamitsathit, A. Uygun, A. Pei, A. Ponedal and J. Wang, Polymer-based tubular microbots:role of composition and preparation, Nanoscale,2012,4,2447-2453.
    [14]J. Wang and M. S. Lin, Mixed plant tissue carbon paste bioelectrode, Anal. Chem.,1988,60, 1545-1548.
    [15]Y. Gu, S. Sattayasamitsathit, W. Jia, K. Kaufmann, C. Wang and J. Wang, High-Power Low-Cost Tissue-Based Biofuel Cell, Electroanalysis,2013,25,838-844.
    [16]S. Sidwell and G. A. Rechnitz, Progress and challenges for biosensors using plant tissue materials, Biosensors,1986,2,221-233.
    [17]J. Wang and M. S. Lin, Horseradish-Root Modified Carbon Paste Bioelectrode, Electroanalysis,1989,1,43.
    [18]H. Willekens, D. Inze', M. Van Montagu and W. Camp, Catalases in plants, Mol. Breed., 1995,1,207.
    [19]A. Mhamdi, G. Noctor and A. Baker, Arch. Plant catalases:Peroxisomal redox guardians, Biochem. Biophys.,2012,525,18-194.
    [20]R. A. Larsons, The antioxidants of higher plants, Phytochemistry,1988,27,969-978.
    [21]J. Switala and P. C. Loewen, Diversity of properties among catalases, Arch. Biochem, Biophys.,2002,401,145-154.
    [22]L. S. Monk and H. V. Davies, Antioxidant status of the potato tuber and Ca2+deficiency as a physiological stress, PhysioL Plant,1989,75,411-416.
    [23]P. C. Dekock, A. Hall and R. H. E. Inkson, A study of peroxidase and catalase distribution in the potato tuber, Ann. Bot,1979,43,295-298.
    [24]F. Beaumont, H.-M. Jouve, J. Gagnon, J. Gaillard and J. Pelmont, Purification and properties of a catalase from potato tubers (Solanum tuberosum), Plant ScL,1990,72,19-26.
    [25]P. Baardseth and E. Slinde, Peroxidase and catalase activity in carrot, Food Chem.,1981,7, 147.
    [26]S. H. Du and S. C. Fang, Catalase activity of C3 and C4 species and its relationship to mercury vapor uptake, Environ. Exp. Bot.,1983,23,347-353.
    [27]M. E. Lewis, R. M. Levine, J. T. York and W. T. Grubbs, A Quick and Accurate Oxygen-Based Pressure-Sensor Assay for Catalase Activity,J. Chem. Educ.,2009,86,1227.
    [28]O. M. Lardinois, M. M. Mestdagh and P. G. Rouxhet, Reversible inhibition and irreversible inactivation of catalase in the presence of hydrogen peroxide, Biochim. Biophys. Acta,1996,1296, 222.
    [29]P. Chelikania, I. Fitab and P. C. Loewena, Diversity of structures and properties among catalases, Cell. Mol. Life Sci.,2004,61,192-208.
    [30]M. Mizuno, M. Kamei and H. Tsuchida, Ascorate Peroxidase and Catalase cooperate for Protection against Hydrogen Peroxide generated in potato Tubers During Low-Temperature Storage, Biochem. MoL Biol. Int.,1998,44,717-726.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700