用户名: 密码: 验证码:
中西天山现今地壳形变特征及地震危险性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自新生代以来,由于受印度板块对欧亚板块强烈碰撞和持续挤压的远程效应影响,天山造山带重新活动并再次隆升,成为欧亚大陆内部规模最大的再生造山带。GPS观测结果显示,跨天山(74°E~76°E)的现今地壳缩短速率约为20mm/a,几乎占印度板块与欧亚板块汇聚缩短总量的一半。据美国国家地震监测台网系统(ANSS)及新疆地震目录统计,自1889年以来,中西天山地区(70°~81°E)已发生Ms6.0级以上地震约百次。其中,Ms7.0~7.9级地震6次,Ms8.0级以上特大地震3次。类比2008年汶川Ms8.0地震所处青藏高原东缘强挤压、缓变形的地壳运动和区域构造背景,推测作为内陆典型的挤压构造活动带和地震多发带的中西天山地区在未来仍具有值得关注的大震潜势。
     自上世纪90年以来,以GPS为代表的空间对地观测技术的广泛应用,为我们以高精度、高效率、低成本和全天候方式获取各种规模尺度的地壳运动、构造形变及其动态演化过程提供了革命性的观测手段。到目前为止,国内外的许多研究机构已在中西天山地区开展了大量的GPS观测,并获得了高密度、高精度的地壳运动GPS速度场。此外,前人通过深地震宽角反射/折射剖面、流动地震台阵、深地震发射剖面及重磁联合反演等方法获得了中西天山地区岩石圈介质的分层结构。这些基础资料的积累为深入研究中西天山地区的现今地壳形变特征,探讨地壳形变、构造活动与地震潜势三者之间的相互关系,更加深刻地认知中西天山地区的运动学和动力学机制,特别是对柯坪-阿克苏地区的中-强地震危险性评估创造了重要条件。本论文具体开展了以下几方面的研究:
     一、中西天山地区多源GPS资料的收集、处理与融合
     中西天山地区的GPS地壳形变观测始于上世纪九十年代。其中,在中国境内的天山地区,由于“九五”国家重大科学工程“中国地壳运动观测网络”、“九五”国家重点科技攻关计划“伽师强震群及帕米尔东北侧现代构造运动和地形变的GPS监测研究”和“十一五”“中国大陆构造环境监测网络”等项目的支持,先后布设了88个GPS站点,并进行了多期观测;在境外中西天山地区,自1992年开始,由美国科学基金会资助,美国麻省理工学院(MIT)等数所大学与俄罗斯、吉尔吉斯斯坦、哈萨克斯坦等国家合作,先后布设了324个GPS站点,并开展了多期观测。
     由于无法获得境外天山324个GPS站点和境内南天山GPS监测网54个GPS站点完整的GPS原始观测资料,我们仅收集了两者分别在ITRF2005参考框架和稳定欧亚参考框架下的速度场。对于中国境内“中国地壳运动观测网络”和“中国大陆构造环境监测网络”34个GPS站点的原始观测资料,选用美国航空航天局(NASA)喷气推进实验室(JPL)的高精度GPS数据前处理软件GIPSY和后处理软件QOCA,采用先进的数据处理策略和严密的数据处理方法,获得这些站点的最新观测速度场。最后,对于境内外天山地区的两部分GPS速度场,以部分公共站点为“桥梁”,通过球面欧拉旋转变换,合理地融合在一起,获得了中西天山地区统一参考框架下高精度、高密度的GPS速度场数据,为本区域现今地壳运动的定量研究和地壳形变的构造运动学建模提供了至关重要的约束资料。
     二、中西天山地区现今地壳形变特征定量分析
     基于中西天山地区高精度、高密度的GPS速度场,定量分析了该区域现今地壳运动和构造变形特征,主要认识包括:
     (1)相对于稳定的欧亚板块,跨中西天山地区的北东向水平地壳运动速度从南天山的~20mm/a向北依次梯度变小至天山北侧的哈萨克地区~2mm/a,反映了中西天山在印度板块北东向俯冲、推挤作用下的强烈缩短隆升。
     (2)通过选取天山造山带整体固定框架,去除了天山造山带及其周围GPS站点的“刚性旋转”成分后,最大程度地突出了天山造山带内部不同区域的水平差异运动,结果显示:
     中西天山存在明显的挤出式“流滑”运动。其中,西侧顺着塔拉斯—费尔干纳断裂带流出,而东侧则沿北克明断裂向东运动;
     柯坪推覆体除南北向6~8mm/a的挤压缩短外,整体相对于天山造山带有明显的东向“流滑”运动,推测迈丹断裂有1~3mm/a的左旋错动;对于喀什凹陷与柯坪推覆体结合地区,南北向的挤压缩短量仅1~2mm/a;
     塔拉斯-费尔干纳断裂现今活动性有明显的分段特征,西北段有2~3mm/a的右旋滑动速率,中段没有明显的活动,东南段除3mm/a的右旋滑动外,还有一定的拉张分量;
     克明断裂(Chon-Kemin fault)、契里克断裂(Chilik fault)均有明显的左旋错动,滑动速率在2~3mm/a;
     (3)基于GPS速度场,计算、分析了中西天山地区的地壳应变率、剪切应变率,结果表明:
     整个天山造山带受到强烈挤压,帕米尔高原与天山交接区域的最大应变率值达到了221.2nanostrain/a。柯坪推覆体的三岔口、喀什凹陷北侧等局部区域存在一定的拉张;
     以皮羌断裂-伊塞克湖西为界,天山造山带东部的应变率值大于西部,在西部吉尔吉斯境内纳伦盆地等4个挤压盆地为低值区,应变率值小于20nanostrain/a;在造山带内部的那拉提断裂附近,存在应变率低值区“条带”;
     天山造山带北侧的盆山交接地带应变率值较小,除阿拉木图断裂东段末端与伊犁盆地交接地区应变率值较大(40nanostrain/a以上)外,吉尔吉斯山脉北缘等其他地区的应变率值小于20nanostrain/a;而在造山带南侧盆山交接地带,除喀什凹陷东段及柯坪推覆体柯坪地区的应变率值小于20nanostrain/a外,其余地区的应变率值大于40nanostrain/a。
     (4)基于GPS应变率场,计算得到与地震危险性直接相关的地震矩累积率。通过最大剪切应变率、地震矩累积率与地震分布的叠加分析发现,剪切应变率、地震矩累积率较大的地区,往往对应着地震活动相对频繁的区域;但在有些区域,尽管地壳形变比较强烈,但地震活动并不频繁,如纳伦盆地西部、柯坪推覆体三岔口东侧,这表明地壳形变的强弱与地震活动的频度之间存在较为复杂的关系。
     三、中西天山地区地壳形变特征的构造运动学模型解释
     以中西天山地区396个GPS站点的水平速度场和部分可靠程度较高的活动断裂的长期平均运动速率为约束,采用半无限弹性空间断裂位错模型,构建了中西天山地区地壳形变与断裂活动的构造运动学模型,反演获得了各主要活动断裂段闭锁层之下的长期运动速率。在此构造运动学模型的基础上,基于正演的连续计算,获取了整个区域连续分布的模型预测三维地壳运动场,并计算获得了模型预测的连续应变率场,取得了以下的主要认识:
     (1)中西天山地区的GPS地壳运动速度场能够用构造运动学的断裂位错模型进行较好的模拟解释。GPS站点位移速率的拟合残差大部分小于3mm/a,接近2~3mm/a平均观测精度。但在中西天山南北两侧的盆山交接地带,反演获得的逆冲断裂滑动速率与地质上的结果存在差异,主要与该区域逆冲断层基底滑脱面闭锁段底端深入天山内部有关。其中,天山北侧的断裂深入到伊塞克湖和苏萨梅亚盆地一带,而天山南侧的柯坪推覆体滑脱面闭锁段底端也并非沿着柯坪推覆体的前排断裂—柯坪塔格逆冲断裂的地表走向,而是深入到天山内部与迈丹-喀拉铁克断裂一致。
     (2)由于柯坪推覆体的各排逆冲褶皱带均有上陡下缓的“犁式”特点,采用简单的“断裂位错模型”无法对其地壳形变特征进行有效的解释。本文根据各排断裂的几何特征建立了“柯坪推覆体模型”,更好地吻合了GPS观测结果。对于部分未能很好拟合的GPS站点,可能的原因有如下几点:①采用的模型是对复杂断裂构造系统的一个简化,仅仅考虑了最前面的柯坪塔格逆冲褶皱带和依木干它乌逆冲褶皱带两条活动最强烈的断裂,其他几排逆冲褶皱带活动性相对较弱,而柯坪推覆体由4~6排逆冲褶皱断裂带组成,因而会造成后排断裂地区的GPS站点实测速度与拟合速度的偏差;②由于缺少足够的深部地球物理资料,无法准确判断深部基底卷入逆冲断裂的准确滑脱面埋深等信息;③由于野外地质工作的局限性,并不是所有断裂的所有断层都能获取可靠的断层参数。
     (3)基于构造运动学模型正演计算的现今地壳运动三维速度场,显示现今中西天山地区相对于塔里木盆地的隆升速率约为2.0±1.5mm/yr。考虑到天山的隆升历史及现今的实际隆升量,推测天山地区的挤压隆升很可能经历着由弱到强的递增演化过程,其强烈的长期平均剥蚀速率与GPS资料推算的长期平均隆升速率相当,约1.0mm/yr。
     四、柯坪-阿克苏地区的地震危险性分析
     针对“中国大陆7-8级地震危险性中长期预测研究”工作专项(简称M7工作专项)基于Ⅱ级活动块体边界带上的地震空区、GPS观测的地壳形变高梯度带等因素,在西南天山地区初步圈定了“柯坪-阿克苏地震重点监视区”。考虑到下地壳上地幔粘弹性松弛效应作用的长期性,采用黏弹性静态应力触发模型,计算了西南天山及周边地区过去近百年间(1898年~2012年)31个中-强震对柯坪-阿克苏地震重点监视区主要活动断层面上库仑应力的加/卸载状况,同时加入了由GPS资料所得到的长期构造运动加载下的应力积累。所得结果表明:
     柯坪塔格逆冲断裂西段与阿图什—八盘水磨逆冲构造的交接部位、迈丹断裂西段、喀拉铁克断裂西段及柯坪塔格逆冲断裂带三岔口段的库仑应力处于加载状态,预示着这些区域的地震危险性在增加(触发区);柯坪塔格逆冲褶皱带的大山口—五间房段及附近的奥兹格尔他乌褶皱—逆冲带、乌什北逆冲断裂、南天山山前逆冲断裂及柯坪塔格逆冲褶皱带的一间房段的库仑应力处于卸载过程中,预示着这些区域的地震危险性在降低(抑制区);皮羌山等柯坪推覆体内部多排逆冲褶皱断裂带、秋里塔格逆冲断裂带、古木别孜逆冲断裂带及柯坪塔格逆冲褶皱带柯坪岔口以北的阿依库勒段段的库仑应力积累量较小,预示着这些区域的地震危险性未受周边地震的显著影响(不确定区)。
With the remote influence of the far field from intense collision and successiveextrusion of the India-Eurasian plate, the Tian Shan orgenic system has been activeand uplifting again since Cenozoic, then it becomes the largest orogenic system incentral Eurasia. Results of GPS observations, spanning from74°to76°, show that thecrust has been shortening with a rate of20mm/a, accounting for almost half of thetotal shortening rate between the India plate and the Eurasia plate. According to theNational Earthquake Monitoring Network System(ANSS) and Xinjiang earthquakecatalog, from1889to2012,50events,which is larger than Ms6.0,6events of Ms7.0~Ms7.9, and3events of Ms8have occurred in western and central Tian Shan (70°E~80°E). Similar to Earthquake Wenchuan Ms8of2008due to intense coillison, slowdeformation and local structural setting of Eastern Tibet, the western and central TianShan is a typical inland tectonic belt and earthquake-prone region and will get moreand more attention with great reason.
     Since the1990s, the GPS, which is an important technology of geodesy withhigh-accuracy, high-efficiency, low-expense and all-weather survey, provides arevolutionary method for measuring crustal movement, tectonic deformation of variedscales. Recently some research teams have made a lot of GPS measurements incentral and western Tian Shan. Besides,previous studies have probed the hierarchicalstructure of the Earth's lithosphere by deep seismic wide-angle reflection/refractionprofiles,mobile seismic arrays,deep seismic reflection profiling,and inversions ofgravity and magnetic data. They are very important constraints data to makequantitative research about crustal deformation characteristics (such as shorteningdeformation distribution across the Tian Shan and tectonic changes) and seismichazard analysis. Focusing on these scientific issues,this thesis presents research workin five aspects as follows:
     1. Collection and processing of geodetic data in the western and central TianShan.
     GPS observations in western and central Tian Shan began in1992, and a numberof relevant projects provided a wealth of GPS data in this region afterwards. Thiswork has collected data of396stations in the western and central Tian Shan. Amongthem, the Chinese Tian Shan, funded by many scientific and technological projects,China Institute of Seismology and Earthquake Administration of Xinjian have madejoint efforts to carried out multi-period GPS observations, such as China Crustal Movement Observation Network, Continental Tectonics Environment MonitoringNetwork of China,the GPS observation project about the modern tectonic movementand crustal deformation of the Jiashi earthquakes and the movement of thenortheastern Pamir,which is96-913-07-03project of the Ninth-Five Year PlanNational Key Scientific and Technological Plans. In the northern Tian Shan(Kyrgyzstan/Kazakhstan),funded by the National Science Foundation,MassachusettsInstitute of Technology (MIT) and several universities have made a lot of joint GPSobservations with Germany, Russia, Kyrgyzstan, and Kazakhstan since1992.
     As it is impossible to collect the original GPS data from324sites of the Tian Shanoutside China and54sites of South Tian Shan inside China, this thesis only uses theGPS velocity data under the ITRF2005framework and stable Eurasia framework.For data of34stations from China Crustal Movement Observation Network andChina Crustal Movement Observation Network, Continental Tectonics EnvironmentMonitoring Network of China, this work adopts the GPS data processing softwareGIPSY and post-processing software QOCA which were developed by NationalAeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL)to get the newly velocity of western Tian Shan, Finally using the common station asbridge, this work computes the Euler rotation parameter between them, then convertsthe velocity of Tian Shan to the frame of this work by adopting the Euler parameterand gets the dense, consistent and delicate velocity of Tian Shan, which providesimportant material for constructing the dynamic model for research of crustalmovement and tectonic deformation.
     2. Quantitative analysis for characteristics of present-day crustal deformation inthe western and central Tian Shan.
     Based on the high-accuracy and high-density GPS velocity field in the westernand central Tian Shan,this work analyzes quantitatively the features of crustal motionand tectonic deformation in this study region. The results are as follows:
     (1) Relative to stable Eurasia plate,the NE-directed horizontal movement velocityacross the western and central Tian Shan decreases from20mm/a in the southern TianShan to2mm/a in the northern Tian Shan (Kazakhstan), implying the Tian Shan isintensively shortening and uplifting.
     (2)Through the selection of the whole fixed framework of Tian Shan orgenicsystem,removing the “rigid rotation” of the Tian Shan orgenic system and itssurrounding GPS stations,the results further highlight the difference of the horizontal movement inside the Tian Shan orgenic system.
     An obvious extrusion-type “flow slide” movement exists in the mid-westernTian Shan. The west side of it flows along the Talas-Fergana fault zone,andeast side moves eastward along the northern Kemin fault zone.
     In addition to the6~8mm/a north-south extrusion shortening of the Kalpinthrust system,the whole has an obvious eastward “flow slip” relative to thethe Tian Shan orgenic system. This work also speculates that the Maidan faulthas a left-lateral slip of1~3mm/a. As to the combination of the Kashi sag andKalpin thrust system,the north-south extrusion shortening is only about1~2mm/a.
     The activity of Talas-fergana fault today has an obvious feature ofsegmentation. The northwest segment has2~3mm/a right-lateral slip rate,themiddle segment has no obvious movement,and the southeast segment notonly has3mm/a right-lateral slip rate but also has a large tensile component.
     Both the Chon-Kemin fault and Chilik fault have obvious left-lateral slip of2~3mm/a.
     (3) Based on the GPS velocity field,this thesis calculates and analyzes thecrustal strain rate and shear strain rate of the mid-western Tian Shan.
     The entire Tian Shan orgenic system was strongly squeezed. The max strainrate of the junction area of Pamir and Tian Shan is221.2nanostrain/a. There issome tension existing in the Kalpin thrust system,north part of Kashi sag andsome other places.
     Limited by the Piqiang fault-west Issyk lake,the strain rates of eastern TianShan orgenic system is higher than the western Tian Shan. To the west inKyrgyz, the Naryn basin and3other compressive basins are of low strainrates lower than20nanostrain/a. Inside the orogenic belt near the Natila fault,there is a low strain rate area called”strips”.
     The strain rates are relatively low in the basin-range transition north of theTian Shan orgenic system. In addition to the junction area between the end ofthe eastern Alamtu fault and Yili basin where the strain rates are relativelyhigh (more the40nanostrain),the strain rates of the other areas in the northernKyrgyz Mountains are lower than20nanostrain/a. While in the transition zonebetween the basin and southern Tian Shan orgenic system, the strain rates aremore than40nanostrain/a,excluding the eastern Kashi sag and Kalpin thrustsystem where the strain rates are lower than20nanostrain/a.
     (4)Based on the GPS strain rate field,this work calculates the seismic momentaccumulation rate which is directly related to seismic risk. By the overlay analysis ofthe max shear strain rates,seismic moment accumulation rates and earthquakedistribution,it finds that the area with higher shear strain rates and earthquakemoment accumulation rates has relatively frequent seismic activity. However in someareas where the crustal deformation is relatively strong,the seismic activity is notfrequent like the western Naryn basin and the eastern Kalpin thrust system. Thisshows there is a relatively complex relationship between the strength of crustaldeformation and seismic activity.3. Tectonic kinematic model interpretation of crustal deformation of the western
     and central Tian Shan.
     Restrained by the horizontal velocity field derived from data of the396GPSstations and the long-term average rates of movement of some active faults,using athree-dimensional deep-fault dislocation model,this work establishes an kinematicmodel of crustal deformation and active faults for the western and central Tian Shan,and inverts long-term slip rates of major faults. Then, based on this model andforward calculation, this thesis acquires the three-dimensional continuous distributionof crustal motion and the strain rate field for the whole region, which are statedbelow:
     (1) GPS crustal movement velocity field in the western Tian shan area can besimulated well by the fault dislocation model of tectonic kinematics. Most residuals ofthe GPS displacement rates are less than3mm/a,close to the average observationalaccuracy of2~3mm/a. In the basin-range transition zones on either side of themid-western Tian Shan,the thrusts slip rates derived from inversion are different fromthat from geological research. This is mainly because the locked sections of thebottom detachments of the thrust faults go down deeply into the Tian Shan. Amongthem,the northern Tian Shan fault goes deeply into the Issyk-Kul basin and SusaMyer basin. The bottom detachment latching segment of the Kalpin thrust system inthe southern Tian Shan does not run along with the front fault of Kalpin-Tage thrustsfault,instead goes down into the Tian Shan, in agreement with the Maidan-Kalatiefault.
     (2)Because each of thrust folds of the Kalpin thrust system has a listric feature,the crustal deformation cannot be simply explained by a simple three-dimensionaldeep-fault dislocation model. This work establishes a geometrical model for theKalpin thrust system based on the geometric characteristics of each of thrust fold zone. The inversion results using this model match largely with the GPS observations,except some stations. The reasons for these discrepancies are:①The model of thisthesis is a simplification to a complex fault system,in which only two fold thrustfaults have been taken into consideration. In the real Kalpin thrust system,the KalpinTage thrust fold and the Yimugantawu thrust fold belt are most intensive in activity,and the others are relatively weak. While the Kalpin thrust system is made up by4~6rows of fold thrusts,the velocity from GPS observations is different from the velocitycalculated by the model in the rear faults.②Due to lack of sufficient geophysical dataof deep structure,it is impossible to determine accurate depth of the deep detachmentsurface of basement-involved thrusts.③Because of the limitations of field geologicalwork, reliable data cannot cover all fault segments and all faults.
     (3) The forward calculation using the kinematic model yields thethree-dimensional velocity field of present-day crustal movement of the study area. Itappears that the uplifting rate of the western and central Tian Shan is about2.0±1.5mm/yr relative to the Tarim basin. Taking into account the uplift history and theuplifting amount, this work infers that the uplift in the western and central Tian Shanis progressive process from weak to intensive, in which the long-term denudation rateis close to the long-term uplift rate from GPS, which is about1.0mm/yr.
     4. Seismic hazard analysis of the Kalpin-Aksu region
     As to the project “long-term prediction of seismic hazard of Ms7.0~Ms8.0earthquake in China”, which is based on the seismic gaps in second-order active blockboundary belts and crustal deformation with high gradients by GPS observations,theKalpin-Aksu focused earthquake-monitoring area was preliminarily delimited in thesouthwestern Tian Shan. Taking the long-term viscoelastic relaxation effects of lowercrust and upper mantle into consideration,this work uses a viscoelastic static stresstriggering model to calculate the loading/unloading conditions of Coulomb stress onmain active faults of this focused area in the past nearly100years (1898~2012),during which31major earthquakes had happened in the southwestern Tian Shan andits surrounding areas. At the same time,stress accumulation under long term tectonicmovement loadings from the GPS observations are added. The results are as follows:
     Among the joints of the western segment of the Kalpintage reverse fault and theAtushi-Bapan Watermill reverse fault,the western part of Maidan fault,the westernpart of Kalatieke fault and the divergence of the Kalpintage reverse fault,theCoulomb failure stresses are in a loading state (triggering zone), implying a big
     seismic risk. At the Dakoushan-Wujianfang section of the Kalpintage reverse fold beltand the Aozigeertawu fold belt-reverse fault,northern part of the Wushi reverse fault,South Tian Shan range-front reverse fault and the Yijianfang section of the Kalpintagereverse-fold belt nearby,the Coulomb failure stresses are in an unloading state(inhibitory region), meaning low seismic hazards. On many rows of reverse-fold belts,such as Piqiangshan, in the Kalpin thrust system, as well as the Qiulitage andGumubiezi thrust faults, and the Ayikule section of the Kalpintage thrust fold zonenorth of the Kalpin fork, the cumulative Coulomb stresses are relatively smaller,indicating these areas are little affected by seismicity of surroundings (uncertainregion).
引文
1. Abdrakhmatov K. Y.,Aldazhanov S. A.,Hager B. H.,et al. Relatively recent construction of theTian Shan inferred from GPS measurements of present-day crustal deformation rates[J].Nature,1996,384:450-453.
    2. Alexander Mikolaichuk and Jean-Pierre Burg et al.,2008. Seismic risk in the inner Tien-Shan:lessons from the Suusamyr earthquake. International Disaster and Risk Conference.
    3. Altamimi Z.,Collilieux X., Metiver L. ITRF2008:an improved solution of the internationalterrestrial reference frame[J].J. Geod.,2011,DOI10.1007/s00190-011-0444-4.
    4. Avouac J. P.,Tapponnier P., Bai M.,et a1.Active thrusting and folding along the northernTienShan and Late Cenozoic rotation of the Tarim relative to Dzungeria and Kazakhstan[J].JGeophys Res,1993,98:6755-6804.
    5. Avouac J.P.,Tapponnier P. Kinematic model of active deformation in Central Asia[J].Geophys.Res. Lett.,1993,20(10):895-898.
    6. Blewitt G. Fixed Point Theorems of GPS Carrier Phase Ambiguity Resolution and TheirApplication to Massive Network Processing: Ambizap[J], J Geophys Res.,2008,113(B12410):1-16.
    7. Bock Y.,Nikolaidis R. M.,Jonge P. J.,et al. Instantaneous geodetic positioning at mediumdistance with the Global Positioning System[J].J Geophys Res,2000,105(28)223-228,253.
    8. Boehm J.,Werl B.,Schuh H.Troposphere mapping functions for GPS and very long baselineinterferometry from European Center for Midium-Range Weather Forcasts operationalanalysis data[J].Journal of Geophysical Research,2006,111,B02406.
    9. Bogomolov, L., V. Bragin, et al, Comparative analysis of GPS, Seismic and electromagneticdata on the central Tian Shan Territory. Tectonophysics,2006,431:143-151.
    10. Bullen M E, Burbank D W, Garver J I, et a1, Late Cenozoic Tectonic Evolution of theNorthwestern Tian Shan:New Age Estimates for the Initiation of Mountain Building.Geological Society of America Bulletin,2001, l13(12):1544-1559.
    11. Burbank D W, McLean J K, Bullen M, et a1. Partitioning of Intermontane Basins byThrust-related Folding, TienShan, Kyrgyzstan, Basin Research,1999,11:5-92.
    12. Burchfiel B C, Brown E T, Deng Q, et al. Crustal shortening on the margins of the Tian Shan,Xinjiang, China. International Geology Review,1999,41:665-700.
    13. Chen Y, CognéJ P, Courtillot V, et al, Paleomagnetic study of Mesozoic continental sedimentsalong the Northern Tian Shan (China) and heterogeneous strain in central Asia, J.Geophys.Res.1991,96:4065-4082.
    14. Collilieux,X.,Metiver L.,Altamimi Z.,et al. Quality assessment of GPS reprocessed terrestrialreference frame[J].GPS Solut,2010,doi10.1007/s10291-010-0184-6.
    15. D. Delvaux and K E Coppersmith.2001. Landslides and Surface Breaks of the1911MS8.2Kemin Earthquake, Russian Geology and Geophysics,42(10):1583-1592.
    16. Dong D.,Bock Y.Global positioning system network analysis with phase ambiguity resolutionapplied to crustal deformation studies in California[J].Journal of GeophysicalResearch,1989,94(B4):3949-3966.
    17. Dong D,Herring T A,King R W. Estimating regional deformation from a combination of spaceand terrestrial geodetic data[J],Journal of Geodesy,1998,72(4):200-214.
    18. Dong D N,Fang P,Bock Y,et al. Anatomy of apparent seasonal variations from GPS derivedsite position time series[J].J Geophys Res.,2002,107(B4):ETG901-ETG916.
    19. Dong D N,Fang P,Bock Y,et al. Spatiotemporal filtering using principal component analysisand Karhunen-Love expansion approaches for regional GPS network analysis[J]. J GeophyRes,2006.111:B03405:1-16.
    20. England P, Molnar P.The field of crustal velocity in Asia calculated from Quaternary rates ofslip on faults[J].Geophys J Int,1997,130(3):551-582.
    21. Gan W,Zhang P,Shen Z K et al.Present-day crustal motion within the Tibetan Plateau inferredfrom GPS measurements[J],J Geophys Res,2007,112(B08416):1-14
    22. Gan W.,Prescott W.H..Crustal deformation rate in central and eastern U.S. inferred fromGPS[J].Geophys. Res. Lett.,2001,28(19):3733-3736.
    23. Ge M, Gendt G, Dick G,et a1. Impact of GPS satellite antenna offsets on scale changes inglobal network solutions[J].Geophysical Research Letters,2005,32,L06310:1-4.
    24. Ge M, Gendt G, Dick G,et al. Improving carrier-phase ambiguity resolution in global GPSnetwork solutions[J].Journal of Geodesy,2005,79:103-110.
    25. Grapenthin,R.,F.Sigmundsson,H.Gerisson,et al. Icelandic rhymics:Annual modulation of landelevation and plate spreading by snow load[J].Geophys. Res. Lett.,2006,33(L24305):1-5.
    26. Hans-Balder HAVENITH, Céline BOURDEAU. Earthquake-induced landslide hazards inmountain regions: a review of case histories from central Asia. Geologica belgica,2010,13/3:137-152.
    27. Heflin, M. B., Bertiger, W. I., Blewitt, G. et al. Global geodesy using GPS without fiducialsites[J]. Geophys. Res. Lett.,1992,19:131-134.
    28. Herring, T. A.,1997. GLOBK: Global Kalman Filter VLBI and GPS analysis program, v.4.1,Mass. Inst. of Technol.,Cambridge.
    29. J Enrique Luco and Randy J Aspel,1983. On the Green’s Functions for a Layered Half-space.Part I, Bull. Seism. Soc. Am.,73:909-929.
    30. Kedar,S.,G.A.Hajj,B.D.Wilson,et al. The effect of the second order GPS ionosphericcorrection on receiver positions,Geophys.Res.Lett.,2003,30(16),1829:SDE2-4.
    31. King G, R Stein and Jian Lin.1994. Static Stress Changes and The triggering of Earthquakes.Bulletin of the Seismological Society of America,84(3):935-953.
    32. Langbein, J., F. Wyatt, H. Johnson, D. Hamann, and P. Zimmer (1995), Improved stability of adeeply anchored geodetic monument for deformation monitoring, Geophys. Res. Lett.,22(24),3533–3536, doi:10.1029/95GL03325.
    33. Larson K.M., Paul Bodin, Joan Gomberg. Using1-Hz GPS Data to Measure DeformationsCaused by the Denali Fault Earthquake [J]. Science,2003(300):1421-1424.
    34. Larson.K.M.,Burgmann R.,Bilham R.,et al. Kinematics of the India-Eurasia collision zonefrom GPS measurements[J].J. Geophys. Res.,1999,104(B1):1077-1093.
    35. Lyard F, Lefevre F, Letellier T,et al. Modelling the global ocean tides:insights fromFES2004[J].Ocean Dynamics,2006,56:394-415.
    36. MacDoran, P.F., Satellite Emission Radio lnterferometric Earth. Surveying SERIES-GPSgeodetic system. Bull. Gwd., Vol.53, pp.117-138,1979.
    37. Mangiarotti S, Cazenave A, Soudarin L,et al. Annual vertical crustal motion predicted fromsurface mass redistribution and observed by space geodesy[J].J GeophysRes.,2001,106(B3):4277-4291.
    38. Melbourne W G. The case for ranging in GPS based geodetic system.In:Proceedings1stinternational symposium on precise positioning with the global positioning system,1985,April15-19,Rockville,373-386.
    39. Mohadjer,S.,Bendick R.,Ischuk A..et al.Partitioning of India-Eurasia convergence in thePamir-Hindu Kush from GPS measurements[J].Geophys. Res. Lett.2010,37(L04305):1-6.
    40. Molnar P,Tapponnier P.Cenozoic tectonics of Asia:Effects of a continental collision[J].Science,1975(189):419-426.
    41. Neill A E.Global mapping functions for the atmosphere delay at radio wavelength[J]. JGeophys Res.1996,101(B2):3227-3246.
    42. Niell,A.E; Ong, K.M. MacDoran,PF.,et al.Comparision of a radio interferometric differentialbaseline measurement with conventional geodesy, Tectonophysics,vol.52,no.1-4,..49-58.1979.
    43. Nikolaidis R. Observation of Geodetic and Seismic Deformation with the Global PositioningSystem[D].San Diego:University of California,2002.
    44. Okada Y.Internal Deformation due to Shear and Tensile Faults in a Half-space[J].Bulletine ofthe Seismological Society of America,1992,82(2):1018-1040.
    45. Ortiz J.P.,Toledano C.,Cachorro V.,et al. Improvement in PWV estimation from GPS due tothe absolute calibration of antenna phase center variations[J].GPS Solut,2010(14):389-395.
    46. Penna N T, Stewart M P. Aliased tidal signatures in continuous GPS height timerseries[J].Geophyical Research Letters,2003,30(23):2184
    47. Randy J Aspel and J Enrique Luco,1983. On the Green's Functions for a Layered Half-space.Part II, Bulletin of the Seismological Society of America,73:931-951.
    48. Reigber C, G W Michel, R Galas, et al., New space geodetic constrains on the distribution ofdeformation in Central Asia. Earth Planet Sci. Lett.2001,191:157-165.
    49. Rothacher M. Comparison of absolute and relative antenna phase center variations[J].GPSSolutions,2001,4(4):55-60.
    50. Savage, J. and J. Svarc. Postseismic deformation associated with the1992Mw=7.3Landersearthquake, southern California. Journal of Geophysical Research,1997,102(B4):7565-7577.
    51. Savage, J and R Simpson, Surface Strain Accumulation and the Seismic Moment Tensor.Bulletin of the Seismological Society of America,1997,87(5):1345-1353.
    52. Savage J.C., J.L. Svarc, W.H. Prescott. Geodetic estimates of fault slip rates in the SanFrancisco Bay area. Journal of Geophysical Research,1999,104:4995-5002
    53. Savage J. C., Gan Weijun, Svarc J. L., Strain accumulation and rotation in Eastern CaliforniaShear Zone. Journal Geophysical Research,2001,106(B10):21995-22007
    54. Schimitz M., Wubberna G., Boettcher G. Tests of phase center variations of various GPSantennas,and some results.GPS Solutions,2002(6):18-27.
    55. Schmid R,Rothacher M.,Thaller D.,et al. Absolute phase center corrections of satellite andreceiver antenna[J].GPS Solut,2005(9):283-293.
    56. Schmid,R.,P. Steigenberger,G. Gendt,et al. Generation of a consistent absolute phase-centercorrection model for GPS receiver and satellite antenna[J],J. Geod.,2007,81,781-798.
    57. Serpelloni,E.,R. Burgmann,M.Anzidei,et al. Strain accumulation across messina straits andkinematics of Sicily and Calabria from GPS data and dislocation modeling[J].ScienseDirect,2010,doi:10.1016/j.epsl.2010.08.005.
    58. Shen Z K,Zhao Ch,Yin A,eta1.Contemporary crustal deformation in eastern Asia constrainedby Global Positioning System measurements[J].J Geophys Res,2000,105:5721-5734.
    59. Shen, Z.-K., M. Wang, Y. Li et al. Crustal deformation along the Altyn Tagh fault system,western China, from GPS[J].J Geophys Res,2001,106(B12):30607–30621.
    60. Shen,Z.-K,Sun J.-B.,Zhang P.-Z.et al.Slip maxima at fault junctions and rupturing of barriersduring the2008Wenchuan earthquake[J].Nature Geosicence,2009,2,718-724.
    61. Shu L S, Wang F, Yang H F, et al, Polyphase tectonic events and Mesozoic–Cenozoicbasin-range coupling in the ChineseTian Shan belt, Acta Geologica Sinica,2003(4):457–467.
    62. Steigenberger P,Rothacher M,Dietrich R,et al.Reprocessing of a global network[J].Journal ofGeophysical Research,2006,111,B05402
    63. Steigenberger P.,Boehm J.,Tesmer V.Comparison of GMF/GPT with VMF1/ECMWF andImplications for Atmospheric Loading[J],Journal of Geodesy,2009,9,311-319.
    64. Sujoy Ghose and Michael W.Hamburger, et al. Source parameters of moderate-sizeearthquake in central Asia area. Geophysical Research Letters,1998,25(16):3181-3184.
    65. Sujoy Ghose and Michael W.Hamburger, et al. Three-dimensional velocity structure andearthquake locations beneath the northern Tian Shan of Kyrgyzstan, central Asia. Journal ofGeophysical Research,1998,103(b2):2725-2748.
    66. Tapponnier P,Peltzer G,Le Dain A Y,et a1.Propagating extrusion tectonic in Asia:new insightfrom simple experiments with plasticine[J].Geology,1982,10(12):611-616.
    67. Tapponnier P.,and Molnal P.,Active faulting and tectonics in China[J].J. Geophys.Res.1977,82(20):2905-2930.
    68. Tregoning P.,and T.van Dam.Atmospheric pressure loading corrections applied to GPS data atthe observation level[J].Geophys.Res.Lett.,2005,32,L22310:1-4.
    69. Urschl C,Dach R,Hugentobler U et al.Validating ocean tide loading models using GPS,Journalof Geodesy,2005,78:616-625.
    70. Valentin S. Burtman, Sergey F. Skobelev, Peter Molnar. Late Cenozoic slip on theTalas-Ferghana fault, the Tian Shan, central Asia. GSA Bulletin; August1996; v.108; no.8;p.1004–1021.
    71. VanDam T. M., G. Blewitt, and M. B. Heflin. Atmospheric pressure loading effects on GlobalPositioning System coordinate determinations, J. Geophys. Res.,1994,99(B12),23939–23950.
    72. VanDam T., J. Wahr, P. C. D. Milly,et al.Crustal displacements due to continental waterloading[J], Geophys. Res. Lett.,2001,28(4),651–654.
    73. Vergnolle M.,Bouin M.N. Morel L.et al.GPS estimates of ocean tide loading inNW-France:determination of ocean tide loading constituents and comparison with a recentocean tide mode[J].Geophys J.Int.,2008,173:444-458.
    74. Vergnolle,M.,E. Calais,and L.Ding.Dynamics of continental deformation in Asia[J].J.Geophys. Res.,2007,112,B11403:1-22.
    75. Wang Qi,Zhang Peizhen,Jeffrey T,et a1.Present-day crustal deformation in continental Chinaconstrained by Global Positioning System measurements[J].Science,2001,249:574-577.
    76. Wang W. H et al.2000. Static Stress Transferred and Aftershock Triggering by the1999Chi-Chi Earthquake in Taiwan. Terrestrial Atmospheric and Oceanic Sciences.11(3):631-642.
    77. Watson C,Tregoning P,Coleman R.Impact of solid Earth tide models on GPS coordinate andtropospheirc time series.Geophysical Research Letters[J],2006,33,L08306:1-4.
    78. Webb,F.H.,Zumberge,J.F.An introduce to GIPSY-OASIS II,Jet Propulsion Laboratory UserManual,JPL Technical Document D-11088,California Institute of Technology.
    79. Williams,S.D.P.,and N.T.Penna. Non-tidal ocean loading effects on geodetic GPSheights[J].Geophys. Res. Lett.,2011,38(L09314):1-5.
    80. Williams,S.D.P.,Offsets in Global Positioning System time series[J], J.Geophys.Res.,2003,108(B6),2310, ETG12:1-13.
    81. Windley B F, Allen MB, Zhang C. Paleozoic accretion and Cenozoic redeformation of theChinese Tian Shan range, central Asia. Geology,1990,18:128-131.
    82. Yin A,Nie S,Craig P,eta1.Late Cenozoic tectonic evolution of the southern Chinese TianShan[J].Tectonics,1998,17:1-27.
    83. Zeng, Yue-hua.2001. Viscoelastic Stress Triggering of the1999Hector Mine Earthquake bythe1992Landers Earthquake. Geophysical Research Letters,28(15):3007-3010.
    84. Zhu S,Massmann F-H,Yu Y,et a1. Satellite antenna phase center offsets and scale error in GPSsolution[J].Journal of Geodesy,2003,76:668-672.
    85. Zubovich A.V.,Wang X.Scherba Y.G.. et al. GPS velocity field for the Tian Shan andsurrounding regions[J].Tectonics.2010,29(TC6014):1-23
    86. Zumberge J F,Helfin M B,Jefferson D C,et a1.Precise point positioning for the efficient androbust analysis of GPS data from large networks[J].J Geophys Res,1997,102(B3):5005-5017.
    87.柏美祥,阿图什地区地震地质特征.内陆地震,1987,1(2):135-145.
    88.柏美祥,戈澍漠,1902年新疆阿图什8级地震.中国特大地震研究(一),地震出版社(北京),1988:143~170.
    89.畅毅,袁玉斌,尹柱庭.太阳耀斑对GPS单点定位结果的影响与分析[J].石油仪器,2008,22(3):76-79.
    90.陈俊勇.GPS技术进展及其现代化[J].大地测量与地球动力学,2010,30(3):1-4.
    91.陈杰,曲国胜,胡军等.帕米尔北缘弧形推覆构造带东段的基本特征与现代地震活动,地震地质,1997,19(4):301-302.
    92.陈杰,李涛,李文巧等,帕米尔构造结及邻区的晚新生代构造与现今变形.地震地质,2011,33(2):241-259.
    93.陈为涛,甘卫军,万永革,等.(待刊).青藏高原东北缘几个强震重点监视区库仑应力的近百年变化和危险性分析,吉林大学学报.地球科学版.
    94.陈荣华,张永仙,薛艳等,2005年2月15日新疆乌什6.2级地震前的测震学异常,内陆地震.2005,19(3):203-206.
    95.党亚民,陈俊勇,张燕平.利用GPS资料分析南天地区的地壳形变特征[J].测绘科学,2002,27(4):13-15.
    96.党亚民等.全球导航卫星系统原理与应用[M].北京:测绘出版社,2007.
    97.邓起东,冯先岳,张培震等.乌鲁木齐山前坳陷逆断裂-褶皱带及其形成机制[J].地学前缘,1999,6(4):191-201.
    98.邓起东,冯先岳,张培震等.天山活动构造[M].北京:地震出版社,2000.
    99.邓起东,张培震,冉勇康等.中国活动构造基本特征[J].中国科学D辑,2002,32(12):1020-1030.
    100.冯先岳.1999.1985年新疆乌恰地震烈度与发震构造.内陆地震,13(2):169-178.
    101.冯先岳,天山的活动断层.中国地震,1986,2(2):84-89.
    102.付碧宏,贾营营.2010.南天山乌什前陆逆冲褶皱构造带的晚新生代构造地貌特征与地震活动.地质科学,45(4):917-929.
    103.蒋靖祥,尹光华,高歌等,天山隆升、塔里木盆地顺时针旋转的力学观测证据.2000,全国数学地球科学与地学信息学术会议.
    104.甘卫军,程朋根,周德敏等.青藏高原东北缘主要活动断裂带GPS加密观测及结果分析[J].地震地质,2005,27(2):177-187.
    105.甘卫军,沈正康,张培震,等.青藏高原地壳水平差异运动的GPS观测研究[J].大地测量与地球动力学,2004,24(1):29-35.
    106.甘卫军.GPS的地球物理应用-美国加州东部及全美中部地壳变形研究[D].北京:中国地震局地质研究所,2001.
    107.高国英.1998.伽师震群震源机制与主破裂面.内陆地震,12(2):186-187.
    108.高国英,戈澍谟,韩月鹏,等.1997.1996年3月19日新疆阿图什6.9级地震震源破坏特征的研究.地震,17(3):290:296.
    109.高国英,聂晓红,等.2009.2008年乌恰6.9级地震与新疆地震趋势研究.内陆地震,23(1):1-9.
    110.高国英,聂晓红,夏爱国.1902年阿图什8.2级地震前后地震活动特征.内陆地震,2011,25(2):120-128.
    111.高祥林,马晓静,李晓丽.亚洲东部大三角地震构造区的周边和深部动力环境[J].地学前缘,2010,17(4):33-42.
    112.郭飙,刘启元,陈九辉,等.新疆伽师强震区余震序列的地震台阵定位.地震地质,2002,24(2):199-207.
    113.洪樱,欧吉坤,彭碧波.GPS卫星精密星历和钟差三种内插方法的比较[J].武汉大学学报.信息科学版,2006,31(6):516-518,556.
    114.黄珹,胡小工,程宗颐.利用非差资料的精密点定位方案解算区域GPS网[J].天文学报,2001,42(3):248-258.
    115.黄健,汪平,阮仁贵等.DCB对精密单点定位精度影响研究[J].大地测量与地球动力学,2010,30(3):110-112,117.
    116.黄立人,张培震.中国大陆的GPS速度场、地块运动与应变场[J].工程地球物理学报,2004,1(3):204-212.
    117.江在森,马宗晋,张希等.GPS初步结果揭示的中国大陆水平应变场与构造变形[J].地球物理学报,2003,46(3):352-358.
    118.何文渊,李江海,钱祥麟等,塔里木盆地柯坪断隆断裂构造分析.中国地质,2002,29(1):37-43.
    119.何玉梅-2001,1996年3月19日新疆阿图什6.9级地震:单侧破裂过程.地球物理学报,2001,44(4):510-519.
    120.雷显权,陈运平,赵炯洋,天山现今地壳变形的非连续接触模型模拟.中南大学学报(自然科学版),2011,42(9):2754-2762.
    121.李安,冉勇康,徐良鑫.西南天山东柯坪推覆系古地震初步研究.地震地震.2012,33(4):752-764.
    122.李杰,王晓强,王琪等,乌恰伽师地区GPS地壳运动监测网研究.内陆地震,2004,18(3):281-288.
    123.李杰,方伟,朱治国等,中部天山地壳活动的GPS初步分析.内陆地震,2006,20(3):239-244.
    124.李杰,刘代芹,王琪,等.利用应变场和基线变化率研究新疆南天山地区近期地壳运动特征[J].地震研究,2012,35(1):59-65.
    125.李志海,龙鹏伟,马宏生等,2008年10月5日新疆乌恰6.8级地震发震构造与地震序列分析.内陆地震,2008,22(4):355-360.
    126.刘耕年,熊黑钢.中国天山高山冰缘环境中的寒冻风化剥蚀作用及其影响因素.冰川冻土,1992,14(4):332-341
    127.刘桂萍,傅征祥.1976年7月28日唐山7.8级地震触发的区域地震活动和静应力场变化.2000,地震学报,22(6):17-26
    128.刘经南,姚宜斌,施闯.中国大陆现今垂直形变特征的初步探讨[J].大地测量与地球动力学,2002,22(3):1-5.
    129.刘启元,陈九辉,李顺成,等.2000.新疆伽师强震群区三维地壳上地幔S波速度结构及其地震成因的探讨.地球物理学报,43(3):356-365.
    130.刘庆元,包海,王潜心等.基于L5的GPS电离层折射误差改正[J].测绘工程,2008,17(1):17-20.
    131.刘焱雄,彭琳,周兴华等.网解和PPP解的等价性[J].武汉大学学报.信息科学版,2005,30(8):736-738.
    132.龙海英,高国英,聂晓红.2007.1997-1998年伽师强震群震源区应力场特征.西北地震学报,29(2):145-149.
    133.罗福忠,宋和平,寇大兵,等.1996.1996年3月19日新疆1996阿图什6.9级地震烈度与发震构造.内陆地震,10(4):373-379.
    134.罗金海,周新源,邱斌等,塔拉斯-费尔干纳断裂对喀什凹陷的控制作用.新疆石油地质,2004,25(6):584-587.
    135.卢华复,王胜利, Suppe J等,天山中段南麓的第四纪褶皱作用.科学通报,2002,47(21):1675-1679.
    136.马宗晋,陈鑫连,叶叔华,等.中国大陆现今地壳运动的GPS研究[J].科学通报,2001,46(13):1118-1120.
    137.马瑞士,朱文斌,郭立智.新疆地区盆地—山脉构造形成机理[J].海相油气地质.1996,1(3):5-10.
    138.牛之俊,马宗晋.中国地壳运动观测网络[J].大地测量与地球动力学,2002,22(3):88-93.
    139.牛之俊,游新兆,杨少敏.利用GPS分析天山现今地壳形变特征[J].大地测量与地球动力学,2007,27(2):1-9.
    140.潘家伟,李海兵,Jerome Van Der Woerd等.青藏高原西北部帕米尔东北缘构造地貌与活动构造研究[J].第四纪研究,2009,29(3):586-598.
    141.钱琦,韩竹君.2010.汶川Ms8.0级地震断层间相互作用及其对起始破裂段的启示.地学前缘,17(5):84-92.
    142.乔学军,聂兆生,杨少敏,等. GPS与InSAR揭示喀什坳陷及邻区的垂直运动与构造特征[J].大地测量与地球动力学,28(2):1-7.
    143.曲国胜,李亦纲,陈杰,等.2003.柯坪塔格推覆构造几何学、运动学及其构造演化.地学前缘,10卷特刊:142-15.
    144.冉勇康,杨晓平,徐锡伟,等.2006.西南天山柯坪推覆体东段晚第四纪变形样式与缩短速率.地震地质,28(2):179-193.
    145.单斌,熊熊,郑勇,等.2009.2008年5月12日Mw7.9汶川地震导致的周边断层应力变化.中国科学D辑:地球科学,39:537-545.
    146.沈军,汪一鹏,李莹甄等.中国新疆天山博阿断裂晚第四纪右旋走滑运动特征[J].地震地质,2003,25(2):183-194.
    147.沈军,陈建波,王翠,等.2006.2003年2月24日新疆巴楚-伽师6.8级地震发震构造.地震地质,28(2):205-212.
    148.沈军,柏美祥,石广岭.2011.新疆及邻区地震构造图简介.内陆地震,25(2):97-108.
    149.沈正康,万永革,甘卫军,等.2003.东昆仑活动断裂带大地震之间的黏弹性应力触发研究.地球物理学报,46(6):786-795.
    150.宋方敏,闵伟,韩竹君,等.2006.柯坪塔格推覆体的新生代变形与扩展.地震地质,28(2):224-233.
    151.宋方敏,闵伟,韩竹君.南天山柯坪塔格推覆体前缘断裂活动性质及速率.地震地震,2007,29(2):272-291.
    152.宋立军,苗崇刚,袁一凡等,新疆巴楚-伽师6.8级地震灾害损失评估.内陆地震,2003,17(2):157-165.
    153.苏乃秦.2004.从1997-1998年伽师强震群到2003年巴楚—伽师—岳普湖地震—震群演化特征及地震趋势分析.内陆地震,18(1):29-38.
    154.田勤俭,丁国瑜,郝平.2006.南天山及塔里木北缘构造带西段地震构造研究.地震地质,28(2):213-223.
    155.万永革,沈正康,曾跃华,等.2007.青藏高原东北部的库仑应力积累演化对大地震发生的影响.地震学报,29(2):115-129.
    156.王敏,沈正康,牛之俊等.现今中国大陆地壳运动与活动地块模型研究[J].中国科学(D辑),2003,33(增刊)?:21-32.
    157.王琪,丁国瑜.天山现今地壳快速缩短与南北地块的相对运动[J].科学通报,2000,45(14):1543-1547.
    158.王琼,王海涛.2007.伽师强震群活动过程的应力触发作用研究.中国地震,23(1):35-46.
    159.王卫民,李丽,赵连锋,等.2005.2003年2月24日新疆伽师Ms605级地震震源破裂过程研究.地球物理学报,48(2):343-351.
    160.王亚勇,葛学理,袁金西.新疆巴楚M6.8地震房屋震害及经验总结.地震工程与工程振动.2003,23(2):172-175.
    161.汪一鹏,沈军,天山北麓活动构造基本特征.新疆地质,2001,18(3):203-210.
    162.王文利,董鸿闻,忽巍.新疆地区陆地垂直运动趋势的探讨[J].测绘技术装备,2009,11(3):6-8.
    163.汪新,贾承造,杨树锋等,南天山库车冲断褶皱带构造变形时间—以库车河地区为例.地质学报,2002,76(1):55-63.
    164.王晓强,李杰,Alexander Zubovich等.利用GPS形变资料研究天山及邻近地区地壳水平位移与应变特征[J].地震学报,2007,29(1):31-37.
    165.王晓强,李杰,王琪等,天山地壳运动的形变场分析.大地测量与地球动力学,2005,25(3):63-68.
    166.王晓强,李杰,朱治国等,伽师及其邻近地区重力场动态演化特征初步分析.内陆地震,2007,21(3):213-217.
    167.王治民,王晓强,朱令人,王琪等.南天山及岶米尔高原现代地壳水平形变[J].高原地震,2007,19(3):29-34.
    168.解朝娣,朱元清,Xinglin LEI,等.2010. Ms8.0级汶川地震产生的应力变化空间分布及其对地震活动性的影响.中国科学D辑:地球科学,40(6):688-698
    169.熊小松,高锐,李秋生,等.天山造山带的深部结构.地球物理学报,2011,26(6):1906-1914
    170.徐杰,周本刚,杨晓平,等.1949年新疆库车7级级地震的地震构造条件.地震地质,2003,25(3):450-459.
    171.徐锡伟,张先康,冉勇康,等.南天山地区巴楚-伽师地震(Ms6.8)发震构造初步研究.地震地质,2006,28(2):161-178.
    172.胥颐,刘福田,刘建华,等.2000.天山地震带的地壳结构与强震构造环境.地球物理学报,43(2):184-193.
    173.杨海军,李曰俊,师骏等.南天山晚新生代褶皱冲断带构造特征[J].第四纪研究,2010,30(5):1030-1043.
    174.杨少敏,李杰,王琪.GPS研究天山现今变形与断层活动[J].中国科学D辑:地球科学,2008,38(7):872-880.
    175.杨晓平,沈军.天山内部博罗科努断裂精河—阿拉山口段晚更新世以来的活动特征,[J].地震地质,2000,22(3):305-315.
    176.杨晓平,冉勇康,宋方敏等.西南天山柯坪逆冲打推覆构造带的地壳缩短分析[J].地震地质,2006,28(2):194-204.
    177.杨晓平,陈立春,李安,等.西南天山阿图什背斜晚第四纪的阶段性隆升[J].地学前缘,2009,16(3):160-170.
    178.杨卓欣,张先康,嘉世旭,等.2006.伽师强震群区震源细结构的深地震反射探测研究.地球物理学报,49(6):1701-1708.
    179.尹光华,蒋靖祥,张勇等,新疆尼勒克1812年地震断层构造特征.西北地震学报,2002,24(2):183-186.
    180.尹力峰,唐丽华.2003年2月24日新疆巴楚—伽师6.8级地震灾区房屋建筑震害现象综述.内陆地震,2003,17(3):209-215.
    181.殷海涛,甘卫军,肖根如,等.利用高频GPS技术进行强震地面运动监测的研究进展[J].地球物理学进展,2009,24(6):2012-2019.
    182.张飞鹏,董大南,程宗颐等.利用GPS监测中国地壳的垂向季节性变化[J].科学通报,2002,47(18):1370-1377.
    183.张家声,单新建,李建华等.帕米尔地区现今大陆深俯冲-地震构造和动力学解释.岩石学报,2005,21(4):1215-1227
    184.张培震,邓起东,杨晓平等.天山的晚新生代构造变形及其地球动力学问题[J].中国地震,1996,12(2):127-140.
    185.张培震,邓起东,张先康等.中国大陆的强震活动与活动地块[J].中国科学D辑,2003,33(增刊):12-20.
    186.张培震,王琪,马宗晋.中国大陆现今构造变形的GPS速度场与活动地块[J].地学前缘,2002,9(2):430-44l.
    187.张晁军,曹建玲,石耀霖.从震后形变探讨青藏高原下地壳黏滞系数[J].中国科学D辑:地球科学,2008,38(10):1250-1257.
    188.张效亮,谢福仁.利用GPS数据和实时概率模型评估川滇南部中长期地震危险性[J].大地测量与地球动力学,2009,29(3):38-41.
    189.赵俊猛,李植纯,程宏岗,等.天山造山带岩石圈密度与磁性结构研究及其动力学分析.地球物理学报,2004,47(6):1061-1067.
    190.赵齐乐,陈文胜,伽师地区强震群前后地壳运动变形的数值模拟.地壳形变与地震,2000,20(4):29-35.
    191.赵瑞斌,沈军,李军等,1902年新疆阿图什8级地震形变特征与发震模式初探.地震地质,2001,23(4):493-500.
    192.周德敏,任金卫,甘卫军等,基于GPS观测资料反演庄浪河断裂带、马衔山北缘断裂带的滑动速率.地震地质,2005,27(4):706-714.
    193.周仕勇,姜明明, Russell Robinson.1997年新疆伽师强震群发展过程中发震断层间相互作用的影响.地球物理学报,2006,49(4):1102-1109.
    194.朱治民,李杰,王伟等.北天山流动水准测量资料前兆异常分析[J].内陆地震,2010,24(3):247-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700