用户名: 密码: 验证码:
鄂尔多斯周缘几个盆地的构造组合及其强震响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个多地震的国家,也是一个大陆内部活动盆地广泛分布的国家,一系列强震均发生在陆内盆地之中。研究地震与盆地的关系,研究陆内盆地中大地震的活动特征、地震孕育和发生的地质构造条件和震害分布与盆地的关系等,对做好防震减灾工作具有十分重要的意义。近年来,全球地震活动进入了活跃期,我国也相继发生了2008年汶川Ms8.0级大地震、2010年玉树Ms7.1级强震以及2013年芦山Ms7.0级强震,均造成了严重的灾害。因此,目前地球科学工作者们非常关注的问题之一就是哪些地方会发生可造成强烈破坏的强震甚至特大地震?我们又该在哪些地方重点监测并设防?鄂尔多斯周缘盆地系是我国重要的强震危险带,历史记录自公元1000年以来,该区发生7级以上大地震超过15次(其中8级以上特大地震就有4次)。同时鄂尔多斯周缘众多盆地地理环境优越,资源丰富,人口众多,城市密集,地震灾害潜在危害性巨大,这迫使我们必须对可能发生大地震的区域进行更为精确的地震危险性评价,而进行精确地震危险性评价的基础是对发震构造特性的认识程度。
     从地震活动历史角度了解发震构造的特性是一条十分有效的途径。然而自有仪器记录以来的地震历史由于时限太短,显然难以了解活动构造长期的地震活动规律,历史记录地震虽能提供较长一段时间(几百乃至几千年)的地震信息,但其仍存在漏记、提供地震信息量有限等缺陷,因而不能满足现今地震危险性评价要求条件。而古地震法可以揭露和研究地质记录中保存的过去地震事件的信息,虽然该方法在某些方面存在一些不确定性,但它提供的信息仍可以帮助我们了解活动构造较长时间的地震活动规律,进而为深入认识发震构造的特性及地震危险性评价等工作提供了更为丰富的基础信息。
     鄂尔多斯周缘开展工作很多,对于单条活动断裂已经有比较深入的认识,而该区盆地多发育至少两条活动断裂,多个震例显示大地震有可能造成两条甚至多条断裂同时破裂,因此判断盆地区分布的多条活动断裂是否以发震构造组合的形式表现,或者是否是有条件的组合发震,对于区域地震危险性评价的准确与否有着至关重要的意义,同时可以丰富断裂之间相互作用及地震触发研究的实例。
     本文通过对历史强震地震破裂的总结,在鄂尔多斯周缘选择了在历史大地震中盆地区多条活动断裂(可能)同时活动的干盐池盆地、银川盆地、河套盆地和灵丘盆地作为研究实例,在资料搜集、高分辨率影像解译的基础上针对这些盆地展开构造地貌分析、活动断裂分布特征考察等工作,总结盆地构造组合;并针对盆地区主要活动断裂进行详细的古地震对比分析,对历史地震和古地震的地震破裂特征及分布进行深入探讨,进而判断盆地区构造组合发生同时破裂的可能性及条件,总结其强震响应方式,并初步探讨了几种盆地构造组合样式与地震活动强度之间的关系。得到如下认识和结论:
     1)位于鄂尔多斯西南缘弧形断裂束海原断裂带内的干盐池盆地为典型的拉分盆地构造组合:边界走滑断层、边界正断层组和内部新生断层。通过边界走滑断层和内部新生断层的古地震对比研究,结合1920年海原81/2级特大地震地表破裂遗迹,得出干盐池盆地构造组合的响应类型:(i)当沿海原断裂带发生类似1920年海原81/2级地震强度的特大地震时,可造成两条边界走滑断层、边界正断层组和内部新生断层同时破裂;(ii)当沿边界走滑断裂发生震级强度略小于海原地震的大地震时,地震破裂只在盆地一侧的边界走滑断裂产生,沿内部新生断层不产生明显的地表破裂,盆地另一侧的边界走滑断裂不同时破裂或发生时间相近的触发破裂;(iii)沿内部新生断层还可发生更小震级的中强地震,这些地震只在内部新生断层的局部段落产生明显的地表破裂,边界断层没有明显的响应。
     2)干盐池拉分盆地的消亡过程中经历了一系列的古地震事件,其中类似1920年海原地震的较大震级事件的对盆地的消亡起着积极的作用,而盆地内部新生断层的生长可能导致一些相对较小震级的中强震的发生,且该断层的生长可能为从黄家洼山南麓断层向南、西华山北麓断层逐步扩展的模式。
     3)银川盆地构造组合为边界控盆正断层(西侧贺兰山东麓断裂,东侧黄河断裂)和盆地内隐伏正断裂(银川断裂、芦花台断裂)近平行排列;物探资料揭示银川断裂和芦花台断裂于深部汇于贺兰山东麓断裂,贺兰山东麓断裂于更深处交汇于黄河断裂。银川盆地主要活动断裂古地震的对比研究揭示贺兰山东麓断裂中北段和银川断裂北段在类似1739年平罗8级地震的事件发生时两条断裂段均可能同时参与活动;各断裂南段地震复发周期较长,地震活动存在空间上在黄河断裂南段、银川断裂南段和贺兰山东麓断裂南段之间来回跳跃的特点。
     4)河套盆地内主要的活动断裂有:狼山-色尔腾山山前断裂、乌拉山山前断裂、大青山山前断裂,整体上呈右阶斜列的展布于山前,分别为3个次级盆地的边界断裂。通过主要活动断裂的古地震对比研究,结合前人对史料的分析,认为大青山山前断裂应为公元849年大地震发震构造,而公元前7年地震有可能是沿河套断陷带的狼山山前断裂发生,且震级可能与公元849年事件相当;古地震研究还显示河套盆地主要活动断裂存在明显的相对独立的地震活动性,但不排除大青山山前断裂和乌拉山山前断裂存在同时破裂或者触发发震的可能性。
     5)灵丘盆地位于山西断陷带晋北张性构造区南部,盆地主要发育北东-北东东向和北西-北北西向两组断裂。通过对主要活动断裂活动性的调查及古地震研究,结合1626年灵丘7级地震实例,认为下南地断裂和华山河断裂为一组共轭型发震构造组合,发震时均同时参与活动。
     6)基于前述研究分析了鄂尔多斯周缘几种盆地构造组合型式与地震活动之间的关系:(i)拉分盆地内部新生断层与走滑位移量较大的一侧边界走滑断裂交汇的部位可能与大地震的孕震部位有关;而内部新生断层向前逐步扩展的前缘可能会发生一些中强地震;(ii)平面上近平行展布、深部相交的构造组合有能力孕育大地震;(iii)斜列展布的跨(次级)盆地的活动断裂的地震破裂可能存在尺度可变性。(iv)盆地区交叉展布的构造组合的地震活动强度高于规模类似的构造方向发育简单的盆地。
China is one of counties with many earthquakes, where intracontinental activebasins are widespread. A series of major earthquakes occurred in theseintracontinental basins. Study the relationship between earthquakes and basins is ofgreat significance for earthquake prevention and disaster reduction. In recent years,the globe is in a seismicly active stage. The earthquakes such as the2008WenchuanMs8.0,2009Yushu Ms7.1and2013Lushan Ms7.0all caused heavy casualties andproperty losses. So at present, it is a highly concerned issue what places would be hitby strong earthquakes and need to be monitored. The basin system around the Ordosblock is an important zone with seismic hazard. The historical records show that since1000AD, more than15large earthquakes (M≥7) occurred in this region, amongwhich the magnitude of5events exceed M8. The basins around the Ordos block arecharacterized by superior geographical environments, abundant natural resources,large population and city agglomeration. Therefore, the great potential dangers ofearthquake hazards force people to make a real effort on seismic risk analysis in thisregion, and the cognition degree about the features of causative structure is thefoundation of all things.
     It is possible to acquire key information of seismogenic structures fromearthquake history. However, the history of instrumental records of quakes is too shortto provide enough information about the long-term law of seismic activity. Thoughthe historic records can provide information of a longer-term (perhaps hundreds tothousands of years), these records have some defects in completeness and richness,and cannot meet the requirements of seismic risk analysis. Paleoseismology canreveal the information of earthquakes preserved in geological records, and providefoundation for study of causative structures and seismic risk analysis.
     Lots of efforts have been made in the areas around the Ordos block, yielding acomprehensive cognition to single active faults in this region. In addition, many active basins in the region host2or more active faults, and earthquake cases show that largeearthquakes can often rupture more than two faults (or fault segments). Hence,determining whether multi-faults distributed in these basins take the form of causativestructure assemblages is vital to the seismic risk analysis of the region, and canprovide study cases for researching the interaction among neighboring faults andearthquake triggering.
     In this thesis, by analyzing and summarizing the rupture features of historicalearthquakes, four basins (Ganyanchi basin, Yinchuan basin, Hetao basin and Lingqiubasin) around the Ordos block, in which2or more active faults that (might) haveruptured in the same historical earthquake, were selected for detail research. Based onprevious data and image interpretation, tectonic landform, distribution of active faultsand structural assemblages of the four basins were analyzed. Furthermore,comparative researches of paleoearthquakes on the active faults in these basins weremade. Next, the features and distribution of earthquake ruptures related to historicalearthquakes and paleoearthquakes were explored. Then, the possibility and conditionsof the structural assemblages of these basins rupturing at the same time werediscussed. Finally, the behaviors in response to major earthquakes of these basins andthe relationship between the assemblage styles and seismic intensity were discussed.The following conclusions were drawn:
     1) The Ganyanchi basin, which is located in the Haiyuan fault in thesouthwestern edge of the Ordos block, is a typical structural assemblage of pull-apartbasins is with boundary strike-slip faults, boundary normal faults and intrabasinnewborn faults. By comparative research of the paleoearthquake on the boundarystrike-slip faults and intrabasin newborn faults, combining the data of residual surfacerupture associated with the1920AD M8.5earthquake,3response types of theGanyanchi basin were suggested.(i) When large earthquake similar to the1920ADevent occurred, two boundary strike-slip faults, boundary normal fault andintrabasinal newborn fault would rupture at the same time.(ii) When earthquake slightly smaller than the1920AD event occurred, only one boundary strike-slip faultwould rupture. Another boundary strike-slip fault would not rupture or rupture aftershort intervals and the intrabasin newborn fault might not rupture, or at least notrupture obviously at surface.(iii) In the basin area, earthquakes smaller than the aboveones could occur and rupture only at local segments along the intrabasin newbornfault, and boundary faults did not response.
     2) In the process of the extinction of the Ganyanchi pull-apart basin, a series ofpaleoearthquakes occurred, and larger earthquake similar to the1920AD eventamong these earthquakes might play a positive effect on this process. The growth ofthe intrabasin newborn fault may cause some smaller (moderate or strong)earthquakes and its model may be a progressive process propagating from thesouthern piedmont fault of Mount Huangjiawa to the northern piedmont fault of theNanhua and Xihua Mountains.
     3) The structural assemblage of the Yinchuan basin is made up of the boundarynormal faults controlling basin (the eastern piedmont fault of Mount Helan along thewestern edge and the Huang River fault along the eastern edge) and the intrabasinburied faults (Yinchuan fault and Luhuatai fault) are subparallel to each other.Geophysical exploration data reveal that at depth in the earth, the Yinchuan fault andLuhuatai fault converge with the eastern piedmont fault of the Mount Helan whichconverges with the Huang River fault at depth. Comparative research of main activefaults in the Yinchuan basin shows that the north segment of the eastern piedmontfault of the Mount Helan and the Yinchuan fault ruptured in the same earthquakesimilar to1739AD event. The recurrence interval of the southern segments of thesefaults is longer than the northern region, and the seismicity is characterized byjumping back and forth from the southern segment of Huang River fault and easternpiedmont fault of the Mount Helan.
     4) The main active faults in the Hetao basin include the Langshan-Seertengshanpiedmont fault, Wulashan piedmont fault and Daqingshan piedmont fault. These three right-stepped, oblique-arranged active faults on the front of the Yinshan Mountainsare boundary faults of three sub-basins respectively. Comparative research of the mainactive faults and the previous studies show that (i) the Daqingshan piedmont fault isthe causative fault for the849AD earthquake, and the7BC earthquake might occuron the Langshan piedmont fault.(ii) These active faults have relatively independentseismic activity, but the possibility that the Daqingshan piedmont fault and Wulashanpiedmont fault rupture in one same earthquake can never be completely dismissed.
     5) The Lingqiu basin is located in the south of the Jinbei extensional structurezone in the Shanxi fault-depression zone. In the basin, NE-NEE and NW-NNW faultsdeveloped. Combing the exploration of the main active faults, paleoseismic study, andthe case of1626AD M7earthquake, this work suggested that the Xianandi fault andHuashanhe fault constitute a conjugate causative structure assemblage, both willrupture when an earthquake occurs.
     6) Based on the above conclusions, the relationship between structuralassemblages and the seismic activity of basins:(i) The conjoining section of theintrabasin newborn fault and one boundary strike-slip fault with larger strike-slipdisplacement may be associated with the seismogenic location of large earthquakes,and the leading edge of the propagating intrabasin newborn fault may be thedeveloping location of moderately strong earthquakes.(ii) Structural assemblagedistributing in sub-parallel and intersecting in depth can produce large earthquake.(iii)The surface rupture scale of oblique-arranged active faults controlling two or morebasins (or sub-basins) respectively may be changeable.(iv) The seismicity of thebasin with intersected structural assemblage is obviously higher than the basindeveloping structures with single direction.
引文
Allen P A, Allen J R.2009. Basin analysis: principles and applications [M]. Wiley-Blackwell.
    Aochi H, Ide S.2011. Conceptual multi-scale dynamic rupture model for the2011off the Pacificcoast of Tohoku Earthquake [J]. Earth Planets and Space,63(7):761.
    Aydin A, Nur A.1982. Evolution of pull-apart basins and their scale independence [J]. Tectonics,1(1):91-105.
    Berger G, Doran P, Thomsen K J.2010. Single-grain and multigrain luminescence dating of on-iceand lake-bottom deposits at Lake Hoare, Taylor Valley, Antarctica [J]. QuaternaryGeochronology,5(6):679-690.
    Biswas S.2005. A review of structure and tectonics of Kutch basin, western India, with specialreference to earthquakes [J]. Current Science,88(10):1,592-591,600.
    Bufe C G, Harsh P W, Burford R O.1977. Steady-state seismic slip—A precise recurrence model[J]. Geophys. Res. Lett.,4(2):91-94.
    Burbank D W, Anderson R S.2011. Tectonic geomorphology [M].2. West Sussex:Wiley-Blackwell.
    Chorowicz J.1990. Dynamics of the different basin-types in the East African Rift [J]. Journal ofAfrican Earth Sciences (and the Middle East),10(1):271-282.
    Clayton L.1966. Tectonic depressions along the Hope fault, a transcurrent fault in northCanterbury, New Zealand [J]. N.Z. J. Geol. Geophys.,9(1-2):95-104.
    Cornell C A, Wu S-C, Winterstein S R, et al.1993. Seismic hazard induced by mechanicallyinteractive fault segments [J]. Bull. Seismol. Soc. Am.,83(2):436-449.
    Crone A J, Machette M N, Bonilla M G, et al.1987. Surface faulting accompanying the BorahPeak earthquake and segmentation of the Lost River fault, central Idaho [J]. Bull. Seismol.Soc. Am.,77(3):739-770.
    Deng Q, Wu D, Zhang P, et al.1986. Structure and deformational character of strike-slip faultzones [J]. Pure Appl. Geophys.,124(1):203-223.
    Duller G A.2006. Single grain optical dating of glacigenic deposits [J]. QuaternaryGeochronology,1(4):296-304.
    Finzi Y, Langer S.2012. Predicting rupture arrests, rupture jumps and cascading earthquakes [J]. J.Geophys. Res.,117: B12303.
    Freund R, Geologist L, Géologue L.1971. The Hope fault: a strike slip fault in New Zealand [M].New Zealand: Department of Scientific and Industrial Research.
    Haeussler P J, Bruhn R L, Pratt T L.2000. Potential seismic hazards and tectonics of the upperCook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation [J]. Geol.Soc. Am. Bull.,112(9):1414-1429.
    Harding T, Lowell J D.1979. Structural styles, their plate-tectonic habitats, and hydrocarbon trapsin petroleum provinces [J]. AAPG Bull.,63(7):1016-1058.
    Harris R A, Day S M.1999. Dynamic3D simulations of earthquakes on En Echelon Faults [J].Geophys. Res. Lett.,26(14):2089-2092.
    Hodgkinson K M, Stein R S, King G C.1996. The1954rainbow mountain-fairview peak-dixievalley earthquakes: a triggered normal faulting sequence [J]. J. Geophys. Res.,101(B11):25459-25425,25471.
    King G C, Stein R S, Lin J.1994. Static stress changes and the triggering of earthquakes [J]. Bull.Seismol. Soc. Am.,84(3):935-953.
    Kingston D, Dishroon C, Williams P.1983. Hydrocarbon plays and global basin classification [J].AAPG Bull.,67(12):2194-2198.
    Koide H, Bhattacharji S.1977. Geometric patterns of active strike-slip faults and their significanceas indicators for areas of energy release [J]. Energetics of Geological Processes: New York,Springer Verlag:46-66.
    Ku u.2009. Cross-basin faulting and extinction of pull-apart basins in the Sea of Marmara, NWTurkey [J]. Turkish J. Earth Sci,18(3):331-349.
    Liu-Zeng J, Klinger Y, Xu X, et al.2007. Millennial Recurrence of Large Earthquakes on theHaiyuan Fault near Songshan, Gansu Province, China [J]. Bull. Seismol. Soc. Am.,97(1B):14-34.
    Liu H.1986. Geodynamic scenario and structural styles of Mesozoic and Cenozoic basins inChina [J]. AAPG Bull.,70(4):377-395.
    Mann P, Hempton M R, Bradley D C, et al.1983. Development of pull-apart basins [J]. J. Geol.,91(5):529-554.
    Michetti A M, Brunamonte F, Serva L, et al.1996. Trench investigations of the1915Fucinoearthquake fault scapes (Abruzzo, central Italy): Geological evidence of large historicalevents [J]. J. Geophys. Res.,101(B3):5921-5936.
    Porter J, McCrossan R. Basin consanguinity in petroleum resource estimation. In: Haun JD, editor.Methods of Estimating the Volume of Undiscovered Oil and Gas Resources. Tulsa: TheAmerican Association of Petroleum Geologists;1975.
    Quennell A M.1958. The structural and geomorphic evolution of the Dead Sea rift [J]. QuarterlyJournal of the Geological Society,114(1-4):1-24.
    Rahe B, Ferrill D A, Morris A P.1998. Physical analog modeling of pull-apart basin evolution [J].Tectonophysics,285(1):21-40.
    Ramsey C B.2006. Radiocarbon calibration and analysis of stratigraphy; the OxCal program [J].Radiocarbon,37(2):425-430.
    Rodgers D A. Analysis of pull-apart basin development produced by en echelon strike-slip faults.In: Ballance PF, Reading HG, editors. Sedimentation in oblique-slip mobile zones. Tulsa:Special Publication International Association of Sedimentologists;1980, p.27-41.
    Schneider C L, Hummon C, Yeats R S, et al.1996. Structural evolution of the northern LosAngeles basin, California, based on growth strata [J]. Tectonics,15(2):341-355.
    Shimazaki K, Nakata T.1980. Time-predictable recurrence model for large earthquakes [J].Geophys. Res. Lett.,7(4):279-282.
    Stein R S, Barka A A, Dieterich J H.1997. Progressive failure on the North Anatolian fault since1939by earthquake stress triggering [J]. Geophys. J. Int.,128(3):594-604.
    Thomsen K J, Murray A, B tter-Jensen L, et al.2007. Determination of burial dose inincompletely bleached fluvial samples using single grains of quartz [J]. RadiationMeasurements,42(3):370-379.
    Yeats R, editor. Paleoseismology: State of the science in mid-1996. The Workshop ofPaleoseismology on30th IGC, Beijing;1996.
    Zhang P Z, Burchfiel B, Chen S F, et al.1989. Extinction of pull-apart basins [J]. Geology,17(9):814-817.
    Zhang Y Q, Vergely P, Mercier J.1995. Active faulting in and along the Qinling Range (China)inferred from spot imagery analysis and extrusion tectonics of south China [J].Tectonophysics,243(1–2):69-95.
    Zhang Y Q, Mercier J L, Vergély P.1998. Extension in the graben systems around the Ordos(China), and its contribution to the extrusion tectonics of south China with respect toGobi-Mongolia [J]. Tectonophysics,285(1–2):41-75.
    Zilberman E, Amit R, Heimann A, et al.2000. Changes in Holocene Paleoseismic activity in theHula pull-apart basin, Dead Sea Rift, northern Israel [J]. Tectonophysics,321(2):237-252.
    毕丽思,何宏林,徐岳仁,等.2011.基于高分辨率DEM的裂点序列提取和古地震序列的识别——以霍山山前断裂为实验区[J].地震地质,33(4):963-977.
    曹刚.2001.内蒙古地震研究[M].北京:地震出版社.3-5.
    柴炽章,廖玉华,张文孝,等.2001.灵武断裂晚第四纪古地震及其破裂特征[J].地震地质,23(1):15-23.
    柴炽章,孟广魁,马贵仁,等.2011.银川市活动断层探测与地震危险性评价[A].见:徐锡伟编.中国城市活动断层探测丛书.北京:科学出版社.1-378.
    陈发景,汪新文.1996.盆地构造分析与油气勘探[J].勘探家:石油与天然气,1(1):25-28.
    陈国顺,黄振昌,郭树卿.1993.公元512年山西省北部7.5级地震有关问题的探讨[J].地震研究,16(2):199-206.
    陈立春.2002.河套断陷带的古地震,强震复发规律和未来可能强震地点[D]:[硕士学位论文].北京:中国地震局地质研究所.1-80.
    陈社发,邓起东.1985.南,西华山断裂带中拉分盆地的构造组合及其演化模式[J].现代地壳运动研究(1).北京:地震出版社:98-106.
    陈小斌,臧绍先,刘永岗,等.2005.鄂尔多斯地块的现今水平运动状态及其与周缘地块的相互作用[J].中国科学院研究生院学报,22(3):309-314.
    程绍平,杨桂枝.2002.山西中条山断裂带的晚第四纪分段模型[J].地震地质,24(3):289-302.
    崔黎明,王萍,潘祖寿,等.1990.贺兰山东麓冲沟裂点溯原迁移速率及其形成年龄的讨论[J].地震地质,12(1):87-96.
    邓起东,陈立春,冉勇康.2004.活动构造定量研究与应用[J].地学前缘,11(4):383-392.
    邓起东,程绍平,闵伟,等.1999.鄂尔多斯块体新生代构造活动和动力学的讨论[J].地质力学学报,5(3):13-21.
    邓起东,冉勇康,杨晓平, et al.2007.中国活动构造图(1:400万)[M].北京:地震出版社.
    邓起东,汪一鹏,廖玉华,等.1984.断层崖崩积楔及贺兰山山前断裂全新世活动历史[J].科学通报,29(9):557-560.
    邓起东,王克鲁,汪一鹏,等.1973.山西隆起区断陷地震带地震地质条件及地震发展趋势概述[J].地质科学,1:37-47.
    邓起东,尤惠川.1985.断层崖研究与地震危险性估计:以贺兰山东麓断层崖为例[J].西北地震学报,7(1):30-37.
    邓起东,张裕明,许桂林,等.1979.中国构造应力场特征及其与板块运动的关系[J].地震地质,1(1):11-22.
    邓起东.1984.断层性状,盆地类型及其形成机制[J].地震科学研究,(1-6)连载:(1):59-64;(52):57-64;(53):56-64;(54):58-64;(55):58-64;(56):51-59.
    丁国瑜.1982.古地震标志问题[A].见:国家地震局地质研究所编.中国活动断裂.北京:地震出版社.276-281.
    丁学文,程新源.1999.公元512年山西省北部7.5级地震发震断层初探[J].地震研究,22(4):390-396.
    窦素芹,于慎谔,刘光勋.1995.系舟山山前活动断裂带的几何结构及其活动性[A].见:活动断裂研究(4).北京:地震出版社.104-115.
    杜鹏,柴炽章,廖玉华,等.2009.贺兰山东麓断裂南段套门沟-榆树沟段全新世活动与古地震[J].地震地质,31(2):256-264.
    杜兴信,张春生.1992.鄂尔多斯周缘地震带地震活动的分期和相关分析[J].地震研究,15(2):135-135.
    范俊喜.2002.鄂尔多斯地块运动特征研究[D]:[博士学位论文].北京:中国地震局地质研究所.1-129.
    方盛明,赵成彬,柴炽章,等.2009.银川断陷盆地地壳结构与构造的地震学证据[J].地球物理学报,52(7):1768-1775.
    方仲景,程绍平,冉勇康.1993.延怀盆岭构造及其晚第四纪断裂运动的某些特征[J].地球物理学进展,8(4):265-266.
    冯希杰,李晓妮,任隽,等.2008.渭河断裂深,中,浅和近地表显示[J].地震地质,30(1):264-272.
    顾功叙,林庭煌,时振梁.1983.中国地震目录(公元前1831年~公元1969年)[M].北京:科学出版社.1-894.
    顾群,孙洁,史书林,等.1980.华北,西北一些地区地壳和上地幔内高导层[J].地震地质,2(2):21-29.
    郭增建.1957.1556年1月23日关中大地震[J].地球物理学报,6(1):59-68.
    国家地震局《鄂尔多斯周缘活动断裂系》课题组.1988.鄂尔多斯周缘活动断裂系[M].北京:地震出版社.1-333.
    国家地震局地质研究所.1979.中华人民共和国地震构造图(1:400万)及说明书[M].北京:地图出版社.1-37.
    国家地震局地质研究所,宁夏回族自治区地震局.1990a.海原活动断裂带[M].北京:地震出版社.
    国家地震局地质研究所,宁夏回族自治区地震局.1990b.海原活动断裂带地质图.北京:地震出版社.
    国家地震局兰州地震研究所,宁夏回族自治区地震队.1980.一九二零年海原大地震[M].北京:地震出版社.
    国家地震局兰州地震研究所电磁测深组.1976.中国南北地震带北段地壳和上地幔的电性特征[J].地球物理学报,19(1):28-34.
    国家地震局震害防御司.1995.中国历史强震目录(公元前23世纪--公元1911年)[M].北京:地震出版社.
    韩恒悦,易学发.1982.渭河新生代断陷盆地与华县大地震[A].见:中国地震局地质研究所编.中国活动断裂.北京:地震出版社.
    韩竹军,董绍鹏,谢富仁,等.2009.南北地震带北部5次(1561~1920年)M≥7级地震触发关系研究[J].地球物理学报,51(6):1776-1784.
    侯建军.1985.1556年陕西省华县大震的地震地质条件[J].西北地震学报,7(1):66-74.
    IGCP第206项中国工作组.1989.中国活断层图集[M].北京:地震出版社.23-52.
    贾宝卿,武烈.1986.公元512年山西北部7.5级强震的震中位置商榷[J].华北地震科学,1:007.
    江娃利,邓起东,徐锡伟,等.2004.1303年山西洪洞8级地震地表破裂带[J].地震学报,26(4):355-362.
    江娃利,侯治华,肖振敏,等.2000.北京平原夏垫断裂齐心庄探槽古地震事件分析[J].地震地质,22(4):413-422.
    江娃利,肖振敏,王焕贞,等.2001.内蒙大青山山前活动断裂带的地震破裂分段特征[J].地震地质,23(1):24-34.
    江娃利,肖振敏,谢新生.2000.鄂尔多斯块体周边正倾滑活动断裂历史强震地表破裂分段[J].地震学报,22(5):517-526.
    江娃利.2002.内蒙狼山-色尔腾山山前活动断裂古地震事件识别及同震垂直位移[A].见:国家地震局地壳应力研究所编.地壳构造与地壳应力文集(15).北京:地震出版社.45-52.
    江娃利,谢新生,王瑞,等.2004.山西断陷系交城断裂全新世古地震活动初步研究[J].地震研究,27(2):184-190.
    雷姚琪,张安良.1985.关于渭河盆地的活动断裂、断裂深度及孕震的断裂深部展布条件[J].西北地震学报,(S1):75-80.
    李克,吴卫民,杨发.1994.大青山山前活动断裂分段性研究[A].见:中国地震学会地震地质专业委员会编.中国活动断层研究.北京:地震出版社.102-113.
    李孟銮,万自成.1984.1739年平罗8.0级地震的发震构造及其孕育特征[J].地震地质,6(3):23-28.
    李树德.1997.中国东部山西地堑系的形成机制及构造地貌,地震探讨[J].北京大学学报:自然科学版,33(4):467-474.
    李永善,韩恒悦,张名哲,等.1982.华县大地震震害与古地震遗迹探讨[A].见:史前地震与第四纪地质文集.西安:陕西省科学技术出版社.
    廖玉华,潘祖寿.1982.宁夏红果子沟长城错动新知[J].地震地质,4(2):77-79.
    刘光勋,肖振敏.山西地堑系及其地震构造特征.第二届全国地质构造学术会议论文选集.1982.
    刘光勋.1979.临汾盆地构造体系与地震[M].北京:地震出版社.
    刘和甫.1993.沉积盆地地球动力学分类及构造样式分析[J].地球科学:中国地质大学学报,18(6):699-724.
    刘正荣,孟繁兴.1975.以临汾盆地为例论用考古方法研究现代构造运动与地震的关系[J].地球物理学报,18(2):127-136.
    卢海峰,李玉森,马保起,等.2009.山西断陷带北部北东东向断裂带晚第四纪活动性探讨[J].现代地质,23(3):440-446.
    卢演俦,丁国瑜.1986.华北地区地块相对运动几何学的初步研究[M].天津:天津科学技术出版社.18-35.
    马瑾,马胜利,刘力强,等.2000.交叉断层的交替活动与块体运动的实验研究[J].地震地质,22(1):65-73.
    马瑾,马胜利,刘力强,等.2002.断层相互作用型式的实脸研究[J].自然科学进展,12(5):503-508.
    马瑾,张渤涛,许秀琴,等.1983.断层交汇区附近的变形特点与声发射特点的实验研究[J].地震学报,5(2):195-206.
    马胜利,邓志辉,马文涛,等.1995.雁列式断层变形过程中物理场演化的实验研究(一)、(二)[J].地震地质,17(4):327-341.
    马兴全,李彦宝,冉勇康,等.2013.灵丘盆地主要活动断裂和1626灵丘地震发震构造[J].地震地震,待刊.
    马杏垣,刘和甫,王维襄,等.1983.中国东部中,新生代裂陷作用和伸展构造[J].地质学报,57(1):22-32.
    孟宪梁,闫风忠,侯庭爱,等.1993.山西断陷带主要活动断裂特征[A].见:马宗晋编.山西临汾地震研究与系统减灾.北京:地震出版社.
    闵伟,张培震,邓起东,等.2001.海原活动断裂带破裂行为特征研究[J].地质论评,47(001):75-81.
    闵伟,张培震,邓起东.2000.区域古地震复发行为的初步研究[J].地震学报,22(2):163-170.
    聂宗笙,江娃利,吴卫民.1996.内蒙古大青山山前断裂带西段全新世古地震的大探槽研究[A].见:中国地震局地质研究所编.活动断裂研究(5).北京:地震出版社.125-135.
    聂宗笙,吴卫民,马保起.2010.公元849年内蒙古包头东地震地表破裂带及地震参数讨论[J].地震学报,32(1):94-107.
    彭建兵.1992.渭河断裂带的构造演化与地震活动[J].地震地质,14(2):113-119.
    彭作林,郑建京.1995.中国主要沉积盆地分类[J].沉积学报,13(2):150-159.
    冉勇康,陈立春,杨晓平,等.2003.鄂尔多斯地块北缘主要活动断裂晚第四纪强震复发特征[J].中国科学: D辑,33(增刊):135-143.
    冉勇康,邓起东.1998.海原断裂的古地震及特征地震破裂的分级性讨论[J].第四纪研究,18(3):271-278.
    冉勇康,张培震,陈立春.2003.河套断陷带大青山山前断裂晚第四纪古地震完整性研究[J].地学前缘,10(特刊):207-216.
    冉勇康,张培震,胡博,等.2002.大青山山前断裂呼和浩特段晚第四纪古地震活动历史[J].中国地震,18(1):15-27.
    冉勇康.1997.我国几个典型地点的古地震细研究和大地震重复行为探讨[D]:[博士学位论文].北京:国家地震局地质研究所.
    山西省地方志编纂委员会.1991.山西通志·地震志[M].北京:中华书局.1-346.
    申屠炳明,徐煌坚,汪一鹏.1990.韩城断裂的活动特征及断裂带古地震遗迹的初步研究[J][J].华北地震科学,8(1):1-10.
    申旭辉,汪一鹏.1994.太白维山山前断裂活动特征的初步研究[J].华北地震科学,12(3):17-26.
    申旭辉,汪一鹏.1995.1626年灵丘地震烈度分布特征与阻震构造初步讨论[J].华北地震科学,13(1):9-16.
    申旭辉.1994.灵丘盆地及其邻区晚第四纪断裂活动与强震研究[D]:[硕士学位论文].北京:中国地震局地质研究所.1-102.
    师亚芹,李晋,冯希杰,等.2007.渭河断裂带古地震研究[J].地震地质,29(3):607-616.
    宋方敏,朱世龙,汪一鹏,等.1983.1920年海原地震中的最大水平位移及西华山北缘断裂地震重复率的估计[J].地震地质,5(4):29-38.
    苏刚.1984.以运动地块为单元的区域地震活动研究——鄂尔多斯地块和它的地震活动[J].西北地震学报,6(2):1-9.
    苏宗正.1988.山西断陷带地震活动的新构造背景[J].山西地震,4:2-6.
    孙加林.1985.鄂尔多斯块体北部边缘发生强震的危险性[J].西北地震学报,(s1):13-23.
    汪一鹏,宋方敏,廖玉华.1986.宁夏北部地震地质的若干特征兼论青藏高原对华北地壳应力场的影响[A].见:现代地壳运动研究.北京:地震出版社.7-18.
    王景明.1980.1556年陕西华县大地震的地面破裂[J].地震学报,2(4):430-439.
    王挺梅,郑炳华,李新元,等.1993.1695年临汾73/4级地震的地震构造研究[A].见:马宗晋编.山西临汾地震研究与系统减灾.北京:地震出版社.172-198.
    闻学泽.1999.中国大陆活动断裂的段破裂地展复发行为[J].地震学报,21(4):411-418.
    翁文灏.1922.民国九年十二月十六日甘肃的地震[J].科学,7(2):105-114.
    吴大宁,邓起东.1985.滇西北裂陷区的基本特征及其形成机制[A].见:现代地壳运动研究(1).北京:地震出版社.
    吴卫民,李克,马保起,等.1995.大青山山前断裂带大型组合探槽的全新世古地震研究[A].见:中国地震局地质研究所编.活动断裂研究(4).北京:地震出版社.123-132.
    武烈,贾宝卿,许银贵,等.1987.山西境内七次强震及有关几个问题的讨论[J].华北地震科学,2:001.
    肖振敏,江娃利.1998.山西断陷带历史强震及全新世古地震地表破裂特征[A].见:中国地震局地壳应力研究所编.地壳构造与地壳应力文集.北京:地震出版社.1-12.
    谢新生,江娃利,王焕贞,等.2004.山西太谷断裂带全新世活动及其与1303年洪洞8级地震的关系[J].地震学报,26(3):281-293.
    谢新生,赵晋泉,江娃利,等.2007.山西交城断裂带西张探槽全新世古地震研究[J].地震地质,29(4):744-755.
    谢毓寿,蔡美彪.1987.中国地震历史资料汇编[M].北京:科学出版社.
    谢毓寿.1988.地震烈度[M].北京:地震出版社.
    徐伟进,高孟潭,任雪梅,等.2008.鄂尔多斯地块区内地震活动特征的初步研究[J].中国地震,24(4):388-398.
    徐锡伟,邓起东,董瑞树,等.1992.山西地堑系强震的活动规律和危险区段的研究[J].地震地质,14(4):305-316.
    徐锡伟,邓起东.1990.山西霍山山前断裂晚第四纪活动特征和1303年洪洞8级地震[J].地震地质,12(1).
    徐锡伟,闻学泽,叶建青,等.2008.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,30(3):597-629.
    徐锡伟,吴卫民,张先康,等.2002.首都圈地区地壳最新构造变动与地震[M].北京:科学出版社.1-376.
    徐锡伟.1989.山西地堑系的新构造活动特征及其形成机制[D]:[硕士学位论文].北京:国家地震局地质研究所.
    许桂林,马保起,江娃利.1998.山西交城断裂带第四纪活动习性及其分段特征[A].见:地壳构造与地壳应力文集.北京:地震出版社.13-21.
    许建红,谢新生,孙昌斌.2011.山西罗云山山前断裂带中段龙祠-峪口全新世活动证据[J].地震地质,33(4):855-864.
    薛宏运,鄢家全.1984.鄂尔多斯地块周围的现代地壳应力场[J].地球物理学报,27(2):144-152.
    杨晓平,冉勇康,胡博,等.2002.内蒙古色尔腾山山前断裂(乌旬蒙口-东风村段)的断层活动与古地震事件[J].中国地震,18(2):127-140.
    杨晓平,冉勇康,胡博,等.2003.内蒙古色尔腾山山前断裂带乌加河段古地震活动[J].地震学报,25(1):62-71.
    张培震,闵伟,邓起东,等.2003.海原活动断裂带的古地震与强震复发规律[J].中国科学:D辑,33(8):705-713.
    张培震,徐锡伟,闻学泽,等.2008.2008年汶川8.0级地震发震断裂的滑动速率,复发周期和构造成因[J].地球物理学报,51(4):1066-1073.
    张秋文.1999.大陆强展复发模型与断裂间相互作用研究及其在地震预测中的应用[D]:[博士学位论文].北京:中国地震局地质研究所.
    张少泉,武利均,郭建明,等.1985.中国西部地区门源—平凉—渭南地震测深剖面资料的分析解释[J].地球物理学报,28(05):460-472.
    张文佑,张抗,赵永贵,等.1983.华北断块区中,新生代地质构造特征及岩石圈动力学模型[J].地质学报,57(1):33-41.
    张之立,王成宝,田华.多种断裂系扩展过程的统一理论.见:地震科学联合基金会编.地震科学整体观研究.北京:地震出版社;1993.
    中国科学院地球物理研究所.1974.晋中南地区地壳结构的初步研究[J].地球物理学报,17(3):186-199.
    中国科学院地球物理研究所.1974.临汾盆地地壳界面的反射波和地壳结构[J].地球物理学报,17(4):239-246.
    中央地震工作小组办公室.1971.中国地震目录[M].北京:科学出版社.
    周本刚.2004.论发震构造特性在潜在震源区参数确定中的应用[J].地震地质,26(4):750-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700