用户名: 密码: 验证码:
地震相关快速沉积物释光测年研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古地震的年代确定是重建强震活动历史、预测未来地震趋势的重要依据,对于地震学研究具有重要的理论价值和实践意义。目前用于测定古地震事件年龄的方法和技术多达十余种,释光方法是其中常用的一种(Noller et al.,2000)。
     释光测年方法经过二十多年的发展,已形成了多种适用于几十年至十万年的沉积物年龄测定技术,通常可获得与独立年龄相吻合的结果(Murry and Olley,2002)。然而,这些技术在地震相关堆积物中的应用,尤其在干旱-半干旱山区与古地震相关的快速混杂堆积物年龄测定的应用,仍然存在一些急需解决的问题。在干旱-半干旱山区地震伴生的沉积物多数为近源快速混杂堆积,岩性不均一,在堆积过程中石英、长石等矿物颗粒的释光信号的回零程度和对剂量响应的灵敏度都相对复杂。此外,这类快速混合堆积物的环境剂量率也比较难于准确测定。针对上述问题,我们选择汶川地震和新疆帕米尔北缘乌恰地震破裂带,开展了现代和古地震混杂堆积物的光释光年龄测定的研究,主要内容包括:(1)地震混杂堆积物中石英、长石颗粒光晒退程度,即光释光信号回零程度及其不均匀性和不充分性的观测;(2)混杂堆积物中单颗粒石英等效剂量(De)和样品等效剂量(Db)测定;(3)应用石英颗粒小测片SAR(单测片再生剂量)技术和狭义“SGC”(狭义的“综合生长曲线,Standardised Growth Curve”,文中被称作小测片SGC技术)技术测定混杂堆积物的光释光等效剂量;(4)进行混杂堆积物石英颗粒光释光等效剂量(De)的各种测定技术(单颗粒技术、小测片技术、常规大测片SAR和SMAR(简单多测片剂量再生技术))可行性和可靠性的对比研究;(5)比较不同技术(如高纯锗Gamma谱仪、便携式Gamma谱仪、就地埋藏剂量片、厚源Apha计数仪、以及ICP-MS放射性核素含量测定等)测定混杂堆积物环境剂量率的可行性和可靠性。取得了以下初步研究成果:
     1)现代地震相关各种沉积物释光信号回零程度的检验
     对2008年汶川地震相关的堰塞湖堆积物、地震前古地面沉积物样品中不同矿物、同一矿物不同粒径颗粒、不同测量方法所获得残留等效剂量值的对比研究结果表明:a)细颗粒(4-11μm)石英测片光释光信号足够强能满足释光测年要求,而粗颗粒(90-250μm)石英仅有~1.3%颗粒数发光信号达到释光测年要求,暗的粗颗粒石英导致测定的De的不确定性较大;b)震前古地面沉积物样品无论是碎屑石英还是碎屑长石,其释光信号的残留等效剂量(De)仅为0.2Gy,对于百年或者千年尺度以上的地震相关沉积物测年的影响几乎可以忽略不计,此类样品适合于古地震释光测年研究;c)现代地震相关的堰塞湖沉积物样品释光信号残留值与所测碎屑矿物种类、颗粒大小、所用的测量方法有关。细颗粒长石残留De值高达44~103Gy,细颗粒石英残留De值为1.8~11.2Gy,说明长石的光释光信号比石英的更难被晒退。单颗粒石英残留De值0.1~0.8Gy,低于细颗粒石英。因此,当进行百年或者千年尺度的古地震释光测年时,一定要慎重选择测量方法和流程,尽量通过单颗粒光释光De测量,分辩出埋藏前光晒退比较彻底的颗粒组分。
     2)单颗粒仪器实验参数检验与小测片标准生长曲线(SGC)方法的建立
     在对本实验室Ris-2释光单颗粒测量仪机载Beta放射源剂量率的标定、仪器重复性能实验、放射源表面一致性检验和单颗粒石英有效颗粒数分析的基础上,应用石英颗粒大测片SAR技术建立各个样品的标准生长曲线(SGC),再用石英颗粒小测片SAR技术获得De值(小测片SGC方法)。结果表明:a)本实验室Risoe-2释光测量仪机载beta放射源粗颗粒石英辐照剂量率是细颗粒石英的92%,粗颗粒石英大测片的辐照剂量率比小测片的低10%以上,单颗粒石英辐照剂量率为0.1104Gy/s。使用释光测量仪之前,需要对每台仪器不同粒径,以及大、小测片的辐照剂量率进行准确的标定。b)本实验室Ris-2单颗粒测量仪重复测量的不确定性约为9%,由机载Beta放射源表面不完全均匀导致等效剂量的不确定性为11.2%,在进行单颗粒数据处理前需要对放射源的不均一性进行校正。c)对埋藏前光晒退不均匀样品进行单颗粒测量时,至少测量40个有效颗粒进行统计分析,所计算的样品De值才具有代表性。d)对于各个样品采用完全光晒退的粗颗粒石英大测片,应用SAR技术建立标准生长曲线(SGC),根据1-2个测片单颗粒测量确定粗颗粒石英小测片的大小,尽量每个小测片的释光信号仅来自1-2个发光石英颗粒,结合小测片SAR技术获得多个“单颗粒”的De值,可以大大节省测量时间,提高测量工作效率。
     3)沉积物不同环境剂量率测量方法的对比
     对新购置和安装的高纯锗Gamma谱仪、便携式NaI Gamma谱仪和AL_2O_3:C剂量片进行了标定,对比同一个样品不同方法的环境剂量率的测量结果,获得以下初步认识:a)本实验室ORTEC GEM70P4-95P型高纯锗Gamma谱仪的本底极低,当测量时间达到8个小时后,核素含量不再变化,即可满足测量要求。选取的片麻岩、片岩、花岗岩及第四纪沉积物共12个样品,采用高纯锗Gamma谱仪测定的U、Th和K含量与澳大利亚ICP-MS方法测定结果对比显示两种方法测定的U和Th含量在10%的误差范围内一致,K含量在6%的误差内一致,说明本实验室高纯锗Gamma谱仪标定结果是可靠的。对2个封盒的第四纪松散沉积物样品放置不同时间后测量,结果在1σ误差范围内一致,说明仪器具有较好的稳定性和可重复性。b)高纯锗Gamma谱仪、便携式Gamma谱仪、就地埋藏剂量片、厚源Apha计数、以及ICP-MS放射性核素含量测定等多种方法对比测量结果显示,对于U/Th放射性核素衰变处于平衡体系的、周围30cm内岩性相对均一的样品,建议应用厚源Apha技术技术和K含量测定。对于样品周围30cm内岩性比较混杂的样品,优先选择高纯锗Gamma谱仪与AL_2O_3剂量片或者便携式NaI(TI)Gamma谱仪相结合的测量方法。高纯锗gamma谱仪可以检测长周期放射性核素衰变链的放射性平衡性,测量用的样品量较多更具有代表性,可同时测量多种核素、测量效率高。AL_2O_3剂量片或者便携式NaI(TI)Gamma谱仪野外就地测量可以克服周围30cm岩性不均一导致γ贡献的不确定性。
     4)新疆1985年乌恰地震地表破裂带古地震发生时间:
     通过对新疆乌恰地震地表破裂带WQWT6探槽中12个样品不同光释光测量方法的对比研究表明:a)探槽样品中碎屑石英颗粒具有石英矿物典型的TL峰,其光释光信号以快速组分为主,回授对等效剂量影响可以忽略不计,适合采用SAR法光释光测年;b)样品中石英颗粒特别是细颗粒在埋藏前存在严重的曝光不彻底现象,能用来光释光测年的单颗粒石英矿物颗粒比例仅为1.5-3.6%,不同颗粒的释光灵敏度差异较大,单颗粒石英测定值的离散度(测量仪器和石英本身释光特性差异所引入的离散度)从4%变化到20%;c)细颗粒石英大测片、粗颗粒石英大测片的SAR光释光方法都得到高估的年龄结果,不适合此类地震相关的近源快速堆积物的光释光测年;d)探槽剖面揭露出包括1985年Ms7.4级地震在内的4次强震事件,根据初步的单颗粒石英释光测年结果,前三次事件发生时间分别为事件E1发生在5.2ka之前,事件E2发生在3.8ka和4.2ka之间,事件E3发生在2.8ka之前。前三次古地震的复发周期约为1.0ka左右。古地震事件E3之后发生了强烈剥蚀作用,致使该探槽可能丢失了2.8ka至1985年期间的古地震记录。
     5)对地震相关沉积物释光测年方法的建议
     通过上述研究,对于应用释光测年技术进行地震相关沉积物测年提出如图A和图B的流程建议。如果样品为快速混杂堆积,周围30cm内岩性不够均一,应该采用室内高精度的高纯锗Gamma谱仪和便携式gamma谱仪就地测量相结合的方法来测量环境剂量率。
Paleoearthquake dating can provide important evidence for reconstruction of earthquakehistory and prediction of earthquakes in the future. At present, there are more than ten datingmethods and techniques to determine the ages of paleoearthquake events, among which theluminescence method is one of the most commonly used dating methods.
     With development in the last two decades or more, luminescence dating has become atechnological system including a variety of methods suitable for dating sediments of ages fromseveral tens to100thousands years, usually yielding age results consistent with the independentage. However, some problems remain to be solved in technology for its application to depositsrelated with earthquakes, especially in semiarid and arid mountainous regions. Because in theseareas the sediments associated with earthquakes are mostly near-source mixed deposits thatwere rapidly settled with heterogeneous lithologiy. So the luminescence signal zero degree andthe dose response sensitivity of the quartz and feldspar in these sediments are relativelycomplex. In addition, the environmental dose rate of the rapid mixed deposition is difficult toaccurately determine. To solve these problems, this work makes a study on optically stimulatedluminescence dating of sediments related to the2008year Wenchuan earthquake and Wuqiaearthquake rupture on the northern margin of the Pamirs in Xinjiang. The main contents include:(1) The light bleaching degree and inadequate nature of the quartz and feldspar related to mixeddeposits;(2) How to determine the equivalent dose of the quartz single grain and the bureddose of the samples,(3) application of SAR (single-aliquot regenerative-dose) of quartztechnology and narrow sense "SGC"(in the narrow sense " Standardised Growth Curve")technique to determine the equivalent dose of the mixed sediment;(4) Whether comparativestudy of De determination in single grain OSL technology, small aliquot and conventional largealuquot SAR and SMAR methods are feasible and reliable for rapidly and mixed sediment;(5)Comparison of the feasibility and reliability of the variety methods (such as ORTECGEM70P4-95P type Ge gamma ray spectrometer system, NaI gamma system, thick sourceApha counter, AL_2O_3:C chips buried, ICP-MS determination the radionuclides content and soon) to determine the environmental dose rate of the mixed sediment. The primary results are summarized below.
     1) Luminescence signal reset to zero degree for sediments related modern earthquakes:
     This work makes a contrastive study of different minerals, different grain sizes of the samemineral and measured protocols for the sediments related with the2008Wenchuan great event,and comes to the following conclusions:
     a) Fine quartz (4-11μm) grains have enough luminescence signals and suitable forluminescence dating. But only~1.3%of the coarse quartz(90-250μm) grains have enoughluminescence sensitivity, while dim grains can lead to a greater uncertainty of single De.
     b) The earth's surface deposits before the earthquake has minimum equivalent dose(0.2Gy)both for fine grain quartz and fine grain feldspar, bleached relatively fully before buried, so theearth's surface deposits can be used to constrain the time of seismic events.
     c) The residual dose of remaining samples is found to vary with mineralogy, grain size,and the methods used for the De determination, suggesting that they are both poorly andheterogeneously bleached. The residual dose of the fine feldspar is as high as44~103Gy, butthe fine quartz is about1.8~11.2Gy. It shows that the fine feldspar is more difficult to bebleached than fine quartz. The results of the single grain quartz are about0.1-11.2Gy, smallerthan fine grain quartz. Using the single grain quartz luminescence dating method can separatecompletely bleached quartz from unbleached grains. It is recommended to take caution wheninterpreting ages derived from optical dating for paleoearthquakes that are hundreds tothousands of years old.
     2) Parameter test of single grain apparatus and establishment of small aliquot SGC
     a) The beta radioactive source of coarse quartz irradiation dose rate is92%of the finequartz, and coarse-grained large aliquot quartz irradiation dose rate is10%lower than the smallaliquot quartz. Before using luminescence measuring instrument, it needs to calibrate theirradiation dose rate of the different aliquote size and grain size.
     b) The uncertainty of the Risoe-2single grain instrument reproducibility is about9%.
     c) The~(90)Sr/~(90)Y beta sources used to irradiate all100grains simultaneously on a sampledisc do not always produce uniform irradiation to all grains. The uncertainty of the De is11.2%due to the nonuniform source surface. The irradiation source dose should be corrected beforecalculating the equivalent dose.
     d) When using the single grain measured the equivalent dose of the uneven light bleachingsamples, it is only representative at least40Des.
     e) The method can use large quartz aliquot to establish standard growth curve (SGC), andsmall quartz aliquot to measure the De can save time and improve work efficiency.
     3) Measure methods of the environmental dose rate:
     By calibrating the Ge gamma ray spectrometer system, NaI gamma system and AL_2O_3:Cchips dose rate, and comparing different methods of the same samples, this work attains someconclusions:
     a) The ORTEC GEM70P4-95P type Ge gamma ray spectrometer system takes on the lowbackground, and when measuring the time reaches8hours, radionuclide content does not change,which can meet the measurement requirement. The sample measure results of the calibrated Gegamma ray spectrometer system show that the calibration is exact and this system has goodstability and reduplication. The Ge gamma ray spectrometer system can measure more nuclidesat the same time. It can save measure time and test whether radioactive decay is in the balancesystem.
     b) AL_2O_3:C chips that the lab bought have enough sensitivity, but dose responsecharacteristics are different. The AL_2O_3:C dose rate of the Risoe-2instrument is11.19±1.37μGy/s.
     c) Comparing results of the different environment dose rate measured methods indicatesthat they are consistent and suitable for the relatively samples with uniform lithology, and thiswork suggests to use the thick source Apha technology and K content measure method. For themixed sediments, it is better to choose the Ge gamma ray spectrometer system and AL_2O_3:C orNaI(TI)gamma system to avoid lithologic heterogeneity that can lead to around30cm γcontribution to the uncertainty.
     4) The ages of the paleoearthquakes on the1985Wiqia earthquake surface rupture zone
     By researching the WQWT6trench samples related to the1985Wuqia earthquake, thiswork attains such conclusion:
     a) The quartz of the trench samples have typical TL peak, the fast component of OSLsignals and ignored recuperation. So they are suited to use SAR or SMAR protocol.
     b) The quartz of the samples are not completely bleached. The residual doses are very high. The proportion of grains in a sample having a detectable OSL signal varies from one sample tothe other. Only1.5-3.6%of the single quartz grains from the trench samples can be used forOSL dating. Within a single sample there may be a large variation in the brightness of the OSLsignal. The uncertainty in the measurement of De is from4%to20%termed ‘intrinsic’. Theyare related to experimental and instrumental causes of scatters in the De.
     c) The large aliquots of the fine grain quartz and coarse-grained quartz OSL ages areoverestimated. This kind large aliquots is not suitable for the rapidly accumulated deposisrelated with earthquakes.
     d) This work obtains ten good single grain ages to analyze occurrence times of the events.The four events exposed in the trench might have happened at~5.2ka,3.8~4.2ka,~2.8ka,1985year, respectively. The paleoearthquake recurrence interval is about1.0ka.
     5) Some suggestions for the luminescence dating method to earthquake related sediments:
     Through the above research, this thesis proposes some suggestions for the luminescencedating procedures to the earthquake related sediments as shown in figure A and figure B. If thesample is from rapidly settled and mixed deposits, the lithology of the sample in a30cm rangeis not uniform, it is better to use the Ge gamma ray spectrometer system or NaI(TI)gammasystem to measure environmental dose rates.
引文
1.陈杰,卢演俦,尹功明等.1996.甘肃玉门地区第四纪晚期构造阶地的红外释光测年.高校地质学报,4:31-44.
    2.陈杰,李涛,李文巧等.2011.帕米尔构造结及邻区的晚新生代构造与现今变形.地震地质,33(2):241-259.
    3.冯先岳,杨章,栾超群等.1986.新疆乌恰地震.中国地震,2(1):56-60.
    4.冯先岳,栾超群,李军等.1987.卡兹克阿尔特段磊古地震研究.内陆地震,1(3):231-239.
    5.冯先岳.1997.新疆古地震.乌鲁木齐:新疆科技卫生出版社.
    6.李涛.2012.帕米尔前缘逆冲推覆系活动断层和活动褶皱作用.博士学位论文.中国地震局地质研究所.
    7.马胜利,计风桔.1992.摩擦滑动对石英和方解石热释光性质的影响.地震地质,14(4):341-349.
    8.谭金波,徐春长.1987.检验锗谱仪性能的实验方法.核电子学与探测技术,7(2):81–87.
    9.王旭龙,卢演俦,李晓妮.2005b.细颗粒石英光释光测年:简单多片再生法.地震地质,27(4):383-387.
    10.王维达,1997.中国热释光与电子自旋共振测定年代学研究.北京:中国计量出版社.
    11.王强.2006.高纯锗能谱仪在铀矿地质试样分析中的应用.西北铀矿地质,32(2):60–64.
    12.王同利2005. Daybreak厚源α-计数仪的标定及测量影响因素的初步研究.地震地质,27(4):633-644
    13.尹功明,徐锡伟,孙瑛杰等.1997a.河北阳原六棱山北麓断裂古地震年代学的初步研究.中国地震,13:18-26.
    14.尹金辉,陈杰,郑勇刚等.2001.卡兹特阿尔特断裂带活动特征.中国地震,17(2):221-230.
    15.杨会丽.2010.2008年汶川地震相关沉积物释光测年研究.硕士学位论文.中国地震局地质研究所.
    16.赵华, Prescott,J.R.,卢演俦.2001.北京延庆断层崩积物记录的古地震事件释光测年研究.中国地震,17(2):176-186.
    17.赵华,卢演俦,王成敏等.2011.水成相沉积物释光测年研究进展与展望.核技术,34(2):82-86.
    18.张克旗.2008.青藏高原北缘若干断裂带古地震事件释光测年及年代学研究.博士学位论文.中国地震局地质研究所.
    19. Aitken M J.1969. Thermoluminescence dosimetry of enviromental radiation on archaeologicalsites. Archaeometry,11:109-114.
    20. Aitken M J.1985. Thermoluminescence Dating[M]. London: Academic Press.83-95:280-305.
    21. Aitken M J.1998.An Introduction to Optical Dating[M]. London: OXFORD UniversityPress.39-44.
    22. Alexanderson,H.2007.Residual OSL signals from modern Green-landic riversediments.Geochronometria,26:1-9.
    23. Alselrod,M.S., Kortov,V.S., Kravetsky,D.J.,Gotlib,V.I.1990. Highly sensitivethermoluminescence anion-defective a-Al2O3:C single crystal detectors.Radiation Prot.Dosim.,32:15-29.
    24. Armitage, S.J., Duller, G.A.T., Wintle, A.G.,2000. Quartz from southern Africa: sensitivitychanges as a result of thermal pretreatment. Radiation Measurements,32(5-6):571-577.
    25. Bailey, R.M.,Wintle,A.G.,Duller,G.A.T.,Bristow,C.S.2001.Sand deposition during the lastmillennium at A berffraw,Anglesey,North Wales as determined by OSL dating of quartz.Quaternary Science Reviews,20:701-704.
    26. Bailey, R.M., Singarayer, J.S., Ward, S., Stokes, S.2003. Identification of partial resetting usingDe as a function of illumination time. Radiation Measurements,37:511–518.
    27. Bailey,R.M.,Arnold,L.J.2006.Statistical modelling of single grain quartz De distributions and anassessment of procedures for estimating burial dose. Quaternary ScienceReviews,25:2475-2502.
    28. Banerjee D., Sighvi,A.K.,,Pande,K.,Gogte,V., and Chandra B.P.1999.Towards a direct datingof fault gouges using luminescence dating techniques–Methodological aspects. CurrentScience,77(2):256-269.
    29. Banerjee D., Murry A.S., Boter-Jensen L., Lang A.2001a. Equivalent dose estimation using asingle aliquot of polymineral fine grains. Radiation Measurements,17:123-136.
    30. Banerjee D., Murry A.S.,Foster,I.D.L.2001b.Scilly Isrles,UK: optical dating of a possible tsunamideposit from the1755Lisbon earthquake.Quaternary Science Reviews,20:715-718.
    31. Botter-Jensen, L.,Bulur,E.,Duller,G.A.T.and Murray,A.S.2000.Advances in luminesce nceinstrument systems.Radiation Measurements,32:523-528.
    32. Bbidge,C.I. and Duller,G.A.T.2003. Combined gamma and beta dosimetry, using AL2O3:C, forinsitu measurements on a sequence of archaeological deposits.RadiationMeasurements,37:285-291.
    33. Brennan,B.J.,Schwarcz,H.P., Rink,W.J.1997. Simulation of the gamma radiation field in lumpyenvironments. Radiation Measurements,27:299-305.
    34. Colls,A.E.,Stokes,S.,Blum,M.D.,Straffin,E.2001.Age limits on the late Quaternary evolution ofthe upper Loire River. Quaternary Science Reviews,20:743-75.
    35. Corte, D. F., Hossain, S. M., Jovanovic, S., Dlabac.A., Wispelaere,D.A.,Vandenberghe,D.,Haute,V.P.2001. Introduction of Marinelli effective solid angles for correctingthe calibration of NaI(TI) field gamma-ray spenctrometer in TL/OSL dating[J]. Radioanalyticaland Nuclear Chemistry,222–234.
    36. Chen, Y.W., Chen, Y.G., Murray, A.S., Liu, T.K., Lai, T.C.2003b. Luminescence dating ofneotectonic activity on the southwestern coastal plain, Taiwan. Quaternary Science Reviews,22:1223-1229.
    37. Chen Y G, Chen Y W, Chen W S, et al.2006. Preliminary results of long-term slip rates of1999earthquake fault by luminescence and radiocarbon dating. Quaternary Science Reviews,22:1213-1221.
    38. Choi J H,Murray A S,Jain M,Cheong C S,Chang H W.2003b.Luminescence dating ofwell-sorted marine terrace sediments on the southeastern coast of Korea. Quaternary ScienceReview,22:407-421.
    39. Colls,A.E., Stokes,S., Blum,M.D., Straffin,E.2001. Age limits on the late Quaternary evolution ofthe upper Loire River. Quaternary Science Review,20:743-760.
    40. Duller,G.A.T.1994. Luminscence dating of poorly bleached sediments from Scotland.Quaternary Geochronology (Quaternary Science Review),13:521-524.
    41. Duller,G.A.T.,Botter-Jensen,L.,Kohsiek,P.,Murrey,A.S.1999.A high-sensitivity opticallystimulated luminescence scanning system for measurement of single sand-size grains.Radiation Protection Dosimetry,84:325-330.
    42. Duller,G.A.T. and Murray,A.S.2000.Luminescence dating of sendiments using indivi dualmineral grains.Geologos,5:88-106.
    43. Duller,G.A.T., Botter-Jensen,L., Murray,A.S.2000. Optical dating of single sand-sized grains ofquartz: Sources of variability. Radiation Measurements,32:453-457.
    44. Duller, G. A.T., Wintle, A. G.2003. Distiguishing quartz and feldspar in single grainluminescence measurements. Radiation Measurements,37:161-165.
    45. Duller, G.A.T.2006. Single grain optical dating of glacigenic deposits. QuaternaryGeochronology,1(4):296-304.
    46. Duller, G.A.T.2007. Assessing the error on equivalent dose estimates derived from singlealiquot regenerative dose measurements. Ancient TL,25:15-24.
    47. Duller,G.A.T.2008. Single-grain optcial dating of Quaternary sediments: Why aliquot sizematters in luminscence dating. Boreas,37:589-612.
    48. Fattahi, M., Walker, R.T., Khatib, M.M., Dolati, J., Bahroudi, A.2006a. Slip-rate estimates andpast earthquakes on the Doruneh fault, eastern Iran. Geophysical Journal International,168:691–709.
    49. Fattahi,M.,Walker,R.T.,Hollingsworth,J.,Bahroudi,A.,Nazari,H.,Talebian,M., Armitage,S.,Stokes,S.2006b. Holocene slip-rate on the Sabzevar thrust fault,NE Iran, determined usingoptically stimulated luminescence(OSL). Earth and Planetary Science Letters,245:673–684.
    50. Fattahi, M., Walker,R.T.2007.Luminescence dating of the last earthquake of the Sabzevarthrust fault,NE Iran. Quaternary Geochronology,2:284-289.
    51. Forman,S.l., Maat,P., Jackson,M.E.1988a. Thermoluminscence dating of paleoearthquakes:Recent results and future prospects. Geological Society of America Abstracts Programs,20(3):161.
    52. Forman,S.l., Jackson,M.E., McCalpin,J., Maat,P.1988b. The potential of usingthermoluminscence to date buried soils developed on colluvial and fluvial sediments from Utahand Colorado,USA:Preliminary results. Quaternary Science Reviews,7:287-293.
    53. Forman, S.L., Machette, M.N., Jackson, M.E., Maat, P.1989. An evaluation ofthermoluminescence paleoearthquakes of the American Fork segment, Wasatch Fault Zone,Utah. Journal of Geophysical Research,94(B2),:1622–1630.
    54. Forman, S.L., Nelson, A.R., McCalpin, J.P.1991. Thermoluminescence dating offault-scarp-derived colluvium: deciphering the timing of paleoearthquakes on the webersegment of the Wasatch fault zone, North Central Utah. Journal of Geophysical Research,96(B1).
    55. Frechen, M., Vanneste, K., Verbeeck, K., Paulissen, E., Camelbeeck, T.2001. The depositionhistory of the coversands along the Bree fault escarpment, NE Belgium. Netherlands Journal ofGeosciences/Geologie en Mijnbouw,80,:171–185.
    56. Fuchs,M., and Lang,A.2001. OSL dating of coarce-grain fluvial quartz using single-aliquotprotocols on sediments from NE-Peloponnese,Greece. Quarternary ScienceReviews,20:783-787.
    57. Galbraith, R.F.1998. The trouble with probability density plots of fission track ages.RadiationMeasurements,29:125-131.
    58. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M.1999. Optical dating ofsingle and multiple grains of quartz from Jinmium rock shelter, northern Aus tralia, Part I:experimental design and statistical models. Archaeometry,41:339–364.
    59. Galbraith, R.F.2005.Statistics for Fission Track Analysis.Ancient TL,29:41-47.
    60. Galbraith, R.F. and Roberts, R.G.2012. Statistical aspects fo equivalent dose and errorcalculation and display in OSL dating: A overview and some recommendations. QuarternaryGeochronology,11:1-27.
    61. Godfrey-Smith, D.I., Huntley, D.J. and Chen, W.H.1998. Optical dating studies of quartz andfeldspar sediment extracts. Quaternary Science Reviews,7:373-380
    62. Hütt,G.,Jaek,I., and Tchonka,J.1988. Optical dating:K-feldspars optical response stimulationspectra.Quaternary Science Reviews,7:381-185.
    63. Hiraga,S. and Nagatomo,T.1995. How to confirm complete zeroing in TL dating of faultmovement—case of the Higashiura fault, A waji Island in Japan. Bulletin of Nara University ofEducation,44:17-25.
    64. Hossain,S.M.2003.A critical comparison and evaluation of methods for the annual radiationdose determination in the luminescence dating of sediments. PHD thesis.
    65. Hossain,S.M., Corte,F.D., Dandenberghe,D., Vandenhaute,P.2002. A comparison of methodsfor the annual radiation dose determination in the luminescence dating of loesssediment.Nuclear Instruments and Methods in Physics Research A490:598-613.
    66. Jacobs,Z.,Duller,G.A.T., Wintle,A.G.2003. Optical dating of dune sand from Blombos Cave,South Afica:II-Single grain data. Journal of Human Evolution,44:613-625.
    67. Jain M.,Botter-Jensen l., Murry A.S., Jungner H.2002.Retrospenctive dosimetry: doseevaluation using unheated and heated quartz from a radioactive waste storage building. RadiatProt.Dosim,101(1-4):525-530.
    68. Jain M. and Tandon,S.K.2003. Fluvial response to late Quaternary climate changes, westernIndia. Quaternary Science Reviews,22:2223-2235.
    69. Jain, M., Murray, A.S., B tter-Jensen, L.,2004. Optically stimulated luminescence dating: howsignificant is incomplete light exposure in fluvial environments. Quaternary,15:143-157.
    70. Kortekaas, M., Murray, A.S., Sandgren, P., Bj rck, S.2007. OSL chronology for a sedimentcore from the southern Baltic Sea: a continuous sedimentation record since deglaciation.Quaternary Geochronology,2(1-4):95-101.
    71. Lai,Z-P.2006. Testing the use of an OSL standardised growth curve (SGC) for Dedetermination on quartz from the Chinese Loess Plateau. Radiation Measurenments,41:9-16.
    72. Lamothe,M.,Balescu,S., and Auclair,M.1994.Natural IRSL intensitiesand apparentLuminesence ages of single feldspar grain extracted from partially bleached sediments.Radiation Measurenments,23:555-561.
    73. Lang,A and Wagner,G.A.1997.Infrared stimulated luminescence dating of colluvial sedimentsusing the410nm emission. Quaternary Science Reviews,16:393–396.
    74. Lepper,K.,Agersnap Larsen,N.,McKeever,S.W.S.2000. Equivalent dose distribution analysis ofHolocene eolian and fluvial quartz sands from Central Oklahoma. RadiationMeasurements,32:603-608.
    75. Lepper, K., McKeever, S.W.S.2002. An objective methodology for dose distribution analysis.Radiation Protection Dosimetry,101:349-352.
    76. Li,T.,Chen,J.,Thompson,J.A.,Burbank,D.W.,Xiao,W-P.2012.Equibalency of geologic andgeodetic rates in contractional orogens: New insights from the Pamir Frontal Thrust.Geophysical Research Letters,39:L15305.doi:10.1029/2012GL051782,2012.
    77. Liu, Jinfeng, Chen Jie, Yin Jinghui, Lu Yanchou, Murray, A.S., Chen Lichun, Thompson J.,YangHuili.2010. OSL and AMS14C Dating of the Penultimate Earthquake at the Leigu Trench alongthe Beichuan Fault, Longmenshan, in the Northeast Margin of the Tibetan Plateau. Bulletin ofthe Seismological Society of America,100:2681-2688.
    78. Lomax, J., Hilgers, A., Twidale, C.R., Bourne, J.A., Radtke, U.2007. Treatment of broadpalaeodose distributions in OSL dating of dune sands from the western Murray Basin, SouthAustralia. Quaternary Geochronology,2:51-56.
    79. Lu YanChou, Prescott, J. R., Zhao Hua,Chen Jie,Wei Lanying.2002. Optical dating of colluvialdeposits from Xiyangfang,China and the relation to paleaoearthquake events. QuaternaryScience Reviews,21:1083-1097.
    80. Lu, Y.C., Wang, X.L., Wintle, A.G.2007. A new OSL chronology for dust accumulation in thelast130,000yr for the Chinese Loess Plateau. Quaternary Research,67:152-160.
    81. Madsen, A.T, Murray, A. S., Andersen, T.J., Pejrup,M.2007. Optical dating of young tidalsediments in the Danish Wadden Sea. Quaternary Geochronology,2:89-94.
    82. McCalpin,J.1986.Thermoluminescence(TL) dating in seismic hazard evaluation: An examplefrom the Bommeville basin,Utah. In:22ndsymposium on engineering geology and soilsengineering:156-176.
    83. McCalpin, J.,Forman,S.L.,Lowe, M.1994. Reevaluation of Holocene faulting at the Ka ysvillesite, Weber segment of the Wasatch fault zone, Utah. Tectonics,13(1):1–16.
    84. Mejdahl,V.1978. Measurement of environmental radiation an archaeological sites by means ofTL dosimeters,PACT2:70-82.
    85. Murrey,A.S.,Olley,J.M.,Caitcheon,G.G.1995. Measurement of equivalent dose in quartz fromcontenporary water-lain sediments using optically stimulated luminscence. Quaternary ScienceReviews,14:365:371.
    86. Murrey,A.S.,Roberts,R.G.1997.Determining the burial time of single grains of quartz usingoptically stimulated luminescence. Earth and Planetary Science Letters,152:163-180.
    87. Murry A.S., Roberts R.G.1998.Measurement of the equivalent dose in quartz using aregenerative-dose single-aliquot protocol. Radiation Measurements,29:503-515.
    88. Murray, A.S., Wintle, A.G.2000. Luminescence dating of quartz using an improvedregenerative-dose protocol. Radiation Measurements,32:57–73.
    89. Murry A.S., Olley J.M.2002. Precision and accuracy in the optical stimulated lumine-scencedating of sedimentary quartz: a status review. Geochronometria,21:1-26.
    90. Murray, A.S., Wintle, A.G.2003. The single aliquot regenerative dose protocol: potential forimprovements in reliability. Radiation Measurements,37:377–381.
    91. Murray,A.S.1981. Environmental radioactivity studies relevant to thermoluminescen ce dating.PHD thesis.
    92. Nishimura, S. and Horinouchi,T.1989.TL ages of some quartz in flout gauges. J. Phys.Earth,37:313.
    93. Noller,J.S.,Sowers,J.M., and Lettis,W.R.2000. Quaternary Geochronology: Methods andApplications, American Geophysical Refference Shelf sevies4,Washington,DC.
    94. Olley, J.M., Murray, A.S., Roberts, R.G.1996. The effects of disequilibria in the uranium andthorium decay chains on burial dose rates in fluvial sediments. Quarter nary Science Reviews,15:751–760.
    95. Olley, J.M., Roberts, R.G., Murray, A.S.1997. Disequilibria in the uranium decay series insedimentary deposits at Allen’s Cave, Nullarbor Plain, Australia: implications for dose ratedeterminations.Radiation Measurements,27:433–443.
    96. Olley, J.M., Caitcheon, G., Murray, A.1998. The distribution of apparent dose as deter mined byoptically stimulated luminescence in small aliquots of fluvial quartz: impli cations for datingyoung sediments. Quaternary Science Reviews,17:1033–1040.
    97. Olley, J.M., Caitcheon,G.G., Roberts,R.G.1999. The origin of dose distributions in fluvialsediments, and the prospect of dating single grains from fluvial deposites using opticallystimulated luminescence. Radiation Measurements,30:207-217.
    98. Porat, N., Porat, N., Wintle, A.G., Amit, R., Enzel, Y.1996. Late Quaternary earthquakechronology from luminescence dating of colluvial and alluvial deposits of the Arava Valley, Israel.Quaternary Research,46:107–117.
    99. Porat, N., Amit, R., Zilberman, E. and Enzel, Y.1997. luminescence dating of fault relatedalluvial fan sediments in the Southern Arava Valley, Israel. Quaternary Science Reviews,16:397-402.
    100.Porat, N., Zhou, L.-P., Chazan, M., Noy, T., Horwitz, L.K.1999. Dating the Lower Paleolithicopen-air site of Holon, Israel by luminescence and ESR techniques. QuaternaryResearch,51:328-341.
    101.Porat,N., Levia,T., Weinberger,R.2007. Possible resetting of quartz OSL signals duringearthquakes-Evidence from late Pleistocene injection dikes, Dead Sea basin, Israel.Quaternary Geochronology,2:272–277.
    102.Porat,N., Duller,G.A.T., Amit, R., Zilberman,E., Enzel,Y.2008.Recent faulting in the southernArava,Dead Sea Transform: Evidence from single grain luminscence dating. QuaternaryInternational,doi:10/1016/jquaint2007.08.039.
    103.Porat, N., Duller G.A.T.,Rivka Amit, Ezra Zilberman and Yehouda Enzel.2009. Recent faulting inthe southern Arava, Dead Sea Transform: Evidence from single grain lumi nescence dating.Quaternary International,199:34–44.
    104.Prescott, J.R. and Hutton, J.T.1994. Cosmic ray contribution to dose rates for luminescenceand ESR dating: large depths and long-term time variations. Radiation Measurenments,23(2-3):497-500.
    105.Prescott, J.R. and Hutton, J.T.1995. Environmental dose rates and radioactive dise quilibriumfrom some Australian luminescence dating sites. Quaternary Science Reviews,14:439–448.
    106.Prescott, J.R., Robertson, G.B.1997. Sediment dating by luminescence: a review. RadiationMeasurements,27(5–6):893–922.
    107.Rhodes E.J., Bailey R.M.1997. The effect of thermal transfer on the zeroing of theluminescence of quartz from recent glaciofluvial sediments. Quaternary Science Reviews,16:291-298.
    108.Rittenour, T.M.2008. Luminescence dating of fluvial deposits: applications to geomorphic,palaeoseismic and archaeological research. Boreas,37:613-635.
    109.Roberts, R.G., Galbraith, R.F.,Olley,J.M.,Yoshida,H.,Laslett,G.M.1999.Optical dating of singleand multiple grains of quatrtz from Jinmiun rock shelter,northern Australia:Part II.Results andimpications.Archaeometry,41:365-395.
    110.Roberts, R.G., Galbraith, R.F., Yoshida, H., Laslett, G.M., Olley, J.M.2000. Distin guishing doespopulations in sediment mixtures: a test of single-grain optical dating procedures using mixturesof laboratorydosed quartz. Radiation Measurements,32:459-465.
    111.Roberts,H.M.,Duller,G.A.T.2004.Standardised growth curves for optical dating of sedimentusing multiple-grain aliquots. Radiation Measurements,38:241-252.
    112.Rodnight,H.,Duller,G.A.T.,Wintle,A.G.,Tooth,S.2006.Assessing the reproducibility andaccuracy of optical daing of fluvial deposits. Quarternary Geochronology,1:109-120.
    113.Rodnight,H.2006.Developing a Luminescence Chronology for Late Quaternary Fluvial Changein South African Floodplain Wetlands.Ph.D.dissertation,University of Wales,304pp.
    114.Rodnight,H.2008. How many equivalent dose values are needed to obtain a reproducibledistribution? Ancient TL,26:3-9.
    115.Sanzelle S, Errarrdi H, Fain J., Miallier,D.1988. The assessment of gamma dose-rate bygamma-ray field spectrometer. Nuclear Tracks and Radiation Measurements,14(1):209–213.
    116.Singhvi,A.K.,Banerjee,D.,Pande,K.,Gogte,V., and Valdiya,K.S.1994.Luminescence studing onneotectonic events in south central Kumaun Himalaya-A Feasibility Study. Quaternary ScienceReviews,13:595-611.
    117.Singarayer,J.S.Bailey,R.M.2004.Component-resolved bleaching spectra of quartz opticallystimulated luminescence: preliminary results and implications for dating. RadiationMeasurements,38:111-118.
    118.Singarayer,J.S., Bailey,R.M, Ward.S,Stokes,S.2005.Assessing the completeness of opticalresetting of quartz OSL in the natural environment. Radiation Measurements,40:14-25
    119.Stokes, S., Bray, H.E., Blum, M.D.2001. Optical resetting in large drainage basins: tests ofzeroing assumptions using single-aliquot procedures. Quaternary Science Reviews,20:879–885.
    120.Thomsen, K.J., B tter-Jensen,L., Murray,A.S.,Solongo,S.2002b.Retrospective dosimetry usingunheated quartz:a feasibility study. Radiation Protection Dosimetry,101:345-348.
    121.Thomsen, K.J., Jain, M., B tter-Jensen, L., Murray,A.S., Jungner,H.2003a. Variation withdepth of dose distributions in single grains of quartz extracted from an irradiated concrete block.Radiation Measurements,37:315-321.
    122.Thomsen,K.J.,Murray,A.S.,B tter-Jensen,L.2005.Sources of variability in OSL dosemeasurements using single grains of quartz. Radiation Measurements,39:47-61.
    123.Thomsen, K.J.2004.Optically Stimulated Luminescence Techniques in Retrospective Dosimetryusing Singlge Grain of Quartz extracted from Unheated Materials.PHD thesis.
    124.Thomas P J, Reddy D V,,Devender Kumar, et al.2007. Optical dating of liquefaction features toconstrain prehistoric earthquakes in Upper Assam,NE India-some preli minary results[J].Quaternary Geochronology,2:278—283.
    125.Thopson,J.A.,Chen,J.,Yang,H-L.,Li,T.,Bookhagen,B.,Burbank,D.,Wang,C-S. OSL andcosmogenic10Be dating of deformed fluvial terrances in NW Chian.in preparation.
    126.Tite,M.S. and Waine,J.1962. Thermoluminescence dating: a reappraisal. Archaeo metry,5(1)53:79.
    127.Tsukamoto,S.,Duller,G.A.T.,Wintle,A.G.2008.Characteristics of thermally transferred opticallystimulated luminescence(TT-OSL) in quartz and its potential for dating sediments. RadiationMeasurements,43:1204-1218.
    128.Toyoda,S.,Rink,W.J.,Schwarcz, H.P.,Rees-Jone. J.2000.Crushing ects on TL and OSL onquartz: relevance to fault dating. Radiation Measurements,32:667-672.
    129.Tooth,S., Rodnight,H., Duller,G.A.T., McCarthy,T.S., Marren,P.M., Brandt,D.2007. Chronologyand control of avulsion along a mixed bedrock-alluvial river. Geological Society of AmericanBulletin in119:452-461.
    130.Watanuki T., Murray A.S., Tsukamoto S.2003. A comparison of OSL ages derived fromsilt-sized quartz and polymineral fine grains from Chinese loess. Quaternary ScienceReviews,22:991-997.
    131.Wallinga, J., Murray, A.S., Duller, G.A.T.,2000. Underestimation of equivalent dose insingle-aliquot optical dating of feldspars caused by preheating. Radiation Measurements32,691–695
    132.Wallinga,J.2002. Optically stimulated luminscence dating in fluvial deposits: A review.Boreas,31:303-322.
    133.Wang X.L., Lu Y.C., Zhao H.2006c. On the performance of the single-aliquot regenerative-dose(SAR) protocol for Chinese loess: fine quartz and polymineral grains. RadiationMeasurements,41:1-8.
    134.Wintle, A.G., Huntley, D.J.1979a. Thermoluminescence dating of a deep-sea sediment core.Nature,289:479-480.
    135.Wintle, A.G., Huntley, D.J.1979b. Thermoluminescence dating of sediments. PACT,3:374–380.
    136.Wintle, A.G., Huntley, D.J.1980. Thermoluminescence dating of ocean sediments. CanadianJournal of Earth Sciences,17:348-360.
    137.Wintle, A.G., Huntley, D.J.1980. Thermoluminescence dating of ocean sediments. CanadianJournal of Earth Sciences,17:348-360.
    138.Wintle, A.G.,Li,S-H.,Botha,G.A.1993. Thermoluminescence dating of colluvial deposits fromNatal, South Africa Suid-afrikaanse Tydskrif vir Wetenskap,89:77-82.
    139.Wintle A.G., Murray A.S.2006. A review of quartz optically stimulated luminescencecharacteristics and their relevance in single-aliquot regeneration dating protocols. RadiationMeasurements,41:369-391.
    140.Xu, X.W., Wen, X.Z., Yu, G.H., Chen, G.H., Klinger, Y.J., Hubbard, J., Shaw, J.2009.Coseismicreverse-and oblique-slip surface faulting generated by the2008Mw7.9Wenchuan earthquake,China. Geology,37(6):515-518.
    141.Zhao H., Chen F.H., Li S.H., Wintle A.G., Fan Y.X., Xia D.S.2007. A record of Holocene climatechange in the Guanzhong Basin, China, based on optical dating of a loess-palaeosol sequence.The Holocene,17:1015-1022.
    142.Zhang,J.F.,Zhou,L.P., Yue,S.Y.2003. Dating fluvial sediments by optically stimulatiedluminscence: selection of equivalent doses for ages calculation. Quarternary ScienceReviews,22:1123-1129.
    143.Zhou,L-P.,Shackleton,N.J.2001.Photo-stimulation luminescence of quartz from loess andeffects of sensitivity change on palaeodose determination.Quaternary ScienceReviews,20:853-857.
    144.Zuchiewicz, Witold, Cuong, Nguyen Quoc, Bluszcz, Andrej., Marek Michalik.2004. Quaternarysediments in the Dien Bien Phu fault zone, NW Vietnam: a record of young tectonic processesin the light of OSL-SAR dating results. Geomorphology,60:269-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700