用户名: 密码: 验证码:
强震破裂面上的不均匀体及其在地震危险性分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不均匀体的概念最初是在地震学中为了解释地震波的高频辐射成份提出来的,用来反映断层面上应力明显高于周围的部分。由不均匀体的研究引入的非均匀地震破裂模式,能较好的解释地震波中的复杂成份、主震前破裂的成因以及主破裂之后的应力集中,因此,不均匀体被认为是断层面上破裂的起始器、阻力器和集中器。根据不均匀体在地震破裂运动过程中发挥的作用,可分为凹凸体和障碍体两大类进行研究。凹凸体可理解为震前断层面上存在的一些高强度的未发生破裂的区域,可为下次地震发生的起始点或破坏最严重的点。障碍体则被称为强硬的应力集中区域,可作为断层破裂段的边界,起到限制破裂,在极端的情况下还会终止破裂的作用。目前为止,国内外学者对破裂段上的不均匀体大多从强震动记录和地震波反演的结果进行研究,从地表破裂方面的信息入手探讨不均匀体的方法仍比较缺乏,出于这种角度考虑,本文将在前人研究成果的基础上,以国内研究程度较高的断裂带为实例,研究断裂带上不均匀体的识别方法及相关特性,并探讨其在地震危险性分析中的应用。
     1、断裂带上凹凸体的识别
     凹凸体被定义为断裂系统中应力积累的强硬闭锁段,最终以大震的形式释放其主要能量,在地震破裂模型中被广泛使用,一般来讲,对已经发生过大震的断层面上的凹凸体可以由地震波分析和地表位错模型资料联合反演的方法确定其大小和位置,而未发生过地震且地震活动较活跃的断裂带,如何识别断裂带上的凹凸体至今为止仍是多数研究者一直讨论的问题。本文将着重从地震活动性、同震位移分布等方面给出凹凸体的识别方法。
     1)地震活动性分析
     本文对龙门山断裂带和鲜水河断裂带上1970年以来记录的小震数据进行了收集、整理和分析,采用了基于matlab平台的zmap软件,去除了断裂带上的丛集数据和余震,划定了有效地震数据的时间和震级范围,通过最大似然法求取了断裂带所在区域的b值分布图。基于b值大小与应力高低成反比的原理,通过断裂带上低b值区识别凹凸体的位置。在龙门山断裂带,通过低b值区识别出的现凹凸体的位置与汶川地震发生前所处的起始破裂位置和极震区的位置基本保持一致;而鲜水河断裂带由于受到小震数据的限制,部分段缺失b值分布,但整条断裂带仍可清晰识别出凹凸体位置,且1725年以来的历史强震和1970年以来5级以上的历史地震基本上都位于此区域。从断裂带的实例分析结果反映,利用小震数据通过最大似然法计算b值分布图,其相对低b值区与历年强震发生的位置存在较大的相关性,说明了利用低b值区识别凹凸体方法的可行性和实用性。
     2)基于地表破裂同震位移数据建立了凹凸体模型
     通过收集、整理和分析中国西部10条以走滑地震为主的破裂带的同震位移数据,采用统计学的方法拟定了凹凸体模型,建立了地表破裂参数与凹凸体模型参数之间的关系,是目前国内外利用地表破裂资料建立凹凸体模型的首次尝试。本模型可据不同断层的地表破裂位移值,给出其断裂带上最大凹凸体和所有凹凸体占断层破裂长度或破裂面积的比值,但该模型受到建模时同震位移数据的限制,利用该模型计算断裂带上凹凸体的大小时,需满足两个条件:一是断裂带上有较详细的地表破裂位移数据;二是该断裂带上地表破裂位移的最大值Dmax与地表破裂的平均位移值Dave的比值Dmax/Dave需小于等于3。
     基于拟合的模型,以汶川地震和昆仑山地震为例,识别了该破裂带上凹凸体的位置和大小,发现与前人地震波反演得到结果基本吻合。研究表明,本文建立的模型与前人的模型在识别断裂带上的凹凸体都具有实用性,区别在于,前人的模型是基于地震发生后,通过强震动反演得到的;而本模型是基于地表破裂位移的基础上拟合而成,对于那些具有历史地震和古地震破裂位移数据,而未有详细地震动记录的断裂带,本模型更具有实用性。尤其是随着科学技术的发展,可利用地面LIDAR技术识别出高清晰度地表破裂位移数据的技术支撑下,使得该模型在识别凹凸体方面具有更大的优势。因此,本文拟合的模型为断裂带上凹凸体的识别提供一种新途径,为判定断裂带上的强震危险性的分析提供了强有力的理论依据。
     2、断裂带上障碍体的识别
     地震发生时,岩层破裂并出现局部的滑动,但仍有未滑动即未受破坏的高应力强度区,震后该区域上的应力强度大于周围断层面上的应力强度,这种块体部分称为障碍体。当地震的破裂传播遇到障碍体时,障碍体可能被破坏,也可能在破裂通过后未破坏,或当时虽未破坏,后期随着周围的动应力即构造应力与障碍体强度值比值的增加,最终发生破坏,而破裂通过时是否发生破坏,取决于障碍体区域的大小及其自身的抗应力强度。
     文中以汶川地表破裂带和东昆仑断裂带为例,研究断裂带几何结构与障碍体的关系。认为破裂带存在的拉分阶区、挤压阶区、断裂的交汇处、断裂的急剧拐弯处等特殊构造部位及其同震位移趋势呈现突然下降拐点或波谷的位置,都可视障碍体存在的地方,根据其是否完全阻止破裂扩展,进一步划分为持久性障碍体和非持久性障碍体。通过收集大量国内外的震例,利用统计分析的方法分震级档给出了限制破裂传播的障碍体的止裂尺度,当走滑地震的震级介于6.0~6.9之间,阶区的最小止裂宽度为3km;走滑地震的震级介于7.0~7.5之间,阶区的最小止裂宽度为4km;当震级介于7.5~8.0之间,阶区的最小止裂宽度为6km;当震级介于8.0~8.5之间时,阶区的最小止裂宽度为8km,且拉分阶区比挤压阶区更容易被破裂所贯通。
     3、考虑不均匀性的潜在震源区强震复发行为的地震危险性分析
     在目前的科学认识水平下,地震的发生及地震动特性都具有一定不可预见性,必须以概率的方式来表达对未来地震及地震动的预测,即为概率地震危险性分析。潜在震源区作为概率地震危险性分析方法中一个十分重要的概念,其边界、震级上限及其地震活动性参数是决定地震危险性分析结果的关键因素。最早提出潜在震源区概念时,有一个很重要的假定,就是潜在震源区内各处地震发生概率是均匀的。其后在国际上采用概率地震危险性方法编制的区划图一般均沿用了这一假设,而且我国国标“重大工程地震安全性评价技术规范”(GB17741-2005)中,也是采用均匀模型来描述潜在震源区地震的发生特征的。事实上,在地震危险性分析工作中,潜在震源区划分的规模较大,可达几百乃至几千平方公里,比如鲜水河断裂带中的潜在震源区的划分就是一个例子,该断裂带划分为北段、中段和南东段,四代区划图编图组将其划分为三个Ms8.0级的潜在震源区,这种均匀的分布会造成地震危险性的“稀释”,从而降低了对地震危险性的估计。
     目前随着对断裂带的强震复发行为定量研究的深入,在地震区划与工程场地地震安全性评价工作中,考虑活动断裂破裂的复发行为来划分潜在震源区和确定地震活动性参数是当前国际上流行的趋势。鉴于地震孕育和发生的复杂性,目前不可能有一个统一的模型来描述大陆内部强震的复发行为,在地震危险性分析中,需要在多活动断裂段的复发行为研究的基础上,建立具体的地震复发模型。本论文以具体断裂带为研究对象,建立适合研究区的发震概率模型,给出潜在震源区内地震年发生率的确定方法,并将断裂带上识别出的不均匀体融入到潜在震源区的划分中,勾画出潜在震源区中不均匀体的边界并计算其震级上限,充分反映出潜在震源区内各处地震发生概率的不均匀性。
     1)潜在震源区的强震复发概率模型
     通过收集、整理和分析青藏高原东北部22条断裂带上古地震数据,拟定了该区的地震复发概率密度函数。根据此函数可计算出对区内断裂带未来百年内强震原地复发的条件概率。论文中将本文拟合的模型与目前通用的发震模型计算的概率值进行比较,发现通用模型的自变量t/R越接近1的时候,计算的复发概率值P增长的幅度不如本文拟合模型敏感。因此,对于古地震数据研究程度较高的断裂带,利用本文拟合的模型评价其未来大震的危险性可能更为准确,尤其是对平均复发间隔小,离逝时间长的段;而目前通用的复发模型针对那些古地震研究程度较低的断裂带,复发间隔较长的段落,可能更适用。
     2)潜在震源区震级上限估算的不确定性
     活动断裂定量研究的资料在评价特定断裂上的强震危险性方面发挥较大的作用,但受种种条件的制约不是每一条活动断裂上都可轻易获取所需的定量数据,并且这些数据本身通常含有较大的不确定性。活动断层长度作为活动断层定量数据之一相比其他的数据较容易获得,不确定性较小,因而,利用断层破裂长度估算震级的统计关系被广泛的应用于潜在震源区的震级上限的评估中。文中收集了青藏高原区7级以上以走滑为主的30个地震地表破裂参数资料,拟合出青藏高原区新的震级与破裂带长度统计关系式,并结合前人的统计关系式,分别通过破裂带长度估算震级,求出估算震级与仪器震级的差值,把差值为正值(即估算震级偏大)的归为一类,差值为负值(估算震级偏小)的归为一类作分析和对比。研究发现差值为正值的地震所处的走滑断裂带一般位于一级块体或次级块体的边界断裂带上,差值为负值的地震所处的走滑断裂带大多位于一级块体或次级块体内部断裂带或断裂带的交汇处。基于上述分类的差异,作者对不同研究者拟合的回归关系计算的差值数据进行了统计分析,分别给出了修正计算结果不确定性的参考值,为降低估算震级的不确定性提供了理论依据。
     3)潜在震源区的划分及危险性计算
     文中以具体实例的形式给出鲜水河断裂带潜在震源区中凹凸体的位置和大小。四代区划图编图组将鲜水河断裂带划分为炉霍、道孚和康定三个Ms8.0级的潜在震源区,划分的依据主要是鲜水河断裂的发震构造标志、几何分段特征及历史地震和古地震数据来确定的。而论文中提供的基于不均匀性的潜在震源区划分图,对潜在震源区的边界范围的确定仍按以前研究者提供的原则和方法,只是在其已有的潜在震源区范围内通过识别其上的凹凸体,进一步细化潜在震源区内应力不均匀性。首先利用小震活动给出的应力分布图,勾画出边界,然后按照论文中拟合的凹凸体模型,计算了相应各个潜在震源区中凹凸体的大小,炉霍潜在震源区中凹凸体A的长度为60.71km、道孚潜在震源区中凹凸体B的长度为38.13km、由于康定潜源中凹凸体C所在的断裂带的同震位移分布形态不易识别,文中只按照应力的不均匀性,勾画出边界,长度约78km。最后利用论文中建立的的凹凸体的长度L凹与震级Ms的回归关系式,同时考虑回归拟合关系和鲜水河断裂带特殊的地质构造环境的不确定性,分别求的凹凸体A、B、C的对应的震级Ms的震级上限分别为7.6级、7.3级、7.8级,并利用复发概率模型计算了相应的该三个凹凸体未来百年的年发生率,分别为5.558E-03、1.6693E-02和5.91E-04。
The concept of heterogeneity on the fault rupture plane was firstly put forward to explainhigh frequency radiation components of seismic waves, suggesting these components aregenerated by the portions where the stress is significantly higher than the surrounding part of thefault plane. The models of inhomogeneous earthquake faulting can account for complexcomponents, rupture genesis before the main shock of seismic waves and stress concentration afterthe main rupture, so the fault heterogeneity is considered to be the important factor that determinesinitiating, resistance and stress concentration on the fault plane. According to the functions ofheterogeneity in the earthquake rupture process, two models have been suggested to describe suchheterogeneity: asperity model and barrier model. An asperity can be regarded as a high-strengthpart which does not rupture before the earthquake and could be the starting point or seriousdamage point for the next earthquake. A barrier is a high-stress concentration area which may bethe boundary of a fault rupture section to limit the rupturing, or will terminate the rupturing inextreme cases. So far, many foreign scholars have made detailed studies on this issue, providingsupportive evidence for seismic risk analysis. While little work results on this subject has beenreported at home. This thesis focuses on identification methods of heterogeneity on the faultrupture plane with case studies on several well-documented fault zones and discussion itsapplication to seismic hazard analysis.
     1. Identification methods of asperities on the fault zone
     Asperity is defined as tough locked segment of stress accumulation in a fault system, whicheventually releases most energy to spawn a major quake. In the case that a fault has generatedmajor quakes that are instrumentally recorded and investigated, the asperities on this fault can bedetermined, including their size and location, by analysis of seismic waves and joint inversion ofsurface displacement data. In the case without these data available, how to identify asperitiesremain a problem to be solved. The thesis presents several methods based on b values from small quakes and coseismic displacements.
     (1) Analysis of b values
     This work collected, sorted and analyzed data of small earthquakes on the Longmen Shanfault zone and Xianshuihe fault zone since1970. Using the matlab platform and zmap software,the clustering data and aftershocks are removed, and time intervals and magnitude ranges ofeffective seismic data are defined. Then, in terms of the maximum likelihood analysis, the bvalues are mapped for the areas where the two fault zones are situated. On the assumption that thesize of the b value is inversely proportional to that of stress, the positions of asperities on the faultzone can be determined according to low-b value areas. On the Longmen Shan fault zone, theasperities derived from b-value distribution are largely consistent with the rupture initiation andmeisoseismal areas in their localities. While for the Xianshuihe fault zone, although partialsections lack b-value distribution due to limited data of small earthquakes, asperities can beestimated for most of the fault zone using this method, which are just the locations wherehistorical major events since1725and recent M5shocks since1970took place. These caseanalyses show that the low-b value areas are correlated with the epicenters of major quakes, thus itis possible to identify asperities of a fault zone using data of b values from small shocks.
     (2) Analysis of coseismic displacements
     Assume that coseismic displacements along the fault zone observed on the ground are relatedto the slip distribution on the fault rupture plane. Considering that asperities of a fault can beinferred from slip displacement distribution as suggested of previous work, this thesis attempts toestablish the asperity model based on statistics to data of coseismic displacements. Such data werecollected from10strike-slip faults in western China for the model to be constructed. In this model,two parameters are defined in terms of coseismic displacements: one is the ratio of maximumasperity’ length or area to the whole fault rupture, and the other is all asperities to the wholerupture. It requires that there are enough data of surface coseismic displacements available and theration of maximum displacement to the average one cannot exceed3.0
     Taking the2001Kunlun Shan M8.1and2008Wenchuan M8.0as examples, locations andsizes of asperities on their faults are estimated using the method aforementioned. The results arelargely consistent with that derived from seismic wave inversion in previous work. If thisapproach is indeed correct and effective, it would be more applicable for those faults only with displacement data of historical or paleoearthquake earthquakes but lacking instrumental records.In particular, in the case that surface displacements of can be clearly measured by the LIDARtechnology, this method seems to have a big advantage as a new approach.
     2. Identification of barriers on fault zones
     In theory, barriers on a fault should be related with its geometry. For instance, at dilational orantidilational jogs, and bends of a strike-slip fault, coseismic displacement can decrease abruptly.These localities can be regarded as barriers to obstruct further spread of rupture. Such barriers canbe divided into persistent and non-persistent barriers.
     In light of many case studies at home and around the world, this thesis suggests a scalerelationship between earthquake magnitude and the width of a jog or barrier, which can stoprupturing, on a strike-slip fault using statistics. The results are as follows: the minimum widths are3km,4km,6km, and8km for M6.0~6.9, M7.0~7.5, M7.5~8.0, and M8.0~8.5, respectively. Andthe dilatational jog is easier to rupture through than the antidilational jog.
     3. Recurrence models of potential seismic sources considering heterogeneity and seismichazard analysis
     At present, prediction of earthquake occurrence and ground motions contains uncertainties ofsome extent, thus it is usually expressed by a probability form. In probabilistic analysis of seismichazard, the potential seismic source model is an important factor which is commonly assumed tobe uniform. However, an earthquake source can be very large and is actually not uniform due tothe heterogeneity of the fault including its geometry and physical properties. Thus this factorshould be taken into consideration when a recurrence model of a seismogenic fault is constructed.
     (1)Recurrence models of potential sources
     This work collected and analyzed data of paleoearthquakes on22faults in the northeasternTibetan plateau, and calculated the density function of earthquake recurrence in this region. Fromthis function, the conditional probabilities of in situ recurrence of major events in the future100years can be computed. Comparison of the model from this thesis with the currently used modelshows that when the independent t/R in the general model approaches1, the growth amplitude ofrecurrence probability is less sensitive than that of the fitting model in this thesis. It means that the common recurrence model is suitable for those faults with long recurrence intervals and few dataof paleoearthquakes. While for the faults with well-studied paleoearthquakes, particularly withshorter intervals and longer elapsed time, the model in this work would yield better estimates ofseismic risks in the future.
     (2)Uncertainties in estimation of upper limit of magnitude for potential sources
     Using data of surface ruptures produced by30earthquakes of M7or greater in the Tibetanplateau, this thesis fitted the relationship between magnitude and rupture length by statistics. Withreference to previous work, earthquake magnitudes are estimated using this relationship and theirdifferences relative to instrumental magnitudes are calculated. These differences are classified intopositive (meaning greater values) and negative (smaller values) for comparison. It is found that thestrike-slip faults with positive differences lie mostly on boundaries of blocks or sub-blocks, whilethose with negative differences are within block or sub-blocks and at intersections of faults. Bystatistical analysis to these difference values, this work provides reference values of uncertaintiesfor correction, which can help reduce the uncertainty in upper limit of magnitude estimation.
     (3)Determination of potential seismic sources and seismic risk calculation
     For the Xianshuihe fault zone, this work determines locations and sizes of asperities on itssources. First, using stress distribution from small earthquakes, all asperities in potential sources,which are determined by fault segmentation etc. in previous work, are delineated. Then, accordingto the asperity model in this thesis, the size of each asperity is calculated. The results show that theasperities A is60.71km long, B is38.13km long, and C is78km long which is estimated by stressheterogeneity. Based on the relationship between the length of asperities and magnitude (Ms),which is established in this work, the upper limit magnitudes of asperities A, B, and C are solvedto be7.5,7.3, and7.8, respectively. Finally, their recurrence probabilities in the future100yearsare calculated to be5.558E-03,1.6693E-02, and5.91E-04, respectively.
引文
Aitaro Kato, Takashi Miyatake, and Naoshi Hirata,2010,Asperity and Barriers of the2004Mid-Niigata Prefecture Earthquake Revealed by Highly Dense Seismic Observations,Bulletinof the Seismological Society of America,100(1):298-306,doi:10.1785/0120090218
    Aki K.1965. Maximum likelihood estimation of b in the formula logN=a-bM and itsconfidence[J]. Bull Earthquake ResInst, Univ Tokyo,43(2):237~239.
    Aki, K.,1967. Scaling law of seismic spectrum, J. Geophys. Res.,72,1217-1231.
    Aki,K.,1979. Characterization of barriers on an earthquake fault, J. Geophys. Res.,84,6140-6148.
    Aki k.1984. Asperities, barriers, characteristic earthquake and strong motion prediction[J]. JGeophy Res,89(B7):5867~5872.
    Akyuz,H.S.,R. Hartleb,A.. Barka,E. Altunel,G. Sunal,B. Meyer, and R.Armijo(2002). Surfacerupture and slip distribution of the12November1999Duzce Earthquake(M7.1), NorthAnatolian Fault,Bolu,Turkey, Bull.Seismol.Soc.Am92. no.1,61–66.
    ALDO ZOLLO,AND PSDGAL BERNARD,1991,How Does an Asperity Break? New ElementsFrom the2319UT,October15,1979,Imperial Valley Aftershock, JOURNAL OFGEOPHUSICAL RESEARCH,96(B13):21549-21573
    Andrews,D.J.(1976a). Rupture propagation with finite stress in antiplane strain, J.Geophys.Res.81,3575–3582.
    Andrews,D.J.(1976b).Rupture velocity of plane strain shear cracks, J.Geophys.Res.81,5679–5687.
    Andrews, D. J.,1978. Coupling of energy between tectonic processes and earthquakes, J. Geophys.Res.,83,2259-2264.
    Arthur Frankel,1995,Mapping seismic hazard in the Central and Eastern United States,
    Seismological, Researeh Letters,Vol.66,No4.
    Arthur Frankel, Charles Mueller, Theodore Bsrhard, and et al., National Seismic Hazard Maps,June1996Documentation.
    Barka,A.Kadinsky-Cade, K.1988. Strike-slip fault geometry in Turkey and itsinfluence onearthquake activity. Tectonics.7,663–684.
    Barka,A.(1996).Slip distribution along the North Anatolian fault associated with the largeearthquakes of the period1939to1967, Bull.Seismol.Soc.Am.1238–1254.
    BenderB.,1986,Modeling source zone boundary uncertainty in seismic hazard analysis,Bulletin of the Seismological Soeiety of Ameriea,Vol.76,No.2.
    Berberian,M.,J.A. Jackson, E. J. Fielding, B.E. Parsons, K. F. Priestly.2001.The1998March14Fandoqa earthquake (Mw6.6) in Kerman province, Southeast Iran: re-rupture of the1981Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of theGowkfaultzone, Geophys.J.Int.371–398.
    Charles G.Sammis,Robert M.Nadeau and Lane R.Johnson,1999,How strong is an asperity,JOURNAL OF GEOPHUSICAL RESEARCH,104(B5):10609-10619.
    ConrellC.A.,1968,Engineering Seismie Risk Analysis,Bulletin of seismological Society ofAmerica,VOI.58,No.5。
    Das, S., and K. Aki,1977. Fault planes with barriers: A versatile earthquake model, J. Geophys.Res.,82,5648-5670.
    Das, S., and C. H. Scholz,1981. Theory of time dependent rupture in the earth, J. Geophys. Res.,86,6039-6051.
    Densmore A L, Ellis M A, Li Y,2007. Active tectonics of the Beichuan and Pengguan faults at theeastern margin of the Tibetan Plateau[J]. Tectonics,26, doi:10.1029/2006TC001987.
    GSS(2002),New manual ofseismological observatory practice,http://www.seismo.com
    Gutenberger, B. Richter, C. F.,1944. Frequency of earthquakes in Southern California, Bull.Seism. Soc. Am.,34:185~188.
    E.M.Dunham, P.Favreau, J.M.Carlson,2003. A super shear transition mechanism for cracks,Science.299.1557–1559.
    Eric Kirby, Nathan Harkins, Erqi Wang,et al.Slip rate gradients along the eastern kunlun fault,Tectonics,2007,26:1-16.
    G.C.P.King, G.Yielding,1984. The evolution of athrust fault system: processes of rupture initiation,propagation and termination in the1980ElAsnam(Algeria)earthquake, GeophysicalJournal Royal Astronomic Society.77:915–933.
    Haeussler,P.J., D.P.Schwartz, T.Dawson,(2005). Surface rupture and Slip distribution of the Denaliand Totschunda faults in the3November2002M7.9earthquake, Alaska,Bull.Seismol.Soc.Am92. no.6B,S23–252.
    Hanks, T. C.,1974. The faulting mechanism of the San Fernando earthquake, J. Geophys. Res.,79,1215-1229.
    Irikura,K, H. Miyake. Prediction of strong ground motions for scenario earthquakes,J.Geography,2001,110(6):849—875.
    J.VanDerWoerd, P.Tapponnier, F.J.Ryerson, A.S.Meriaux, B.Meyer, Y.Gaudemer, R.C.Finkel,M.W.Caffee, G.G.Zhao, Z.Q.Xu,2002. Uniform post glacial slip-rate along the central600kmof the Kunlun Fault(Tibet), from Al-26, Be-10, andC-14dating of riser offsets, and climaticorigin of the regional morphology, Geophysical Journal International.148(3):356–388.
    Kanamori,H.,G..S. Stewart,1976. Seismological aspects of the Guate-mala earthquake ofFebruary4, J. Geophys. Res.,83,3427-3434,1978.
    Kanamori, H., and G. S. Stewart,1978. Seismological aspects of the Guatemala earthquake ofFebruary4,1976, J. Geophys. Res.,83,3427-3434.
    Karplus M S, Zhao W, Klemperer S L, Injection of Tibetan crust beneath the south Qaidam Basin:Evidence from INDEPTH IV wide-angle seismic data. JOURNAL OF GEOPHYSICALRESEARCH-SOLID EARTH.2011,116,B07301:1~23.
    Knuepfer, P.,1989, Impllication of the characteristics of end-points of historial surface faultruptures for the nature and its relation to morphology and geological structure,Pageoph,124(3).
    Lane R. Johnson and Robert M. Nadeau,2002,Asperity Model of an Earthquake:Static Problem,Bulletin of the Seismological Society of America,92(2):672-686.
    Lane R. Johnson and Robert M. Nadeau,2005,Asperity Model of an Earthquake: DynamicProblem, Bulletin of the Seismological Society of America,95(1):75-108.
    Lay T, Kanamori H.1981. The asperity model of earthquake sources and its implication fortriggering and discrimination [M]//Earthquake prediction: An international review, MauriceE wing Ser,4, Vol. Washington D C,AGU,579-592.
    Lay T, Kanamori H, Ruff L.1982. The asperity model and the nature of large subduction zoneearthquake[J]. Earthquake Prediction Res,1:3~72.
    Lin A M, Guo J M.Nonuniform Slio Rate and Millennial Recurrence Interval of LargeEarthquakes along the Eastern Segment of the Kunlun Fault,Northern Tibet. Bulletin of theSeismological society of America,2008,98(6):2866~2878.
    Matsuda,T.(1974). Surface fault sassociated with Nobi (Mino-Owari) Earthquake of1891, Japan,Bull. Earthq.Res.Inst., Univ.Tokyo13,127–162.
    Matsuda T, Estimation of future destructive earthquakes from active faults on land in Japan, JPhys Earth Suppl,1977.25:795~855
    Wallace, R. E, et al. Terms for expressing earthquake potential prediction, and probability.Bull. Seism. Soc. Am,1984,74:1819~1925
    Mikumo, T., and T. Miyatake,1978. Dynamic rupture process on a three-dimensional fault withnon-uniform frictions and near-field seismic waves, Geophys J. R. Astron. Soc.,54,417-438.
    Miyake,H.,T.lwata,and K.Irikura (2001),Estimation of rapture propagation direction andstrong motin generation area from azimuth and distance dependence of source amplitudespectra. Geophys. Res. Leu.,28(14),2727-2730.
    Miyake,H.,T.lwata,and K.Irikura(2003),Source characterization for brandband ground·motionsimulation: kinematic heterogeneous source model and strong motion generationarea.Bull.Seism.Soc.Am.93(6),2531-2545.
    Miyamura S, Omote S, Teissryre R, et al.1964. Multiple shocks and earthquake series pattern[J].Bull Int Inst Seismol Earthquake Eng,2:71~92.
    Mogi, K.,1962. Study of elastic shocks caused by the fracture of heterogeneous material and itsrelation to earthquake phenomena, Bull. Earthquake Res. Inst. Univ. Tokyo,40,125-173.
    Morgan T.Page,Eric M.Dunham,and J.M.Carlson,Distinguishing barriers and asperities innear-sourse ground motion, JOURNAL OF GEOPHUSICAL RESEARCH,VOL.10,B11302,doi:10.1092/2005JB003736
    Nathan Harkins, E.Kirby, X.Shi, et al.Millennial slip rates along the eastern Kunlunfault:Implications for the dynamics of intracontinental deformation inAsia.Lithosphere,2010,2(4),247-266
    Nishenko S P. Seismic potential for large and great interplate earthquakes along the Chilean andsouthern Peruvian margins of South America: A quantitative reappraisal. J. Geophys.Res.,1985,90:3589~3615
    Nishenko S P, Buland R. A generic recurrence interval distribution for earthquake forecasting. BullSeism So Amer,1987,77:1382~1399
    Nishenko S P, Singh S K, Conditional probabilities for the recurrence of large and great iner-plateearthquakes along the Mexican Subduction zone, Bull Seism Soc Amer,1987,77:2094~2114.
    N.VanPuymbroeck, R.Michel, R.Binet, J.P.Avouac, J.Taboury,2000. Measuring earthquakes fromoptical satellite images, Applied Optics39(20):3486–3494.
    Otsuka, M.,1976.A simulation of earthquake occurrence,5, An interpretation of aftershockphenomena (in Japanese), Jishin,29,137-146
    Papageorgiou, A., and K. Aki,1983a. A specific barrier model for the quantitative description ofinhomogeneous faulting and the prediction of strong ground motion, I, Descriptionof the model, Bull. Seismol. Soc. Am.,73,693-722.
    Papageorgiou, A., and K. Aki,1983b. A specific barrier model for the quantitative descriptionof inhomogeneous faulting and the prediction of strong ground motion, II, Applications of themodel, Bull. Seismol. Soc. Am.,73,953-978.
    Parsons T,chen Ji,Kirby E.Sress changes from the2008wenchuan earthquake and increasedhazard in the Sichuan basin. Nature454,2008,509~510.
    P.J.Haeussler, D.P.Schwartz, T.E.Dawson, H.D.Stenner, J.J.Lienkaemper, B.Sherrod, F.R.Cinti,P.Montone,P.A. Craw,A.J. Crone,S.F. Personius,2004. Surface rupture and slip distributionof the Denaliand Totschunda faults in the3November2002M7.9earthquake, Alaska,Bulletin of the Seismological Society of America.94(6):S23–S52.(Puymbroecket al,2000;Michel and Avo uac,2002;Dominguez et al,2003)。
    Reid,H.F.,1911, The elastic-rebound theory of earthquake, Univ. Calif. Publ. Bull. Dept of Geol.6713-6744.
    ReiterL.,1991,Earthquake Haazrd Analysis-Issues and Insights,Columbia University Press,New York。
    R.Michel, J.P.Avouac, Deformation due to the17August1999Izmit, Turkey, earthquakemeasured from Spotimages, Journal of Geophysical Research.107(B4).
    Savage, J. C. and Cockerham, R. S., Quasi-period occurrence of earthquake in the1978-1996Bishop-Mammoth lakes Sequence, eastern California, Bull. Seism. Soc. Am.,1987,77,41371-41358.
    Schwartz, D. P. and Coppersmith, Fault behavior and characteristic earthquake: examples from theWasatch and San Anderas Fault zones, J. Geophys. Res.,1984,89,5681-5698.
    Scholz C H.1968. The frequency-magnitude relation of microfracturing in rock and its relation toearthquakes[J]. Bull Seim Soc Am,58(I):399~415.
    Scholz, Ch.H.,1990.The mechanics of earthquakes and faulting.Cambridge University Press.Cambridge,439PP.
    Schwartz, D. P., and K. J. Coppersmith,1978. Fault behavior and characteristic earthquakes:Examples from the Wasatch and San Andreas fault zone, J. Geophys. Res., this issue.
    Schorlemmer, D.P., Wiemer,S., Wyss,M.,2004. Earthquake statistics at Parkfield: Stationarity of bvalues[J]. J Geophys Res.,109:B12307.
    Scieh, K.E., M.Stuiver and D.Brillinger,1989, A more precise chronology of earthquakesproduced by the San Andreas fault in Southern California, J.Geophys.Res.,94603-94623.
    Schwartz,D.P. and Corpersmith, K. J.,1984, Fault behavior and characteristicearthquakes-examples from the Wasatch and San Andreas fault zones,J.G.R.,89(B7):5681-5698.
    S.Dominguez, J.P.Avouac, R.Michel,2003. Horizontal coseismic deformation of the1999Chi-Chiearthquake measured from Spot satellite images: implications for the seismic cycle along thewestern foot hills of centra Taiwan, Journal of Geophysical Research.108(B2).doi:10.1029/2001JB000951.
    Segall,P. Pollard,D.D.1980. Mechanics of discontinuous faults. J. Geophys. Res.85,4337–4350.
    Shi, Y., Bolt, B.,1982. The standard error of the magnitude frequency b Values[J]. Bull. Seism.Soc. Am.,72:1677-1687.
    Shimazaki,k. and Nakata, T.,1980, Time-predicatable recurrence mode for large earthquakes,Geophys. Res. Lett.,7279-7282.
    Sieh,K.E.(1978). Slip along the SanAndreas fault associated with the great1857earthquake,Bull.Seismol.Soc.Am68.1421–1448.
    Sieh,K.,L. Jones,E. Hauksson,K.(1993). Near-field investigations of The Landers earthquakesequence, April to July1992, Science260:171–176.
    S.McGill, C.Rubin,1999. Surficial slip distribution on the central Emerson fault during the June28,1992, Landers earthquake, Journal of Geophysica lResearch.104(B3):4811–4834.
    Somerville,P.,K.1rikula,R,Graves,S Sawada,D.Wald,N.Abrahamson,Y lwasaki,T,Kagawa,N.Smith,and A.Kowada(1999).Characterizing Crustal Earthquake Slip ModelsFor the Prediction of Strong Ground Motion,Seism Res Lett.70(1),59-80.
    StevenG. Wesnousky,2006. Predicting the endpoints of earthquake ruptures.Nature.05275. vol(444).358-360.
    Sykes L R, Nishenko S P. Probabilities of occurrence of large plate rupturing earthquakes for SanAndreas, San Jacinto and Imperial fault, California,1983~2003, J Geophys Res,1984,89:5905~5927.
    Treiman,J.,K.J. Kendrick,W.A. Bryant,T.K. Rockwell, and S.F.McGill (2002). Primary surfacerupture associated with the Mw7.116October1999Hecto rMine earthquake, SanBernardino County, California, Bull. Seismol.Soc.Am92, no.4,1171–1191.
    Urbancic T I, Trifu C I, Long J M, et al.1992. space time correlations of b values with stressrelease[J]. Pure Appl Geophys,139(3-4):449~462.
    Wells and Coppersmith(1994),New empirical relationships among magnitude,rapture length,rupture width,rupture area, and surface displacement.Bull, Seism Soc Am.84(4):974—1002.
    Wells D L,Coppersmith K J,1994.Updated empirical relationships among magnitude,rupturelength,rupture area,and surface displacement.Bull Seism Soc Am,947-1002.
    Wesnousky, S. G., Scholz. C. H., K.1982. Shimazaki, and T. Matsuda, The occurrence rate ofearthquakes on Quaternary faults in interplate Japan, paper presented at the ChapmanConference on Fault be-havior and the Earthquake Generation Process, AGU, Snowbird,Utah, Oct.11-15.
    Wesnousky,S.1988. Seismological and structural evolution of strike-slip faults. Nature.335,340–343.
    Wiemer S, Wyss M.1997. Mapping the frequency-magnitude distribution in asperities: Animproved technique to calculate recurrence times[J]. J Geophy Res,102(B7):15115~15128.
    Wiemer S., Wyss, M.,2000. Minimum Magnitude of Completeness in Earthquake Catalogs:Example from Alaska, the Western United states, and Japan[J]. Bulletin of theSeismological Society of America,90(4):859~869.
    Wording Group on California Earthquake Probabilities.,1995, Seismic hazards in Southern
    California: Probable earthquake,1994-2024, Bull Sei Soc Amer,85:379-439.
    Wyss M, Brune J N.1967. The Aladka earthquake of28March1964: A complex multiplerupture[J].Bull Seim Soc Am,57(5):1017~1023.
    Wyss, M., Klein, F. M. and Johnson, A.C.,1981. Precusors to the Kalapara M=7.2earthquake, J.Geophys. Res.,86,3881.
    Wyss M, Schorlem mer D, Wiemer S.2000. Mapping asperities by minima of local recurrencetime: San Jacinto-Elsinore fault zones[J]. J Geophy Res,105(B4):7829~7844
    Xiwei Xu, Wenbin Chen, Wentao Ma.et al. Surface Rupture of the Kunlunshan Earthquake(Ms8.1)Northern Tibetan Plateau, China. Seismological Research Letters,2002,73(6):884-892.
    X.Xu, W.Chen, W.Ma, G.Yu, G.Chen,2002. Surface rupture of the Kunlunshan earthquake(Ms8.1),northern Tibet and plateau, China, Seismological Research Letters.73(6):884–892.
    Valentin I. Ulomov,1999, Seismic hazard of Northern Eurasia, Annali Di Geofisica,42(6),1023-1038.
    Y. Klinger, R. Michel, G. C. P. King.2006. Evidence for an ear thquake barrier model from Mw~7.8Ko ko xili (Tibet) earthquake slip distribution. Earth and Planetary Science Letters242(2006):354-364.
    Van der Woerd J,Tapponnier P,Ryerson FJ et al. Uniform postglacial slip-rate along the central600km of the Kunlun fault, from26A1,10Be,and14C dating of riser offsets, and climaticorigin of the regional morphology. Geophysical Journal International,2002b, I48:356~388.
    Yadav,R.B., P.B.K.,Rastigi, et al.2009. A Homogeneous and Complete Earthquake Catalog forNortheast India and the Adjoinning Region[J]. Seismological Research Letters,80(4):609~627.
    Youli Chen and Charles G.Sammis,2003, Asperity Models for Earthquake, Bulletin of theSeismological Society of America,93(4):1792-1802.
    Zhang,P., Slemmons,D.B. Mao,F.1991. Geometric pattern, rupture termination, and faultsegmentation of the Dixie Valley-Pleasant Valley active normal fault systems, Nevada. USAJ. Struct. Geol.13,165–176.
    Zhang ZJ, Klemperer S, Bai ZM et al. Crustal structure of the Paleozoic Kunlun orogeny from anactive-source seismic profile between Moba and Guide in EastTibet,China. Gondwana Research,2011,19(4):994-1007
    Zuniga, R., Wyss,1995. Inadvertent changes in magnitude reported in earthquake catalogs:Influence on b-value estimates, Bull Seismol Soc Am[J],85:1858~1866.
    Zuniga, F.R., S.Wiemer,1999. Seismicity patterns: are they always related to natural causes?,Pageoph,155,713~726.
    Zhang Peizhen et al.,1991, Geometric pattern, rupture termination and fault segmentation ofDixie Valley-Pleasant Valley actice fault system, Nevada, U.S.A>, Journal of StructureGeology,13(2):165-176.
    柴炽章,廖玉华,张文孝.灵武断裂晚第四纪古地震及其破裂特征[J].地震地质,2001,23(1):15~23。
    曹娟娟,刘百篪,闻学泽西秦岭北缘断裂带特征地震平均复发间隔的确定和地震危险性评价[J],地震研究,2003,26(4):372~381。
    陈柏林,王春宇,宫红良。关于河西走廊盆地榆木山北缘断裂晚第四纪活动特征的新认识.地质通报,2007,26(8):976~983。
    陈国光,计凤桔,周荣军,等.2007.龙门山断裂带晚第四纪活动性分段的初步研究[J].地震地质,29(3):657-673。
    陈桂华,徐锡伟,于贵华等.2008年汶川8.0级地震多断裂破裂的近地表同震滑移及滑移分解.地球物理学报,2009,52(5):1384-1394。
    陈立春,王虎,冉勇康等.玉树Ms7.1级地震地表破裂与历史大地震.科学通报,2010,13:1200-1205。
    陈培善,白彤霞,李保昆.2003. b值和地震复发周期[J].地球物理学报,46(4):510~519。
    戴华光,1983.1947年青海达日73级地震.西北地震学报,5(3):73-79。
    邓起东,于贵华,叶文华,1992.地震地表破裂参数与震级关系的研究.见:国家地震局地质研究所编.活动断裂研究(2).北京:地震出版社:247—264。
    丁国瑜,1989,第四纪断层上断裂活动的群集及迁移现象,第四纪研究,1期。
    丁国瑜,田勤俭,孔凡臣等.活断层分段[M].北京:地震出版社,1993。
    杜鹏,柴炽章,廖玉华.贺兰山东麓断裂南段套门沟一榆树沟段全新世活动与古地震.地震地质2009,31(2):256~264。
    董治平,赵仪全,慕文斋等,2005.1954年山丹7(1/4)级地震概述.西北地震学报,27(S1):21-28。
    胡聿贤,1988,地震工程学,地震出版社。
    胡银磊,张裕明等.1996,中国大陆地震(Ms≥6.0)震中与其发震断层距离的统计分析及其在确定潜在震源区边界中的应用,中国地震,12(2),224-228。
    何文贵,吕太乙等.1994.老虎山断裂带的分段性研究西北地震学报.16(3):66-72。
    何文贵,刘百篪,袁道阳.2000.冷龙岭断裂带古地震研究[A],见:中国地震局地质研究所编.活动断裂研究(8),北京:地震出版社.64~74。
    何文贵,熊振,袁道阳.东昆仑断裂带东段玛曲断裂古地震初步研究.中国地震,2006,22(2):126~134。
    胡道功,吴中海,吴珍汗,等.东昆仑断裂带库赛湖段晚第四纪古地震研究.第四纪研究,2007,27(1):27-34。
    胡道功,叶培盛,吴珍汉等.东昆仑断裂带西大滩段全新世古地震研究.第四纪研究,2006,26(6):1012~1020。
    环文林,时振梁,宋昭仪,1995.中国大陆内部走滑型发震构造的构造变形场特征.地震学报,17(2):139~147。
    黄伟琼,李文香.1997. b值统计的物理背景.地震学报,19(1):86~92。
    黄伟琼,吴宣.2001.统计时段对地震活动性参数估计的影响.地震学报,13(3):588~595。
    环文林,张晓东,宋昭仪.1997.中国大陆内部走滑型发震构造粘滑运动的结构特征.地震学报,19(3):225-234。
    冯先岳.1997.新疆古地震[M].乌鲁木齐:新疆科技卫生出版社,1-250。
    冯先岳,李军,张勇,1988.1985年乌恰7.4级地震形变带.地震地质,10(2):7-18.
    高孟潭,胥光银,1996,潜在震源区内部空间非均匀分布地震区划方法在攀西地区和晋中南地区的应用,见:不同区划方法结果的对比研究,“八五”课题结题报告(85-07-01-01-02)
    国家地震局”阿尔金活动断裂带课题组.阿尔金活动断裂带[M],北京:地震出版社,1992。
    国家地震局,1996,中国地震烈度区划(1990)概论,地震出版社。
    国家地震局地质研究所,国家地震局兰州地震研究所.祁连山一河西走廊活动断裂系[M].北京:地震出版社.1993。
    国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带.北京:地震出版社,1990:1-279。
    国家地震局地质研究所.西藏中部活动断层.北京:地震出版社,1992:1-229。
    国家地震局地质研究所,1993.祁连山-河西走廊活动断裂系[M].北京:地震出版社。
    国家地震局“鄂尔多斯周缘活动断裂系”课题组.鄂尔多斯周缘活动断裂系[M].北京:地震出版社,1988。
    郭敬信,侯珍清,侯康明.昌马一祁连断裂带中段全新世活动特征与古地震,西北地震学报,1990,12(3):38~43。
    康来迅.昌马断裂带古地震的探讨,地震学刊,1986,4:16-21
    李春峰,贺群禄,赵国光.东昆仑活动断裂带东端古地震活动特征,地震学报,2005,27(1):60-67。
    李陈侠.东昆仑断裂带东端(玛沁-玛曲)晚第四纪长期滑动习性研究[博士论文].北京:中国地震局地质研究所,2009。
    李陈侠,戴华光,陈永明等.对1937年托索湖7.5级地震若干问题的探讨.地震地质,2006,28(1):12-21。
    李海兵,王宗秀,付小方等.2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征.中国地质,2008,35(5):803-813。
    李家灵,晁洪太,崔昭文,等,1994.1668年郯城8.5级地震断层及其破裂机制.地震地质,16(3):229~237。
    李玶.1993.鲜水河-小江断裂带[M],北京,地震出版社。
    李全林,陈锦标,于渌等.1978. b值时空扫描—监视破坏性地震孕育过程的一种手段[J].地球物理学报,21(2):101-123。
    李天昭,杜其方,游泽李,1992.折多塘断裂的新活动与1955年7.5级地震.活动断裂研究(2),北京:地震出版社。
    李天袑,杜其方,游泽李,等.1997.鲜水河活动断裂带及强震危险性评估[M].成都地图出版社。
    李勇,周荣军,Densmore A L,等.2006.青藏高原动员龙门山晚新生代走滑-逆冲作用的地貌标志[J].第四纪研究,26(1):40-52。
    李正芳,周本刚,冉洪流.2012,运用古地震数据评价东昆仑断裂带东段未来百年的强震危险性.地球物理学报,55(9):3051-3065. doi:10.6038/j.issn.0001-5733.2012.09.023
    李正芳,周本刚,王明明等.2011,青藏高原区Ms-L回归关系式的不确定性分析.震灾防御技术,6(3):209~219.
    李志强,袁一凡,李晓丽等.对汶川地震宏观震中和极震区的认识.地震地质,2008,30(3):768-777。
    笠原庆一著,郑斯华,庄灿涛译,防灾工程学中的地震学[s]。地震出版社,北京,1992。
    刘百篪,曹娟娟,袁道阳.青藏高原北部活动地块内部的活断层定量资料.地震地质,2008,30(1):161~175。
    刘静,汪良谋.运用活动层资料评价汾渭地震带中长期地震危险性.地震学报,1996,18(4):427-435。
    刘小风,刘百篪,吕太乙等.老虎山活断层研究.华南地震,1994,14(4):9~16。
    刘小龙,袁道阳.青海德令哈巴音郭勒河断裂带的新活动特征,西北地震学报,2004,26(4):303~308。
    龙德雄、邓天岗,1990.1786年康定地震形变特征的初步研究.地震研究,13(1):53-62.
    卢振业,1989.多闭锁段破裂过程的模拟实验,地震,2.36。
    虢顺民,向宏发,张靖等,1988.1515年云南永胜地震形变带和震级讨论.地震研究,11(2):43-52。
    马寅生,张永双,胡道功等,2010.玉树地震地表破裂与宏观震中.地质力学学报,16(2):116-128。
    四川省地震局.鲜水河断裂带及强震危险性评估.成都:成都地图出版社,1997:1-227。
    闵伟,1998,区域古地震研究-以青藏高原东北缘和华北西缘为例,博士学位论文,北京:中国地震局地质研究所。
    闵伟,柴炽章,王萍.罗山东麓断裂全新世古地震研究[J].高原地震,1993,5(4):97~102。
    闵伟,张培震,邓起东.中卫一同心断裂带全新世古地震研究.地震地质,2001,23(3):357~366。
    宁夏地震局.1995.天景山活动断裂带.北京:地震出版社。
    潘华,鄢家全,1995,潜在震源区概念的界定,国际地震动态,No.4,1-5。
    钱洪.1983,鲜水河断裂带反“多”字型地裂缝带的成因机制.地震地质.5(3):75-79。
    青海省地震局,中国地震局地壳应力研究所.东昆仑活动断裂带.北京:地震出版社,1999,1~186。
    冉洪流,2009.潜在震源区震级上限不确定性研究.地震学报,31(3):396-402。
    四川省地震局,1989.鲜水河活动断裂带.成都:四川科学技术出版社.97~98。
    宋方敏,汪一鹏,曹忠权,等,1992.小江西支断裂带中段活动断裂的组合特点及其活动演化.活断裂研究,2.北京:地震出版社.30~40。
    孙鑫喆,徐锡伟,陈立春等.2010年玉树地震地表破裂带典型破裂样式及其构造意义.地球物理学报,2012,55(1):155-170,doi:10.6038/j. issn.0001-5733.2012.01.015。
    唐荣昌,1976.1973年炉霍7.9级地震的地裂缝特征及地震成因的初步探讨.地球物理学报,19(1):20-29。
    王二七,孟庆任,陈智梁,等.2001.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘[J].8(2):375-384。
    王海云.近场强震动预测的有限断层震源模型.哈尔滨:中国地震局工程力学研究所,2002。
    王海云,陶夏新.近场强震动预测中浅源地震的Asperity模型特征.哈尔滨工业大学学报,2005,37(11):1533-1539。
    王卫民,赵连峰,李娟等.2008.四川汶川8.0级地震震源过程.地球物理学报(.5):1403-1410。
    汪一鹏,宋方敏,李志义等,1990,宁夏香山-天景山断裂带晚第四纪强震重复间隔的研究.中国地震,6(2):15-24。
    汪一鹏,俞维贤,宋方敏等,1996.1833年云南嵩明8级大地震地表破裂带的考查研究.地震研究,19(4):385-390。
    王永成,刘百篪.祁连山中东段断裂的地震危险性分析.西北地震学报,2001,23(4):330~338。
    闻学泽,1995,活动断裂地震潜势的定量评估,北京:地震出版社。
    闻学泽,1999,中国大陆活动断裂的段破裂地震复发行为,地震学报,21卷,4期,411-418。
    闻学泽.2000.四川西部鲜水河-安宁河-则木河断裂带的破裂分段特征.地震地质,22(3):239-249。
    闻学泽.2001.活动断裂的可变破裂尺度地震行为与级联破裂模式的应用.地震学报,23(4):380-390。
    闻学泽,鲜水河断裂带未来三十年内地震复发的条件概率.中国地震,1990,6(4):8-14。
    闻学泽,汪一鹏,1999b,我国活动断裂地震危险性研究的进展与问题,见:活动断裂研究理论与应用(7),中国地震局科技发展司《活动断裂研究》编委会,地震出版社,1-11。
    吴章明,曹忠权,邓起东,1990.1411年西藏当雄南8级地震地表破裂.地震地质,12(4):98-108.
    吴章明,邓起东,1989.西藏崩错8级地震地表破裂的变形特征及其破裂机制.地震地质,11(1):17-27。
    膝瑞增,金瑶全,李西侯等.西秦岭北缘断裂带新活动特征.西北地震学报,1994,16(2):85~90。
    谢华章.1991. b值数字模拟的再研究[J].华北地震科学,9(1):28-34。
    熊仁伟,任金卫,张军龙.玛多一甘德断裂甘德段晚第四纪活动特征.地震,2010,30(4):65~73。
    胥光银,高孟潭.1996,潜在震源区内部非均匀特征研究,中国地震,12(3),294-299。
    徐锡伟,1999.藏北玛尼地震科学考察.见:刘玉辰主编,中国地震年鉴.北京:地震出版社:327-329。
    徐锡伟,陈文彬,于贵华等.2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征.地震地质,2002,24(1):1-13
    徐锡伟,陈文彬,于贵华等,2004.2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带基
    本特征.地震地质,24(1):1-13。
    徐锡伟,闻学泽,郑荣章等.2003.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D),33(增刊):151-162。
    徐锡伟,闻学泽,于贵华等,2005.川西理塘断裂带平均活动速率、地震破裂分段与复发特征.中国科学D辑,35(6):540-551。
    徐锡伟,闻学泽,叶建青,等.2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,30(3):597-629。
    许志琴,李化启,侯立炜,等.2007.青藏高原东缘龙门-锦屏造山带的崛起—大型拆离断层和挤出机制.地质通报,26(10):1262-1276。
    许志琴,杨经绥,李海兵等.青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质,2006,33(2):221~238。
    许志琴,杨经绥,李海兵等.印度-亚洲碰撞大地构造.地质学报,2011,85(1):1~33。
    杨晓平,蒋溥,宋方敏,等.1999.龙门山断裂带南段错段晚更新世以来地层的证据.地震地质,21(4):341-345。
    易桂喜,范军,闻学泽.2005.由现今地震活动分析鲜水河断裂带中-南段活动习性与强震危险地段.地震,25(1):58-66。
    易桂喜,闻学泽,王思维等.2006.由地震活动参数分析龙门山-岷山断裂带的现今活动习性与强震危险性.中国地震,22(2):117-125。
    易桂喜,闻学泽.2007.由地震活动性参数在断裂带现今活动习性与地震危险性评价中的应用与问题.地震地质,29(2):254-270。
    俞维贤,柴天俊,侯学英,1991.澜沧7.6级地震形变带.地震地质,13(4):57-66。
    俞维贤,宋方敏,闻学泽等,2001.1850年西昌地震地表破裂带的考察研究.地震研究,24(4):69-73。
    袁道阳,张培震,刘小龙.青海鄂拉山断裂带晚第四纪构造活动及其所反映的青藏高原东北缘的变形机制.地学前缘(中国地质大学,北京),2004,11(4):393~402。
    郑文俊.河西走廊及其邻区活动构造图像及构造变形模式[博士论文].北京:中国地震局地质研究所,2009。
    郑文俊,袁道阳.祁连山东段天桥沟-黄羊川断裂古地震活动习性研究.地震地质,2004,26(4):645~657。
    张俊昌,1988.1970年通海地震断层的特征.中国地震断层研究,新疆人民出版社。
    张秋文,1999,大陆强震复发模型与断裂相互作用研究及其在地震预测中的应用,博士学位论文,北京:中国地震局地质研究所。
    张培震,毛凤英.活动断裂定量研究与中长期强地震危险性概率评价[A].活动断裂研究(5)[c].北京:地震出版社,1996.l2~31。
    张培震,闵伟,邓起东.海原活动断裂带的古地震与强震复发规律[J],中国科学(D辑),2003,33(8):705~713。
    张智,1989.地震破裂扩展面上多个障碍休的实验研究,中国地震2(2),24。
    张勇,冯万鹏,许力生等.2008年汶川大地震的时空破裂过程.中国科学(D辑):地球科学,2008,38(10):1186-1194。
    朱艾斓,徐锡伟,甘卫军等.2009.鲜水河-安宁河-则木河断裂带上可能存在的凹凸体:来自背景地震活动性的证据.地学前缘,16(1):218-224。
    朱成男,滕德贞,段加乐等,1988.1733年东川地震的地表破裂.中国地震断层研究,新疆人民出版社。
    周本刚,2002,发震构造特性在潜在震源区中的应用研究,博士学位论文,北京:中国地震局地质研究所。
    周本刚,张裕明,董瑞树等.1997,划分潜在震源区的地震地质规则研究,中国地震,13(3):241-252。
    周瑞琦,俞维贤,谷一山等,1990.云南耿马7.2级地震地表破裂带研究.地震地质,12(4):3-14。
    邹谨敞,貌顺民,陈志泰.榆木山东麓断裂带晚第四纪活动特征的初步研究.高原地震,1993,5(2):31~35。
    周荣军,马声浩,蔡长星等,1996.甘孜-玉树断裂带的晚第四纪活动特征.中国地震,12(3);250-260。
    朱成男.1984.曲江断裂几何学及其与地震活动的关系.地震研究.7(5):525-531。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700