用户名: 密码: 验证码:
龙日坝断裂带晚第四纪活动及与其周边断裂的运动学关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欧亚板块与印度板块的碰撞,导致了青藏高原的大幅度隆升,并造就和改变了整个欧亚大陆的构造格局,并对亚洲地区的气候与环境产生了重大影响。同时,还造成了青藏高原向东运动。青藏高原东缘形成了整个高原最为陡变的地形梯度,是目前研究青藏高原向东运动及青藏高原东缘隆升机制的重要场所。2008年汶川Ms8.0级地震造成了龙门山断裂带的破裂,这更激发了对青藏高原东缘隆升机制研究的兴趣。关于青藏高原东缘的变形机制主要有两个端元模式:一种是大陆逃逸模式,认为青藏高原东缘的变形主要集中在重要的活动边界断裂上;另一种是管道流模式,认为变形在青藏高原东缘地区广泛分布,活动断裂所承担的变形量很小。已建立的用来解释龙门山隆升和汶川地震的发震机制的模式均认为青藏高原东缘的变形主要集中在龙门山断裂带上,但这些模式未对川西高原在青藏高原向东运动中变形吸收的作用进行讨论。
     龙日坝断裂带位于龙门山以西约200km,与龙门山断裂带大致平行。初步研究认为该断裂带中段晚第四纪具有较强的活动。从构造上来看,该断裂带是一个重要的次级边界构造带,它把巴颜喀拉块体分为阿坝和龙门山两个次级块体。断裂带以西地貌上为相对平坦的高原面,断裂以走滑运动为主;以东为地形起伏的龙门山隆起,断裂以逆冲作用为主。那么,龙日坝断裂带详细的几何展布特征怎样?其晚第四纪活动强度如何?最新一次大震的离逝时间是多少?断裂上的大震破裂模式是什么?2008年汶川地震造成了相距~15km的两条近平行的映秀-北川断裂和灌县-江油断裂的级联破裂,而龙日坝断裂带中段上的两条近平行的断裂仅相距~20-30km,是否也会发生级联破裂事件呢?但在龙日坝断裂带上缺少历史大震的记录。另外,作为青藏高原向东运动中遇到的第一个阻隔的龙日坝断裂带在青藏高原东缘变形分配中承担什么样的作用?龙日坝断裂带的北段似乎与昆仑断裂带相连,那么其与昆仑断裂带具有什么样的运动学关系?这些问题的解决不仅能为龙日坝断裂带上的地震危险性评价提供定量资料,而且有助于对青藏高原向东运动及青藏高原东缘隆升机制的理解。
     本论文在分析整理前人资料的基础上,通过高分辨率卫星影像解译,进行了详细的野外地质调查,确定龙日坝断裂带的几何展布特征;并对断错微地貌进行详细测量和测年(碳14和光释光),计算其晚第四纪滑动速率;同时,开挖古地震探槽,恢复断裂晚第四纪以来的破裂历史,分析断裂的破裂行为。此外,还对昆仑断裂最东段的塔藏断裂的晚第四纪活动特征进行了详细调查。最后,通过地质学滑动速率和GPS速度资料综合分析龙日坝断裂带在青藏高原东缘变形分配中的作用。通过上述研究,主要得到如下认识:
     1)龙日坝断裂带中段由两条近平行的断裂(毛尔盖断裂和龙日曲断裂)组成,且断错地貌清晰。其中毛尔盖断裂主要沿着毛尔盖河和羊拱沟的北侧基岩山坡展布,发育断错山脊和断错水系,其晚第四纪活动表现为右旋走滑;龙日曲断裂主要沿龙日曲河和雀儿登河北侧山坡通过,发育断错山脊和断错山前洪积扇,形成显著的断层陡坎,表明该断裂以右旋走滑为主,兼有向南东方向的逆冲作用。断错地貌表明龙日曲断裂自18ka以来右旋走滑速率为2.5±0.4mm/yr,而自约11ka以来的右旋走滑速率为1.4+0.4/-0.3mm/yr,其上的垂直滑动速率均非常小(0.1~0.2mm/yr)。毛尔盖断裂自约21ka以来的右旋走滑速率为2.3+0.4/-0.3mm/yr,但自约9.5ka以来右旋走滑速率为0.7±0.1mm/yr。这些结果表明整个龙日坝断裂主要表现右旋走滑,兼有非常小的向南东逆冲的分量。而整个龙日坝断裂带中段的晚更新世晚期以来总的平均右旋走滑速率为4.8mm/yr,但晚更新世晚期至全新世滑动速率约为7.5mm/yr,而全新世以来的滑动速率约为2.1mm/yr,滑动速率的降低可能与青藏高原向东运动的减慢有关。
     2)龙日坝断裂带南段断续展布,在观音桥一带出露最好,其全新世水平滑动速率为0.3~0.5mm/yr,垂直滑动速率为0.2~0.3mm/yr。龙日坝断裂带北段走向转为近南北向,变形分散在至少两个分支上。西支活动性较弱,断错晚第四纪地貌不清晰,而东支出露较好,具有向西逆冲分量,全新世以来的右旋平均走滑速率约为0.8mm/yr,平均垂直滑动速率约为0.3mm/yr。
     3)在昆仑断裂的东端,存在着多条晚第四纪活动的断裂。塔藏断裂西段以走滑运动为主,全新世以来左旋走滑速率为2.9±0.7mm/yr。而东段表现为向南西方向的逆冲,全新世平均滑动速率向东逐渐降低,从约1~1.5mm/yr到~0.3mm/yr,到最东端的塔藏镇仅表现为全新世河流阶地中地层的褶皱变形。塔藏断裂应为昆仑断裂的最东段,与昆仑断裂的主干断裂(玛曲段)之间以一个拉分盆地相隔。而岷江断裂以向东的逆冲作用为主,全新世以来的垂直滑动速率为0.37~0.53mm/yr。
     4)在龙日坝断裂带中段上开展的古地震探槽研究表明,毛尔盖断裂晚第四纪以来共有了三次古地震事件,分别发生在距今5170±80、7100±70和8510±420cal yr BP,基于断裂长度和估算得到的同震水平位错量可计算出其震级为Mw7.2~7.4。而龙日曲断裂上晚第四纪以来共有四次古地震事件,分别发生在距今5080±90、11100±380、13000±260和17830±530cal yr BP,而基于断裂长度可估算得到震级为Mw~7.4。从两条断裂上破裂图像来看,最新一次事件可能造成了两支断裂的共同破裂,其震级为Mw~7.6。而在最新事件之前,毛尔盖断裂和龙日曲断裂表现为交替的活动。如果把龙日坝断裂带中段作为一个整体来看,除了最新一次事件外,整个断裂带似乎符合约2000年复发间隔的准周期复发特征。超过5000年的离逝时间和较高的滑动速率,预示着龙日坝断裂带中段未来具有较高的大震危险性。
     5)青藏高原从中部以正东的方向向东运动,而在青藏高原东缘受到走向约NE60o龙日坝断裂带和龙门山断裂带的阻挡。来自青藏高原内部的运动一部分转化为沿龙日坝断裂带上的右旋走滑,另一部分继续向东南运动与刚性的四川盆地碰撞,相对较软的龙门山次级块体承担了来自青藏高原内部和四川盆地块体的挤压,导致了山体抬升和龙门山断裂带上的逆冲兼右旋走滑作用。与龙门山断裂带一样,龙日坝断裂带的两个分支断裂交汇于深约20km的滑脱面上。GPS速率和地质学速率均表明龙门山断裂带在吸收青藏高原东缘变形中承担重要的作用,但龙日坝断裂带也这个应变分配过程中也承担着同等重要的作用。龙门山次级块体在来自青藏高原内部的向东的推挤和来自四川盆地北西向的挤压,龙日坝断裂上较陡的断层倾角使得其主要承担走滑运动,而龙门山断裂带较缓的断层倾角使得其主要承担逆冲作用。
     6)横穿岷山隆起近东西向的GPS剖面和昆仑断裂东端的活动断裂的地质学滑动速率结果表明,昆仑断裂主断裂玛曲段上的左旋走滑位移除了一小部分转化为塔藏断裂东段的逆冲作用外,大部分转化为沿龙日坝断裂带北段、岷江断裂、虎牙断裂等南北向构造上近东西向的地壳缩短,进而导致了岷山的隆升。若尔盖盆地可能是一个与岷山西部隆升有关的小型前陆盆地。
The ongoing collision of Eurasian and Indian plates caused the widespread uplift of theTibetan Plateau and has built the tectonic framework of the whole Eurasian area. This collisionalso has influenced significantly the climate and environment in the Asian area. The uplift of theTibetan Plateau is accompanied by the eastward motion of the plateau, leading to the greatestrelief in eastern Tibet than anywhere else on the plateau. Eastern Tibet has become an importantsite for studying the mechanism of eastward motion of the Tibetan Plateau and the uplift of easternTibet. The2008Wenchuan earthquake (Ms8.0) ruptured the Longmen Shan fault zone andstimulated numerous studies on eastern Tibet.
     Two end-member hypotheses are proposed to illustrate the deformation mechanism of easternTibet. A continental extrusion model predicts that the deformation is concentrated on majorboundary faults, whereas a lower crustal model suggests that the deformation is distributedthroughout the whole region of eastern Tibet, and the role of major faults played in the eastwardmotion of the Tibetan Plateau was not considered.
     The Longriba fault zone,~200km west of the Longmen Shan, is subparallel to the LongmenShan fault zone. Preliminary investigation showed a strong activity along the central Longribafault zone. Tectonically, the Longriba fault zone separates the Bayan Har block into the Aba andLongmen Shan subblocks. West of the fault zone, the landform is characterized by the flat surfaceof the Tibetan Plateau and strike-slip faults. East of the fault zone, it is marked by high relief ofthe Longmen Shan and thrusts. So, what about the fault geometry of the Longriba fault zone? Howabout the magnitude of its fault activity in the late Quaternary? How long is the elapsed time sincethe last event on this fault zone? Which model is suitable for ruptured behavior of largeearthquakes on this fault zone? In addition, the2008Wenchuan earthquake ruptured the twosubparallel faults with~15km apart: Yingxiu-Beichuan and Guanxian-Jiangyou faults. The twosubparallel strands in the central Longriba fault zone are separated by~20-30km, that raising thepossibility that a large earthquake could rupture both strands. However, no large historicalearthquake is known on this fault zone. Finally, as the first barrier on the way of eastwardmovement of the Tibetan Plateau, what role does the Longriba fault zone take in strain partitioningin eastern Tibet? The northern Longriba fault zone is linked with the Kunlun fault, how about thekinematic relation between them? The answers to these questions not only provide the quantitativeparameters for seismic hazard assessment on the Longriba fault zone, but help the understandingof the mechanism of eastward movement of the plateau and uplift of eastern Tibet.
     Based on the collection of previous data, we determined the geometry of the Longriba faultzone combined with high-resolution satellite images and field geological investigations. Using topographic survey of displaced landforms and dating of geomorphic surfaces (radiocarbon andOptically Stimulated Luminescence), Late Quaternary slip rates on this fault zone are calculated.We excavated trenches to reconstruct the paleoseismic history and then studied the rupturebehavior on this fault zone. In addition, we determined the slip rates along the Tazang fault.Finally, we discussed the role of the Longriba fault zone in strain partitioning in eastern Tibetusing geological and GPS slip rates. Based on the above studies, we draw the followingconclusions.
     1) The central Longriba fault zone consists of two strands (Maoergai and Longriqu faults)and has a clear faulted landforms. The Maoergai fault extends the northern bedrock slope ofMaoergai and Yanggong rivers and is characterized by shutter ridges and displaced channels,showing right-lateral strike-slip motion in late Quaternary. The Longriqu fault runs primarilyalong the slopes north of Longriqu and Queerdeng rivers and is marked by shutter ridges and faultscarps on the mountain-front alluvial fan. Displaced terraces indicate that the dextral rate along theLongriqu fault since~18ka is2.5±0.4mm/yr, but is1.4+0.4/-0.3mm/yr since~11ka. Its verticalslip rate is very small (0.1-0.2mm/yr), demonstrating that the Longriqu fault is predominantlystrike-slip. On the Maoergai fault, the dextral rate since~21ka is2.3+0.4/-0.3mm/yr, but is0.7±0.1mm/yr since~9.5ka. These results shows that the whole Longriba fault zone isdominantly right-lateral motion accompanying a very small south-verging thrust component onthe Longriqu fault. The dextral rate since the latest Quaternary is~4.8mm/yr, whereas the dextralrate in the Holocene is~2.1mm/yr. The slip rates on the central Longriba fault zone decreasesfrom~7.5mm/yr in the latest Pleistocene to~2.1mm/yr in the Holocene. The drop is probablyrelated to the slowdown of the eastward motion of the Tibetan Plateau.
     2) The southern Longriba fault zone is intermittently distributed and is only exposed nearGuanyinqiao Town. Its horizontal and vertical slip rates are0.3-0.5mm/yr and0.2-0.3mm/yr,respectively. The strike of the northern Longriba fault zone is nearly N-S trending and thedeformation spreads in at least two fault strands. The west strand probably undergoes a weaktectonic activity, where no faulted landform in late Quaternary is found. While the east strand iswell exposed and has a west-verging reverse component. It has a dextral slip rate of about0.8mm/yr and vertical slip rate of about0.3mm/yr.
     3) At the eastern end of the Kunlun fault, there are numerous faults active in late Quaternary.The western Tazang fault is dominated by left-lateral strike-slip motion with a Holocene rate of2.9±0.7mm/yr. Whereas, he eastern Tazang fault is characterized by south-west-verging reversemotion and has an eastward decrease along the fault from about1-1.5mm/yr to0.3mm/yr. At theeasternmost termination of the Tazang fault, it is marked by folded layers in the Holocene riverterrace at Tazang Town. The Tazang fault is probably the easternmost of the Kunlun fault zone andis linked with the master Kunlun fault (Maqu fault) via a pull-apart basin. The Minjiang fault ischaracterized by east-verging reverse motion with a vertical Holocene slip rate of0.37-0.53mm/yr.The Huya fault may have a relatively strong left-lateral motion and an east-verging reversecomponent with a vertical slip rate of0.3mm/yr in the Holocene. The Longmen Shan fault zone is dominated by thrusting with right-lateral component and has a late-Quaternary crustal shorteningrate of about3mm/yr. The Bailongjiang fault undergoes a minor slip rate in late Quaternary (<1mm/yr).
     4) The trenches on the central Lognriba fault zone show that three events ruptured theMaoergai fault in late Quaternary and occurred at5170±80,7100±70, and8510±420cal yr BP.Based on fault length and the estimated coseismic horizontal offsets, the magnitude of theseevents are approximately Mw7.2-7.4. Four surface-rupturing events occurred on the Longriqufault at5080±90,11100±380,13000±260, and17830±530cal yr BP. The last event probablyruptured the Longriqu and Maoergai faults and has a magnitude of Mw~7.6. Prior to the last event,the two fault strands of the Longriba fault zone appear to experience an alternating activity. If wetake the Longriqu and Maoergai faults as a whole, the Longriba fault zone appears to undergo aregular recurrence with an interval of~2000years before the last event. Considering the elapsedtime of over5000years and relatively high slip rate, the central Longriba fault zone has a highpotential of a large earthquake in the future years.
     5) GPS rates and the long-term geological slip rates derived from displaced landformsdemonstrate that the Longriba fault zone plays an important role in strain partitioning in easternTibet. The Tibetan Plateau is moving due eastward and is resisted by the Longriba and LongmenShan fault zones in eastern Tibet and then collides with the rigid Sichuan block. However, theLongriba and Longmen Shan fault zones fault zone strike N~60oE. So, one portion of the motionwas transformed into dextral slip along the Longriba fault zone, and other portion continues tomove southeastward and collides with the rigid Sichuan block. The relatively soft Longmen Shansubblock accommodates the collision and finally leads to the uplift of the Longmen Shan andthrusting with dextral motion along the Longmen Shan fault zone. The two strands of the Longribafault zone merge at the decollement~20km deep similar to the Longriba fault zone. The deep dipof the Longriba fault zone helps them undertake dominant dextral motion, and the gentle dip ofthe Longmen Shan fault zone favors thrusting.
     6) The E-W-trending GPS section across the Min Shan platform and geological slip rates ofactive faults at the eastern end of the Kunlun fault reveals that a small portion of the sinistraldeformation on the master Kunlun fault is transformed into the reverse motion at the easternTazang fault, and a big portion is transferred to the N-S-striking Minjing, Huya, and northernLongriba fault zone characterized by E-S crustal shortening that causes the uplift of the Min Shan.This pattern at the eastern end of the Kunlun fault is somewhat similar to that at the easterntermination of the Altyn Tagh fault zone. The Roergai basin is probably a small-scale forelandbasin associated with the uplift of the western Min Shan.
引文
Akyuz, H., R. Hartleb, A. Barka, E. Altunel, G. Sunal, B. Meyer,R. Armijo (2002). Surface ruptureand slip distribution of the12November1999Duzce earthquake (M7.1), North Anatolian fault, Bolu,Turkey, Bull. Seismol. Soc. Am.,92(1):61-66.
    Allen, P. A.(1997). Earth surface processes,416pp., Wiley-Blackwell.
    An, Z., J. E. Kutzbach, W. L. Prell,S. C. Porter (2001). Evolution of Asian monsoons and phaseduplift of the Himalaya–Tibetan plateau since Late Miocene times, Nature,411(6833):62-66.
    Argand, E.(1924), La tectonique del'Asie: International Geological CongressRep.,171-132pp,Brussels.
    Armijo, R., P. Tapponnier,T. Han (1989). Late Cenozoic right‐lateral strike‐slip faulting insouthern Tibet, Journal of Geophysical Research: Solid Earth (1978–2012),94(B3):2787-2838.
    Arne, D., S. Chen, C. Wilson, P. Dirks, Z. Luo,S. Liu (1994), A Preliminary Assessment of ThermalHistory and Tectonic Development in the Western Sichuan Foreland Basin and Longmen Thrust-NappeBelt, Sichuan Province, China, in龙门山造山带的崛起和四川盆地的形成与演化, edited by罗志立,pp.285-287,成都科技大学出版社,成都.
    Arne, D., B. Worley, C. Wilson, S. F. Chen, D. Foster, Z. L. Luo, S. G. Liu,P. Dirks (1997).Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau,Tectonophysics,280(3):239-256.
    Avouac, J., Philippe,P. Tapponnier (1993). Kinematic model of active deformation in central Asia,Geophys. Res. Lett.,20(10):895-898, doi:10.1029/93gl00128.
    Bai, D., M. J. Unsworth, M. A. Meju, X. Ma, J. Teng, X. Kong, Y. Sun, J. Sun, L. Wang,C. Jiang(2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging, NatureGeoscience,3(5):358-362.
    Beaumont, C., R. Jamieson, M. Nguyen,B. Lee (2001). Himalayan tectonics explained by extrusionof a low-viscosity crustal channel coupled to focused surface denudation, Nature,414(6865):738-742.
    Beramendi-Orosco, L. E., G. Gonzalez-Hernandez, J. Urrutia-Fucugauchi, L. R. Manzanilla, A. M.Soler-Arechalde, A. Goguitchaishvili,N. Jarboe (2009). High-resolution chronology for theMesoamerican urban center of Teotihuacan derived from Bayesian statistics of radiocarbon andarchaeological data, Quatern. Res.,71(2):99-107.
    Berryman, K., A. Cooper, R. Norris, P. Villamor, R. Sutherland, T. Wright, E. Schermer, R.Langridge,G. Biasi (2012). Late Holocene Rupture History of the Alpine Fault in South Westland, NewZealand, Bull. Seismol. Soc. Am.,102(2):620-638, doi:10.1785/0120110177.
    Bull, W. B.(2008). Tectonic geomorphology of mountains: a new approach to paleoseismology,Wiley-Blackwell.
    Burbank, D. W.,R. S. Anderson (2011). Tectonic geomorphology, Wiley-Blackwell.
    Burchfiel, B., Z. Chen, Y. Liu,L. Royden (1995). Tectonics of the Longmen Shan and adjacentregions, central China, Int. Geol. Rev.,37:661-735.
    Burchfiel, B., Q. Deng, P. Molnar, L. Royden, Y. Wang, P. Zhang,W. Zhang (1989). Intracrustaldetachment within zones of continental deformation, Geology,17(8):748-752, doi:10.1130/0091-7613(1989)017<0448:idwzoc>2.3.co;2.
    Burchfiel, B., L. H. Royden, R. D. v. d. Hilst, B. H. Hager, Z. Chen, R. W. King, C. Li, J. Lü, H.Yao,E. Kirby (2008). A geological and geophysical context for the Wenchuan earthquake of12May2008, Sichuan, People’s Republic of China, GSA today,18(7):4-11.
    Chen, Q., J. T. Freymueller, Q. Wang, Z. Yang, C. Xu,J. Liu (2004). A deforming block model forthe present‐day tectonics of Tibet, Journal of Geophysical Research: Solid Earth,109(B1), doi:10.1029/2002JB002151.
    Chen, S.,C. J. L. Wilson (1996). Emplacement of the Longmen Shan Thrust—Nappe Belt along theeastern margin of the Tibetan Plateau, J. Struct. Geol.,18(4):413-430, doi:10.1016/0191-8141(95)00096-v.
    Chen, S. F., C. Wilson, Q. D. Deng, X. L. Zhao,Z. L. Luo (1994). Active faulting and blockmovement associated with large earthquakes in the Min Shan and Longmen Mountains, northeasternTibetan Plateau, J. Geophys. Res.,99(B12):20-025.
    Clark, M. K.,L. H. Royden (2000). Topographic ooze: Building the eastern margin of Tibet bylower crustal flow, Geology,28(8):703-706, doi:10.1130/0091-7613(2000)28<703:tobtem>2.0.co;2.
    Cowgill, E.(2007). Impact of riser reconstructions on estimation of secular variation in rates ofstrike–slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China, EarthPlanet. Sci. Lett.,254(3–4):239-255, doi:10.1016/j.epsl.2006.09.015.
    Cowgill, E., R. D. Gold, C. Xuanhua, W. Xiao-Feng, J. R. Arrowsmith,J. Southon (2009). LowQuaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwesternTibet, Geology,37(7):647-650, doi:10.1130/g25623a.1.
    Dewey, J. F.,J. M. Bird (1970). Mountain belts and the new global tectonics, Journal of GeophysicalResearch,75(14):2625-2647.
    Dewey, J. F.,K. C. Burke (1973). Tibetan, Variscan, and Precambrian basement reactivation:products of continental collision, The Journal of Geology,81:683-692.
    Duan, B.,D. D. Oglesby (2006). Heterogeneous fault stresses from previous earthquakes and theeffect on dynamics of parallel strike-slip faults, J. Geophys. Res.,111(B05309):doi:10.1029/2005JB004138.
    DuRoss, C. B., S. F. Personius, A. J. Crone, S. S. Olig,W. R. Lund (2011). Integration ofpaleoseismic data from multiple sites to develop an objective earthquake chronology: Application to theWeber segment of the Wasatch fault zone, Utah, Bulletin of the Seismological Society of America,101(6):2765-2781.
    England, P.,G. Houseman (1986). Finite Strain Calculations of Continental Deformation2.Comparison With the India-Asia Collision Zone, J. Geophys. Res.,91(B3):3664-3676, doi:10.1029/JB091iB03p03664.
    England, P.,P. Molnar (1997). The field of crustal velocity in Asia calculated from Quaternary ratesof slip on faults, Geophysical Journal International,130(3):551-582.
    England, P., G. Houseman, M. Osmaston,S. Ghosh (1988). The Mechanics of the Tibetan Plateau[and Discussion], Philosophical Transactions of the Royal Society of London. Series A, Mathematicaland Physical Sciences,326(1589):301-320.
    Ferry, M., M. Meghraoui, N. A. Karaki, M. Al-Taj,L. Khalil (2011). Episodic behavior of the JordanValley section of the Dead Sea fault inferred from a14-ka-long integrated catalog of large earthquakes,Bulletin of the Seismological Society of America,101(1):39-67.
    Fu, B., P. Shi, H. Guo, S. Okuyama, Y. Ninomiya,S. Wright (2010). Surface deformation related tothe2008Wenchuan earthquake, and mountain building of the Longmen Shan, eastern Tibetan Plateau, J.Asian. Earth. Sci.,40(3):805-824, doi:10.1016/j.jseaes.2010.11.011.
    Fumal, T., R. Weldon, G. Biasi, T. Dawson, G. Seitz, W. Frost,D. Schwartz (2002). Evidence forlarge earthquakes on the San Andreas fault at the Wrightwood, California, paleoseismic site: AD500topresent, Bulletin of the Seismological Society of America,92(7):2726-2760.
    Gan, W., P. Zhang, Z. K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou,J. Cheng (2007). Present-daycrustal motion within the Tibetan Plateau inferred from GPS measurements, J. Geophys. Res.,112(B08416): doi:10.1029/2005JB004120.
    Gao, X., R. Gao, G. R. Keller,X. Xu (2012). Tectonic interactions between the Yangtze block andSongpan-Ganze terrane: new constraints from deep seismic reflection and refraction profiles, as well asmagnetic and gravity evidence (with abstract), in2012SSA Annual Meeting, edited, p.429,Seismological Research Letters, San Diego.
    Gold, R. D., E. Cowgill, J. R. Arrowsmith, X. Chen, W. D. Sharp, K. M. Cooper,X.-F. Wang (2011).Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Taghfault, northwest Tibet, Geol. Soc. Am. Bull.,123(5-6):958-978, doi:10.1130/b30207.1.
    Harkins, N.,E. Kirby (2008). Fluvial terrace riser degradation and determination of slip rates onstrike-slip faults: An example from the Kunlun fault, China, Geophys. Res. Lett.,35(5):doi:10.1029/2007gl033073, doi:10.1029/2007gl033073.
    Harkins, N., E. Kirby, X. Shi, E. Wang, D. Burbank,F. Chun (2010). Millennial slip rates along theeastern Kunlun fault: Implications for the dynamics of intracontinental deformation in Asia, Lithosphere,2(4):247-266, doi:10.1130/l85.1.
    Harris, R. A.,S. M. Day (1993). Dynamics of fault interaction: parallel strike-slip faults, J. Geophys.Res.,98(B3):4461-4472, doi:10.1029/92jb02272.
    Harrison, T. M., P. Copeland, W. Kidd,A. Yin (1992). Raising Tibet, Science,255(5052):1663-1670.
    Heidbach, O., M. Tingay, A. Barth, J. Reinecker, D. Kurfe,B. Müller (2010). Global crustal stresspattern based on the World Stress Map database release2008, Tectonophysics,482(1):3-15.
    Hetzel, R.(2013). Active faulting, mountain growth, and erosion at the margins of the TibetanPlateau constrained by in situ-produced cosmogenic nuclides, Tectonophysics,582(0):1-24, doi:10.1016/j.tecto.2012.10.027.
    Holt, W., N. Chamot‐Rooke, X. Le Pichon, A. Haines, B. Shen‐Tu,J. Ren (2000). Velocity fieldin Asia inferred from Quaternary fault slip rates and Global Positioning System observations, Journal ofGeophysical Research: Solid Earth,105(B8):19185-19209.
    Houseman, G.,P. England (1993). Crustal Thickening Versus Lateral Expulsion in the Indian-AsianContinental Collision, J. Geophys. Res.,98(B7):12233-12249, doi:10.1029/93jb00443.
    Hubbard, J.,J. H. Shaw (2009). Uplift of the Longmen Shan and Tibetan plateau, and the2008Wenchuan (M=7.9) earthquake, Nature,458(7235):194-197, doi:10.1038/nature07837.
    Jones, L. M., W. Han, E. Hauksson, A. Jin, Y. Zhang,Z. Luo (1984). Focal Mechanisms andAftershock Locations of the Songpan Earthquakes of August1976in Sichuan, China, J. Geophys. Res.,89(B9):7697-7707, doi:10.1029/JB089iB09p07697.
    Keller, E. A.,N. Pinter (1996). Active tectonics, Prentice Hall.
    Kenner, S. J., Segall,Paul (2000). A mechanical model for intraplate earthquakes: application to theNew Madrid seismic zone, Science,289(5488):2329-2332, doi:10.1126/science.289.5488.2329.
    Kirby, E.,W. Ouimet (2011). Tectonic geomorphology along the eastern margin of Tibet: insightsinto the pattern and processes of active deformation adjacent to the Sichuan Basin, Geological Society,London, Special Publications,353(1):165-188, doi:10.1144/sp353.9.
    Kirby, E.,N. Harkins (2013). Distributed deformation around the eastern tip of the Kunlun fault,International Journal of Earth Sciences,102(2):1-14, doi:10.1007/s00531-013-0872-x.
    Kirby, E., N. Harkins, E. Wang, X. Shi, C. Fan,D. Burbank (2007). Slip rate gradients along theeastern Kunlun fault, Tectonics,26(2): TC2010, doi:10.1029/2006tc002033.
    Kirby, E., K. X. Whipple, B. C. Burchfiel, W. Tang, G. Berger, Z. Sun,Z. Chen (2000). Neotectonicsof the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the easternmargin of the Tibetan Plateau, Geol. Soc. Am. Bull.,112(3):375-393, doi:10.1130/0016-7606(2000)112<375:notmsc>2.0.co;2.
    Kirby, E., P. W. Reiners, M. A. Krol, K. X. Whipple, K. V. Hodges, K. A. Farley, W. Tang,Z. Chen(2002). Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from40Ar/39Ar and (U‐Th)/He thermochronology, Tectonics,21(1):1-1-1-20.
    Klinger, Y., X. Xu, P. Tapponnier, J. Van der Woerd, C. Lasserre,G. King (2005). High-ResolutionSatellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw7.8,14November2001Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China, Bull. Seismol. Soc. Am.,95(5):1970-1987, doi:10.1785/0120040233.
    Kozac,., J. F. Dolan,. Y nlü,R. D. Hartleb (2011). Paleoseismologic evidence for the relativelyregular recurrence of infrequent, large-magnitude earthquakes on the eastern North Anatolian fault atYaylabeli, Turkey, Lithosphere,3(1):37-54.
    Lasserre, C., Y. Gaudemer, P. Tapponnier, A. S. Mériaux, J. Van der Woerd, Y. Daoyang, F. Ryerson,R. Finkel,M. Caffee (2002). Fast late Pleistocene slip rate on the Leng Long Ling segment of theHaiyuan fault, Qinghai, China, Journal of Geophysical Research: Solid Earth (1978–2012),107(B11),doi:10.1029/2000JB000060.
    Lease, R. O., D. W. Burbank, H. Zhang, J. Liu,D. Yuan (2012). Cenozoic shortening budget for thenortheastern edge of the Tibetan Plateau: Is lower crustal flow necessary?, Tectonics,31(TC3011), doi:10.1029/2011tc003066.
    Lensen, G. J.(1968). Analysis of progressive fault displacement during downcutting at the BranchRiver terraces, south Island, New Zealand, Geol. Soc. Am. Bull.,79(5):545-556, doi:10.1130/0016-7606(1968)79[545:aopfdd]2.0.co;2.
    Lettis, W., J. Bachhuber, R. Witter, C. Brankman, C. Randolph, A. Barka, W. Page,A. Kaya (2002).Influence of releasing step-overs on surface fault rupture and fault segmentation: Examples from the17August1999Izmit earthquake on the North Anatolian fault, Turkey, Bull. Seismol. Soc. Am.,92(1):19-42.
    Li, C., W. Zheng,W. Wang (2011). Trenching exposures of the surface rupture of2008Mw7.9Wenchuan earthquake, China: Implications for coseismic deformation and paleoseismology along theCentral Longmen Shan thrust fault, Journal of Asian Earth Sciences,40(4):825-843.
    Li, C., P.-z. Zhang, J. Yin,W. Min (2009). Late Quaternary left-lateral slip rate of the Haiyuan fault,northeastern margin of the Tibetan Plateau, Tectonics,28(5): TC5010, doi:10.1029/2008TC002302.
    Li, H., J. Van der Woerd, T. Paul, K. Yann, X. Qi, J. Yang,Y. Zhu (2005). Slip rate on the Kunlunfault at Hongshui Gou, and recurrence time of great events comparable to the14/11/2001, Mw7.9Kokoxili earthquake, Earth Planet. Sci. Lett.,237(1–2):285-299, doi:10.1016/j.epsl.2005.05.041.
    Lienkaemper, J. J.,C. B. Ramsey (2009a). OxCal: Versatile Tool for Developing PaleoearthquakeChronologies--A Primer, Seismol. Res. Lett.,80(3):431-434.
    Lienkaemper, J. J.,C. Bronk Ramsey (2009b). OxCal: versatile tool for developing paleoearthquakechronologies--a primer, Seismol. Res. Lett.,80(3):431-434, doi:410.1785/gssrl.1780.1783.1431.
    Lin, A.,J. Guo (2008). Nonuniform Slip Rate and Millennial Recurrence Interval of LargeEarthquakes along the Eastern Segment of the Kunlun Fault, Northern Tibet, Bull. Seismol. Soc. Am.,98(6):2866-2878, doi:10.1785/0120070193.
    Lin, A., B. Fu, J. Guo, Q. Zeng, G. Dang, W. He,Y. Zhao (2002). Co-seismic strike-slip and rupturelength produced by the2001Ms8.1Central Kunlun earthquake, Science,296(5575):2015-2017.
    Liu-Zeng, J., Y. Klinger, X. Xu, C. Lasserre, G. Chen, W. Chen, P. Tapponnier,B. Zhang (2007).Millennial recurrence of large earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China,Bull. Seismol. Soc. Am.,97(1B):14-34.
    Mériaux, A. S., F. Ryerson, P. Tapponnier, J. Van der Woerd, R. Finkel, X. Xu, Z. Xu,M. Caffee(2004). Rapid slip along the central Altyn Tagh Fault: morphochronologic evidence from Cherchen Heand Sulamu Tagh, Journal of Geophysical Research: Solid Earth (1978–2012),109(B6), doi:10.1029/2003JB002558.
    Mériaux, A. S., P. Tapponnier, F. Ryerson, X. Xiwei, G. King, J. Van der Woerd, R. Finkel, L.Haibing, M. Caffee,X. Zhiqin (2005). The Aksay segment of the northern Altyn Tagh fault: Tectonicgeomorphology, landscape evolution, and Holocene slip rate, Journal of Geophysical Research: SolidEarth (1978–2012),110(B4), doi:10.1029/2004JB003210.
    Mason, D. P. M., T. A. Little,R. J. Van Dissen (2006). Rates of active faulting during lateQuaternary fluvial terrace formation at Saxton River, Awatere fault, New Zealand, Geol. Soc. Am. Bull.,118(11-12):1431-1446, doi:10.1130/b25961.1.
    Mattauer, M.(1986). Intracontinental subduction, crust-mantle décollement and crustal-stackingwedge in the Himalayas and other collision belts, Geological Society, London, Special Publications,19(1):37-50.
    McCalpin, J.(2009). Paleoseismology,613pp., Academic Press.
    Meyer, B., P. Tapponnier, L. Bourjot, F. Metivier, Y. Gaudemer, G. Peltzer, G. Shunmin,C. Zhitai(1998). Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slipcontrolled growth of the Tibet plateau, Geophysical Journal International,135(1):1-47.
    Molnar, P.(1988). Continental tectonics in the aftermath of plate tectonics, Nature,335(6186):131-137.
    Molnar, P.(2005). Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate,Palaeontologia Electronica,8(1):1-23.
    Molnar, P.,P. Tapponnier (1975). Cenozoic tectonics of Asia: effects of a continental collision,Science,189(4201):419-426.
    Molnar, P.,J. M. Gipson (1996). A bound on the rheology of continental lithosphere using very longbaseline interferometry: The velocity of south China with respect to Eurasia, Journal of GeophysicalResearch,101(B1):545-553.
    Molnar, P., P. England,J. Martinod (1993). Mantle dynamics, uplift of the Tibetan Plateau, and theIndian monsoon, Reviews of Geophysics,31(4):357-396.
    Ortu o, M., E. Masana, E. García-Meléndez, J. Martínez-Díaz, P. těpan íková, P. P. Cunha, R.Sohbati, C. Canora, J.-P. Buylaert,A. S. Murray (2012). An exceptionally long paleoseismic record of aslow-moving fault: The Alhama de Murcia fault (Eastern Betic shear zone, Spain), Geol. Soc. Am. Bull.,124(9-10):1474-1494, doi:10.1130/b30558.1.
    Parsons, T., C. Ji,E. Kirby (2008). Stress changes from the2008Wenchuan earthquake andincreased hazard in the Sichuan basin, Nature,454(7203):509-510, doi:10.1038/nature07177.
    Peltzer, G.,P. Tapponnier (1988). Formation and evolution of strike‐slip faults, rifts, and basinsduring the India‐Asia collision: An experimental approach, Journal of Geophysical Research: SolidEarth (1978–2012),93(B12):15085-15117.
    Peltzer, G.,F. Saucier (1996). Present-day kinematics of Asia derived from geologic fault rates, J.Geophys. Res.,101(B12):27943-27956.
    Powell, C. M.(1986). Continental underplating model for the rise of the Tibetan Plateau, Earth andPlanetary Science Letters,81(1):79-94.
    Pratt, T. L.(2012). Kinematics of the New Madrid seismic zone, central United States, based onstepover models, Geology,40(4):371-374, doi:10.1130/g32624.1.
    Ramsey, C. B.(2008). Deposition models for chronological records, Quat. Sci. Rev.,27(1):42-60.
    Ramsey, C. B.(2012). OxCal4.1Manual, https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html(last accessed January2012), edited.
    Ran, Y.-K., W.-S. Chen, X.-W. Xu, L.-C. Chen, H. Wang, C.-C. Yang,S.-P. Dong (2013).Paleoseismic events and recurrence interval along the Beichuan–Yingxiu fault of Longmenshan faultzone, Yingxiu, Sichuan, China, Tectonophysics,584:81-90, doi:10.1016/j.tecto.2012.07.013.
    Ran, Y., L. Chen, J. Chen, H. Wang, G. Chen, J. Yin, X. Shi, C. Li,X. Xu (2010). Paleoseismicevidence and repeat time of large earthquakes at three sites along the Longmenshan fault zone,Tectonophysics,491(1-4):141-153.
    Reilinger, R., S. Ergintav, R. Bürgmann, S. McClusky, O. Lenk, A. Barka, O. Gurkan, L. Hearn, K.Feigl,R. Cakmak (2000). Coseismic and postseismic fault slip for the17August1999, M=7.5, Izmit,Turkey earthquake, Science,289(5484):1519-1524.
    Reimer, P., M. Baillie, E. Bard, A. Bayliss, J. Beck, P. Blackwell, C. Bronk Ramsey, C. Buck, G.Burr,R. Edwards (2009). IntCal09and Marine09radiocarbon age calibration curves,0-50,000years calBP, Radiocarbon,51(4):1111-1150.
    Replumaz, A.,P. Tapponnier (2003). Reconstruction of the deformed collision zone between Indiaand Asia by backward motion of lithospheric blocks, Journal of Geophysical Research: Solid Earth(1978–2012),108(B6), doi:10.1029/2001JB000661.
    Richardson, N. J., A. L. Densmore, D. Seward, A. Fowler, M. Wipf, M. A. Ellis, L. Yong,Y. Zhang(2008). Extraordinary denudation in the Sichuan Basin: Insights from low-temperaturethermochronology adjacent to the eastern margin of the Tibetan Plateau, Journal of GeophysicalResearch: Solid Earth,113(B4): B04409, doi:10.1029/2006jb004739.
    Roger, F., S. Calassou, J. Lancelot, J. Malavieille, M. Mattauer, X. Zhiqin, H. Ziwen,H. Liwei(1995). Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, westSichuan, China): Geodynamic implications, Earth and Planetary Science Letters,130(1):201-216.
    Royden, L. H., B. C. Burchfiel,R. D. van der Hilst (2008). The geological evolution of the TibetanPlateau, Science,321(5892):1054-1058, doi:10.1126/science.1155371.
    Royden, L. H., B. C. Burchfiel, R. W. King, E. Wang, Z. Chen, F. Shen,Y. Liu (1997). Surfacedeformation and lower crustal flow in eastern Tibet, Science,276(5313):788-790, doi:10.1126/science.276.5313.788.
    Scharer, K. M., G. P. Biasi,R. J. Weldon, II (2011). A reevaluation of the Pallett Creek earthquakechronology based on new AMS radiocarbon dates, San Andreas fault, California, J. Geophys. Res.,116(B12): doi:10.1029/2010JB008099, doi:10.1029/2010jb008099.
    Schwartz, D. P.,K. J. Coppersmith (1984). Fault behavior and characteristic earthquakes: Examplesfrom the Wasatch and San Andreas fault zones, Journal of Geophysical Research: Solid Earth (1978–2012),89(B7):5681-5698.
    Shapiro, N. M., M. H. Ritzwoller, P. Molnar,V. Levin (2004). Thinning and flow of Tibetan crustconstrained by seismic anisotropy, Science,305(5681):233-236.
    Shen, Z. K., J. Lu, M. Wang,R. Burgmann (2005). Contemporary crustal deformation around thesoutheast borderland of the Tibetan Plateau, J. Geophys. Res.,110(B11409):doi:10.1029/2004JB003421.
    Sieh, K., M. Stuiver,D. Brillinger (1989). A more precise chronology of earthquakes produced bythe San Andreas fault in southern California, Journal of Geophysical Research: Solid Earth,94(B1):603-623.
    Sieh, K. E.,R. H. Jahns (1984). Holocene activity of the San Andreas fault at Wallace creek,California, Geological Society of America Bulletin,95(8):883-896.
    Storti, F., R. E. Holdsworth,F. Salvini (2003). Intraplate strike-slip deformation belts, GeologicalSociety, London, Special Publications,210(1):1-14, doi:10.1144/gsl.sp.2003.210.01.01.
    Sylvester, A. G.(1988). Strike-slip faults, Geol. Soc. Am. Bull.,100(11):1666-1703
    Tapponnier, P.,P. Molnar (1976). Slip-line field theory and large-scale continental tectonics, Nature,264(25):319-324.
    Tapponnier, P., G. Peltzer,R. Armijo (1986). On the mechanics of the collision between India andAsia, Geological Society, London, Special Publications,19(1):113-157.
    Tapponnier, P., G. Peltzer, A. Y. Le Dain, R. Armijo,P. Cobbold (1982). Propagating extrusiontectonics in Asia: New insights from simple experiments with plasticine, Geology,10(12):611-616, doi:10.1130/0091-7613(1982)10<611:petian>2.0.co;2.
    Tapponnier, P., F. J. Ryerson, J. Van der Woerd, A. S. Mériaux,C. Lasserre (2001a). Long-term sliprates and characteristic slip: keys to active fault behaviour and earthquake hazard, Earth Planet. Sci.,333(9):483-494.
    Tapponnier, P., Z. Xu, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger,J. Yang (2001b). ObliqueStepwise Rise and Growth of the Tibet Plateau, Science,294(5547):1671-1677, doi:10.1126/science.105978.
    Tapponnier, P., B. Meyer, J. P. Avouac, G. Peltzer, Y. Gaudemer, S. Guo, H. Xiang, K. Yin, Z. Chen,S. Cai,H. Dai (1990). Active thrusting and folding in the Qilian Shan, and decoupling between uppercrust and mantle in northeastern Tibet, Earth Planet. Sci. Lett.,97(3–4):382-403, doi:10.1016/0012-821x(90)90053-z.
    Taylor, M.,A. Yin (2009). Active structures of the Himalayan-Tibetan orogen and their relationshipsto earthquake distribution, contemporary strain field, and Cenozoic volcanism, Geosphere,5(3):199-214,doi:10.1130/ges00217.1.
    Thatcher, W.(2007). Microplate model for the present-day deformation of Tibet, J. Geophys. Res.,112(B01401): doi:10.1029/2005JB004244.
    Van der Woerd, J., Y. Klinger, K. Sieh, P. Tapponnier, F. J. Ryerson,A.-S. Mériaux (2006).Long-term slip rate of the southern San Andreas Fault from10Be-26Al surface exposure dating of anoffset alluvial fan, Journal of Geophysical Research: Solid Earth,111(B4): B04407, doi:10.1029/2004jb003559.
    Van der Woerd, J., F. Ryerson, P. Tapponnier, A. S. Mériaux, Y. Gaudemer, B. Meyer, R. Finkel, M.Caffee, G. Zhao,Z. Xu (2000). Uniform slip-rate along the Kunlun fault: Implications for seismicbehaviour and large-scale tectonics, Geophys. Res. Lett.,27(16):2353-2356.
    Van der Woerd, J., P. Tapponnier, F. J. Ryerson, A.-S. Meriaux, B. Meyer, Y. Gaudemer, R. C.Finkel, M. W. Caffee, Z. Guoguang,X. Zhiqin (2002). Uniform postglacial slip-rate along the central600km of the Kunlun Fault (Tibet), from26Al,10Be, and14C dating of riser offsets, and climatic originof the regional morphology, Geophys. J. Int.,148(3):356-388, doi:10.1046/j.1365-246x.2002.01556.x.
    Wallinga, J.(2002). Optically stimulated luminescence dating of fluvial deposits: a review, Boreas,31(4):303-322, doi:10.1111/j.1502-3885.2002.tb01076.x.
    Wan, Y.,Z.-K. Shen (2010). Static Coulomb stress changes on faults caused by the2008Mw7.9Wenchuan, China earthquake, Tectonophysics,491(1–4):105-118, doi:10.1016/j.tecto.2010.03.017.
    Wang, C., W. Han, J. Wu, H. Lou,W. W. Chan (2007). Crustal structure beneath the eastern marginof the Tibetan Plateau and its tectonic implications, Journal of Geophysical Research: Solid Earth,112(B07307), doi:10.1029/2005jb003873.
    Wang, C., R. Gao, A. Yin, H. Wang, Y. Zhang, T. Guo, Q. Li,Y. Li (2011). A mid-crustalstrain-transfer model for continental deformation: A new perspective from high-resolution deepseismic-reflection profiling across NE Tibet, Earth Planet. Sci. Lett.,306(3-4):279-288, doi:10.1016/j.epsl.2011.04.010.
    Wang, E., E. Kirby, K. P. Furlong, M. van Soest, G. Xu, X. Shi, P. J. J. Kamp,K. V. Hodges (2012).Two-phase growth of high topography in eastern Tibet during the Cenozoic, Nature Geosci,5(9):640-645, doi:10.1038/ngeo1538.
    Wang, H., Y. Ran, Y. Li, F. Gomez,L. Chen (2013). Holocene palaeoseismologic record ofearthquakes on the Zemuhe fault on the southeastern margin of the Tibetan Plateau, Geophysical JournalInternational,193(1):11-28.
    Wang, P., H. Jiang, D. Yuan, X. Liu,B. Zhang (2010). Optically stimulated luminescence dating ofsediments from the Yellow River terraces in Lanzhou: Tectonic and climatic implications, QuaternaryGeochronology,5(2–3):181-186, doi:10.1016/j.quageo.2009.05.009.
    Wang, Q., P.-Z. Zhang, J. T. Freymueller, R. Bilham, K. M. Larson, X. a. Lai, X. You, Z. Niu, J.Wu,Y. Li (2001). Present-day crustal deformation in China constrained by global positioning systemmeasurements, Science,294(5542):574-577.
    Wang, X., Y. Lu,A. Wintle (2006). Recuperated OSL dating of fine-grained quartz in Chinese loess,Quaternary Geochronology,1(2):89-100.
    Weldon, R. J.,K. E. Sieh (1985). Holocene rate of slip and tentative recurrence interval for largeearthquakes on the San Andreas fault, Cajon Pass, southern California, Geological Society of AmericaBulletin,96(6):793-812.
    Weldon, R. J., T. E. Fumal, G. P. Biasi,K. M. Scharer (2005). Past and Future Earthquakes on theSan Andreas Fault, Science,308(5724):966-967, doi:10.1126/science.1111707.
    Wells, D. L.,K. J. Coppersmith (1994). New empirical relationships among magnitude, rupturelength, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am.,84(4):974-1002.
    Wesnousky, S. G.(2008). Displacement and Geometrical Characteristics of Earthquake SurfaceRuptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture,Bull. Seismol. Soc. Am.,98(4):1609-1632, doi:10.1785/0120070111.
    Xu, X., W. Chen, W. Ma, G. Yu,G. Chen (2002). Surface rupture of the Kunlunshan earthquake (Ms8.1), northern Tibetan plateau, China, Seismological Research Letters,73(6):884-892.
    Xu, X., X. Wen, G. Yu, G. Chen, Y. Klinger, J. Hubbard,J. Shaw (2009). Coseismic reverse-andoblique-slip surface faulting generated by the2008Mw7.9Wenchuan earthquake, China, Geology,37(6):515-518.
    Xu, X., X. Tan, G. Yu, G. Wu, W. Fang, J. Chen, H. Song,J. Shen (2013). Normal-and oblique-slipof the2008Yutian earthquake: Evidence for eastward block motion, northern Tibetan Plateau,Tectonophysics,584:152-165, doi:10.1016/j.tecto.2012.08.007.
    Xu, Z., S. Ji, H. Li, L. Hou, X. Fu,Z. Cai (2008). Uplift of the Longmen Shan range and theWenchuan earthquake, Episodes,31(3):291-301.
    Yao, H., R. D. van Der Hilst,M. V. De Hoop (2006). Surface‐wave array tomography in SE Tibetfrom ambient seismic noise and two‐station analysis–I. Phase velocity maps, Geophysical JournalInternational,166(2):732-744.
    Yeats, R. S.(2007). Paleoseismology: Why can't earthquakes keep on schedule?, Geology,35(9):863-864.
    Yeats, R. S.(2012). Active Faults of the World, Cambridge University Press, Cambridge.
    Yeats, R. S., K. E. Sieh,C. R. Allen (1997). The geology of earthquakes, Oxford University Press,New York.
    Yen, I.-C., W.-S. Chen, C.-C. B. Yang, N.-W. Huang,C.-W. Lin (2008). Paleoseismology of theRueisuei Segment of the Longitudinal Valley Fault, Eastern Taiwan, Bull. Seismol. Soc. Am.,98(4):1737-1749, doi:10.1785/0120070113.
    Yin, A.(2010). Cenozoic tectonic evolution of Asia: A preliminary synthesis, Tectonophysics,488(1–4):293-325, doi:10.1016/j.tecto.2009.06.002.
    Yin, A., Y.-Q. Dang, L.-C. Wang, W.-M. Jiang, S.-P. Zhou, X.-H. Chen, G. E. Gehrels,M. W.McRivette (2008). Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part1):The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin, Geol. Soc. Am. Bull.,120(7-8):813-846, doi:10.1130/b26180.1.
    Zachariasen, J.,K. Sieh (1995). The transfer of slip between two en echelon strike‐slip faults: Acase study from the1992Landers earthquake, southern California, Journal of Geophysical Research:Solid Earth,100(B8):15281-15301.
    Zechar, J. D.,K. L. Frankel (2009). Incorporating and reporting uncertainties in fault slip rates, J.Geophys. Res.,114(B12407): doi:10.1029/2009JB006325.
    Zhang, P.,W. Gan (2008). Combined model of rigid-block motion with continuous deformation:Patterns of present-day deformation in continental China, Geological Society of America Special Papers,444:59-71, doi:10.1130/2008.2444(04).
    Zhang, P., P. Molnar,X. Xu (2007). Late Quaternary and present-day rates of slip along the AltynTagh Fault, northern margin of the Tibetan Plateau, Tectonics,26(5): doi:10.1029/2006TC002014. doi:10.1029/2006tc002014.
    Zhang, P., X. Wen, Z. K. Shen,J. Chen (2010). Oblique, high-angle, listric-reverse faulting andassociated development of strain: The Wenchuan earthquake of May12,2008, Sichuan, China, Annu.Rev. Earth Planet. Sci.,38:353-382, doi:10.1146/annurev-earth-040809-152602.
    Zhang, P., Z. Shen, M. Wang, W. Gan, R. Bürgmann, P. Molnar, Q. Wang, Z. Niu, J. Sun,J. Wu(2004). Continuous deformation of the Tibetan Plateau from global positioning system data, Geology,32(9):809-812.
    Zhang, Y., S. Dong,N. Yang (2009). Active Faulting Pattern, Present-day Tectonic Stress Field andBlock Kinematics in the East Tibetan Plateau, Acta Geologica Sinica‐English Edition,83(4):694-712.
    Zhao, W. L.,W. J. Morgan (1985). Uplift of Tibetan plateau, Tectonics,4(4):359-369.
    Zhao, W. L.,W. J. Morgan (1987). Injection of Indian crust into Tibetan lower crust: A two‐dimensional finite element model study, Tectonics,6(4):489-504.
    Zhou, R., L. Yong, A. L. Densmore, M. A. Ellis, H. Yulin, L. Yongzhao,L. Xiaogang (2007). Activetectonics of the Longmen Shan region on the eastern margin of the Tibetan plateau, Acta GeologicaSinica‐English Edition,81(4):593-604.
    安卫平,赵晋泉,闫小兵,李自红,苏宗正(2008).岷江断裂羌阳桥一带古堰塞湖沉积及构造变形与古地震,地震地质,30(4):980-988.
    安芷生,王苏民,吴锡浩,陈明扬,孙东怀,刘秀铭,王富葆,李力,孙有斌,周卫建(1998).中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动,中国科学(D辑),28(6):481-490.
    白文吉,杨经绥(1987).青藏高原隆升的主因—大陆板块内的盆-山碰撞作用,长春地质学院学报,17(2):131-142.
    蔡学林,曹家敏,朱介寿,程先琼(2008).龙门山岩石圈地壳三维结构及汶川大地震成因浅析,成都理工大学学报:自然科学版,35(4):357-365.
    陈桂华,徐锡伟,袁仁茂,闻学泽,郑荣章(2010).川滇块体东北缘晚第四纪区域气候-地貌分析及其构造地貌年代学意义,第四纪研究,30(4):837-854.
    陈立春,王虎,冉勇康,孙鑫喆,苏桂武,王继,谭锡斌,李智敏,张晓清(2010).玉树Ms7.1级地震地表破裂与历史大地震,科学通报(13):1200-1205.
    程佳,徐锡伟,甘卫军,马文涛,陈为涛,张勇(2012).青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源,地球物理学报,55(4):1198-1212.
    崔之久,高全洲,刘耕年,潘保田,陈怀录(1996).夷平面,古岩溶与青藏高原隆升,中国科学:D辑,26(4):378-384.
    邓起东,闻学泽(2008).活动构造研究——历史、进展与建议,地震地质,30(1):1-30.
    邓起东,陈社发,赵小麟(1994).龙门山及其邻区的构造和地震活动及动力学,地震地质,16(4):389-403.
    方小敏,吕连清,杨胜利,李吉均,安芷生,蒋平安,陈秀玲(2001).昆仑山黄土与中国西部沙漠发育和高原隆升,中国科学(D辑),31(3):177-184.
    方小敏,赵志军,李吉均,颜茂都,潘保田,宋春晖,戴霜(2004).祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升,中国科学(D辑),34(2):97-106.
    付俊东,任金卫,张军龙,陈长云,熊仁伟,胡朝忠,杨攀新(2011).东昆仑断裂东段下热尔断裂活动特征初步研究,中国地震,27(3):248-259.
    付俊东,任金卫,张军龙,熊仁伟,杨攀新,陈长云,胡朝忠(2012).东昆仑断裂带东段塔藏断裂晚第四纪古地震研究,第四纪研究,32(3):473-483.
    傅容珊,常筱华(2000).青藏高原隆升三阶段模型的数值模拟,地学前缘,7(4):588-596.
    国家地震局震害防御司(1995).中国历史强震目录(公元前23世纪—公元1911年),地震出版社,北京.
    何文贵,袁道阳,熊振,葛伟鹏,刘兴旺(2006).东昆仑断裂带东段玛曲断裂新活动特征及全新世滑动速率研究,地震,26(4):67-75.
    胡朝忠(2010),塔藏断裂晚第四纪活动性研究中国地震局地震研究所,硕士学位.
    黄玮琼,李文香,曹学锋(1994).中国大陆地震资料完整性研究之二:分区地震资料基本完整的起始年份分布图像,地震学报,16(4):423-432.
    黄媛,吴建平,张天中,张东宁(2008).汶川8.0级大地震及其余震序列重定位研究,中国科学(D辑),38(10):1242-1249.
    李陈侠,袁道阳,杨虎,徐锡伟(2011a).阿万仓断裂带晚第四纪活动特征与古地震地表破裂,中国地球物理学会第二十七届年会论文集.
    李陈侠,徐锡伟,闻学泽,郑荣章,陈桂华,杨虎,安艳芬,高翔(2011b).东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用,中国科学:地球科学,41(9):1295-1310.
    李春峰,贺群禄,赵国光(2005).东昆仑活动断裂带东段古地震活动特征,地震学报,27(1):60-67.
    李吉均,方小敏,潘保田,赵志军,宋友桂(2001).新生代晚期青藏高原强烈隆起及其对周边环境的影响,第四纪研究,21(5):381-391.
    李吉均,文世宣,张青松,王富葆,郑本兴,李炳元(1979).青藏高原隆起的时代,幅度和形式的探讨,中国科学A辑,6:608-616.
    李勇,周荣军, A. L. Densmore, M. A. Ellis,李永昭, P. A. Allen, D. Steffen,黎兵(2006).青藏高原东缘大陆动力学过程与地质响应,148pp.,地质出版社,北京.
    林茂炳,苟宗海,王国芝(1996).四川龙门山造山带造山模式研究,成都科技大学出版社,成都.
    刘东生,郑绵平,郭正堂(1998).亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性,第四纪研究,3:194-204.
    刘静,徐锡伟,李岩峰,冉勇康(2007).以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性,地质通报,26(6):250-260.
    刘启元,李昱,陈九辉(2009).汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究,地球物理学报,52(2):309-319.
    刘树根(1993).龙门山冲断带与川西前陆盆地的形成演化,167pp.,成都科技大学出版社,成都.
    马保起,苏刚,侯治华,舒赛兵(2005).利用眠江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率,地震地质,27(2):234-242.
    潘保田,高红山,李炳元,李吉均(2004).青藏高原层状地貌与高原隆升,第四纪研究,24(1):50-57.
    钱洪,周荣军,马声浩,黎小刚(1999).岷江断裂南段与1933年叠溪地震研究,中国地震,15(4):333-338.
    青海省地震局,中国地震局地壳应力研究所(1999).东昆仑活动断裂带,地震出版社,北京.
    冉勇康,焦德成(1997).海原断裂高湾子地点三维探槽的开挖与古地震研究,地震地质,19(2):97-107.
    冉勇康,邓起东(1998).海原断裂的古地震及特征地震破裂的分级性讨论,第四纪研究,18(3):271-278.
    冉勇康,张培震,陈立春(2003).河套断陷带大青山山前断裂晚第四纪古地震完整性研究,地学前缘,10(S1):207-216.
    冉勇康,王虎,李彦宝,陈立春(2012).中国大陆古地震研究的关键技术与案例解析(1)——走滑活动断裂的探槽地点,布设与事件识别标志,地震地质,34(2):197-210.
    任金卫,汪一鹏,吴章明(1999),青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率, in活动断裂研究(7), edited by汪一鹏, pp.147-164,地震出版社,北京.
    任俊杰,徐锡伟,孙鑫喆,谭锡斌,李康,康文君,刘保金(2012).龙门山推覆构造带中段山前断裂晚第四纪活动的地质与地球物理证据,地球物理学报,55(6):1929-1941.
    盛海洋(2008).青藏高原东北缘若尔盖盆地晚新近纪沉积的岩石地层学,地质科学,43(3):445-472.
    施雅风,李吉均,李炳元,姚檀栋,王苏民,李世杰,崔之久,王富保,潘保田,方小敏(1999).晚新生代青藏高原的隆升与东亚环境变化,地理学报,54(1):10-21.
    四川省地质矿产局(1991).四川省区域地质志,地质出版社,北京.
    宋春晖,孙淑荣,方小敏,孙东(2002).酒西盆地晚新生代沉积物重矿物分析与高原北部隆升,沉积学报,20(4):552-559.
    唐荣昌,韩渭宾(1993).四川活动断裂与地震,地震出版社,北京.
    王椿镛,楼海,吕智勇,吴建平,常利军,戴仕贵,尤惠川,唐方头(2008).青藏高原东部地壳上地幔S波速度结构——下地壳流的深部环境,中国科学: D辑,38(1):22-32.
    王海燕,高锐,马永生,朱铉,李秋生,匡朝阳,李朋武,卢占武(2007).若尔盖与西秦岭地震反射岩石圈结构和盆山耦合,地球物理学报,50(2):472-481.
    王兰生,王小群,许向宁,崔杰,沈军辉,张志龙(2012).岷江叠溪古堰塞湖的研究意义,第四纪研究,32(5):998-1010.
    王书兵(2005),川西中部晚更新世地层与环境101pp,中国地质科学院,博士毕业论文.
    王燕,赵志中,乔彦松,王书兵,李朝柱,宋利峰(2006).川北若尔盖高原红原泥炭剖面孢粉记录的晚冰期以来古气候古环境的演变,地质通报,25(7):827-832.
    王运生,黄润秋,段海澎,韦猛(2006).中国西部末次冰期一次强烈的侵蚀事件,成都理工大学学报(自然科学版),33(1):73-76.
    闻学泽,杜方,张培震,龙锋(2011).巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震,地球物理学报,54(3):706-716.
    徐锡伟,闻学泽,陈桂华,于贵华(2008).巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义,中国科学: D辑,38(5):529-542.
    徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华(2003a).川滇地区活动块体最新构造变动样式及其动力来源,中国科学: D辑,33(1):151-162.
    徐锡伟,张培震,闻学泽,秦尊丽,陈桂华,朱艾斓(2005).川西及其邻近地区活动构造基本特征与强震复发模型,地震地质,27(3):446-461.
    徐锡伟, P. Tapponnier, J. V. D. Woerd, F. J. Ryerson,王峰,郑荣章,陈文彬,马文涛,于贵华,陈桂华,A. S. Meriaux (2003b).阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论,中国科学地球科学,33(10):967-974.
    许强,陈伟,金辉,张倬元(2010).大渡河流域河谷深厚覆盖层特征与发育分布规律研究,第四纪研究,30(1):30-36.
    许志琴,侯立玮,王宗秀(1992).中国松潘-甘孜造山带的造山过程,190pp.,地质出版社,北京.
    许志琴,杨经绥,姜被,李海兵(1999).大陆俯冲作用及青藏高原周缘造山带的崛起,地学前缘,6(3):139-152.
    许志琴,李化启,侯立炜,付小芳,陈文,曾令森,蔡志慧,陈方远(2007).青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制,地质通报,26(10):1262-1276.
    杨达源,吴胜光,王云飞(1996).黄河上游的阶地与水系变迁,地理科学,16(2):137-143.
    杨景春,李有利(2005).地貌学原理,北京大学出版社,北京.
    尹金辉,郑勇刚,刘粤霞,卢演俦(2007).系列14C样品贝叶斯法日历年龄校正研究进展,地球科学进展,22(3):297-304.
    袁道阳,雷中生,何文贵,熊振,葛伟鹏,刘兴旺,刘百篪(2007).公元前186年甘肃武都地震考证与发震构造探讨,地震学报,29(6):654-663.
    张会平,张培震,袁道阳,郑文俊,郑德文(2010).南北地震带中段地貌发育差异性及其与西秦岭构造带关系初探,第四纪研究,30(4):803-811.
    张培震,闻学泽,徐锡伟(2009).2008年汶川8.0级特大地震孕育和发生的多单元组合模式,科学通报,54(7):944-953.
    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪(2003).中国大陆的强震活动与活动地块,中国科学(D辑),33(S1):12-20.
    张世民,谢富仁,黄忠贤,任俊杰(2009).龙门山地区上地壳的拱曲冲断作用及其深部动力学机制探讨,第四纪研究,29(3):449-463.
    张世民,丁锐,毛昌伟,吕志强(2010).青藏高原东缘龙门山山系构造隆起的地貌表现,第四纪研究,30(4):791-802.
    张雪梅,孙若昧,滕吉文(2007).青藏高原及其邻区地壳,岩石圈和软流层厚度研究,科学通报,52(3):332-338.
    张岳桥,杨农,陈文,马寅生,孟晖(2003).中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆升过程初步研究,地学前缘,10(4):599-612.
    张岳桥,马寅生,杨农,张会平,施炜(2005).西秦岭地区东昆仑-秦岭断裂系晚新生代左旋走滑历史及其向东扩展,地球学报,26(1):1-8.
    赵国光(1996).青藏高原北部的第四纪断层运动,中国地震,12(2):109-118.
    赵小麟,邓起东,陈社发(1994).岷江隆起的构造地貌学研究,地震地质,16(4):429-439.
    赵志军,方小敏,李吉均,潘保田,吏正涛,颜茂都(2001).酒泉砾石层的古地磁年代与青藏高原隆升,科学通报,46(14):1208-1212.
    赵志中,王书兵,乔彦松,王燕,徐刚,傅建利,姚海涛,李朝柱,刘宗秀,蒋复初(2009).青藏高原东缘晚新生代地质与环境,441pp.,地质出版社,北京.
    中国地震局震害防御司(1999).中国近代地震目录(公元1912年-1990年, Ms≥4.7),中国科学技术出版社,北京.
    钟大赉,丁林(1996).青藏高原的隆起过程及其机制探讨,中国科学D辑,26(4):289-295.
    周荣军,蒲晓虹,何玉林,黎小刚,戈天勇(2000).四川岷江断裂带北段的新活动,岷山断块的隆起及其与地震活动的关系,地震地质,22(3):210-220.
    朱艾斓,徐锡伟,周永胜,尹京苑,甘卫军,陈桂华(2005).川西地区小震重新定位及其活动构造意义,地球物理学报,48(3):629-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700