用户名: 密码: 验证码:
基于遥感的青藏高原热融湖塘时空演化监测与趋势分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候转暖及人类活动频繁增加的背景下,青藏高原多年冻土处于强烈的退化过程,而热融湖塘作为热融灾害中最为典型的灾害之一,也是多年冻土退化的重要标志,应该说从环境和工程影响方面,热融湖塘(热喀斯特湖)是热融灾害中最为典型、对冻土环境和工程影响最为直接的一种热融灾害。本论文针对青藏高原热融湖塘,基于对不同时期航空、航天遥感资料的分析,结合区域典型热融湖塘的监测与调查,从灾害学与地理学的角度,以发育于青藏铁路、青藏公路秀水河至风火山段沿线的典型热融灾害—热融湖塘为研究对象,通过分析热融湖塘敏感性发育的条件和因素,基于GIS平台研究了区域热融湖塘的时空演化特征,建立了敏感性评价方法,实现了区域热融湖塘敏感性评价,通过多年代航空、航天影像研究了典型湖塘——BLH-A热融湖塘的发育过程及其发育趋势,分析了青藏公路、青藏铁路沿线热融湖塘41年以来的时空演化规律,为青藏高原环境与工程协调和持续发展、规划及对策实施提供了科学依据。主要研究成果如下:
     (1)首先针对研究区范围内2006年分辨率为0.6m的QuickBird卫星影像数据和2010年分辨率为2.5m的SPOT-5卫星影像数据的处理方法进行了研究,重点对热融湖塘优势性的融合、纠正、镶嵌处理方法进行了选择与比较,探索出判读热融湖塘的最优技术方法,并建立了热融湖塘遥感解译标志,对遥感数据中的热融湖塘进行了解译,获取了热融湖塘的大量信息数据。
     (2)选取包括冻土类型、地温、植被类型、土质类型、水文地质条件以及坡度在内的六个因子,分析了热融湖塘与各因子的关系,采用数理统计法获得了各评价因子的敏感系数值。根据敏感因子与热融湖塘形成条件的对比分析,获得了研究区域59种不同地质环境综合敏感系数指标,为热融湖塘的空间演化分析提供了科学依据。
     (3)针对位于北麓河盆地的一代表性热融湖塘(BLH-A热融湖塘),通过遥感动态监测及实地监测,研究了BLH-A热融湖塘的时间演化趋势。1969年、1999年、2006年、2008年、2010年的遥感动态监测显示,BLH-A热融湖塘的面积1969年至1999年以0.35%的增长率扩张,1999年至2006年增长率为0.42%,2006年至2008年增长率为0.44%,2008年至2010年增长率为0.49%,在全球气候变暖、年平均气温不断上升的条件下,BLH-A热融湖塘的面积随时间推移增长越来越快。BLH-A热融湖塘向旧青藏公路方向扩张的速率在1969年至1999年为0.42m/a,在1999年之后,湖塘扩张的速率有所增加,大约是0.6m/a,2008年后湖塘扩张的速率达0.65m/a,经推算41年后,BLH-A热融湖塘将向新建青藏铁路方向扩张51.8m,会对青藏铁路路基造成危害。实地监测结果表明,BLH-A热融湖塘湖岸不断坍塌后退,从2007年8月~2010年10月,湖岸最大后退了3.2m,最小后退了0.6m,实地监测的结果验证了遥感数据的可靠性。
     (4)利用1969年至2010年41年间的资料,分析了青藏公路和青藏铁路修建前后热融湖塘随时间的演化规律。结果表明,41年来热融湖塘的面积年增长量和年增长率均与综合地质环境因素敏感系数呈正比,且前30年增长相对缓慢,而在青藏铁路修建后热融湖塘的个数和面积剧烈增加。根据热融湖塘历史时空演化规律,推测50年后,该区域热融湖塘的面积较2010年增大了1倍,约占研究区总面积的4.5%。100年后热融湖塘的面积接近2010年湖塘面积的5倍,约占研究区总面积的10.0%。
In the context of the development of the global warming and frequent human activities,permafrost degradation in the Qinghai-Tibet Plateau (QTP) is serious. Thermokarst lake, as one ofthe most typical thermal hazards, is also an important symbol of permafrost degradation. From theview of the aspects of environment and engineering, the effects of thermokarst lake to them aretypical and direct. In order to study thermokarst lakes in QTP in this thesis, a typical zone fromXiushuihe to Fenghuoshan along the Qinghai-Tibet Railway (QTR) and the Qinghai-TibetHighway (QTH) was selected to analyze the distribution and developing characteristics of thethermokarst lakes. From the perspective of disaster and geography, the works were based on theanalysis of aviation and spaceflight remote sensing data in different periods and monitoring thetypical zones. The conditions and factors influencing the thermokarst lake sensitivity, space-timeevolution characteristics of the thermokarst lakes were analyzed on the basis of GIS platform.Then the evaluation method of sensitivity was established and sensitivity evaluation of thethermokarst lakes was realized. In order to understand the space-time evolution laws of thethermokarst lakes more than40years, the development process of a typical lake, named BLH–A,and its development trend were studied through aviation images. The works might providereference for coordination and sustainable development planning and strategy implementationbetween the environment and local project in QTP. The main conclusions are as follows.
     (1) The processing methods on QuickBird satellite image data with a resolution of0.6m in2006and the SPOT-5satellite image data with a resolution of2.5m in2010in the study areawere discussed. Focusing on fusion, correct and mosaic processing methods on thermokarst lakedominance, a better interpretation method of thermokarst lake was explored. According to theinterpretation marks of the thermokarst lakes, remote sensing data was interpreted, andinformation of thermokarst lakes was obtained.
     (2) Six factors, including the type of permafrost, the ground temperature, vegetation type, soiltype, hydrogeological conditions and slope angle were selected to statistically analyze thedistribution of the thermokarst lake. After the analysis and evaluation of statistical results, usingthe mathematical statistics for the factors, the sensitive coefficient of each factor was calculatedand the results were evaluated. Finally, the sensitivity value of each factor was obtained through the average method. And the forming conditions of the thermokarst lakes were compared based onthe analysis of the sensitive factors. Then59comprehensive sensitivity coefficient indices indifferent geological environment in the study area were obtained, which provided the basis for thespace evolution analysis of the thermokarst lakes.
     (3) In order to investigate the developing trend of the thermokarst lakes, a lake located in theBeiluhe Basin (named BLH-A) was dynamically monitored through remote sensing and fieldinvestigation. According to remote sensing images in1969,1999,2006,2008and2010, the areaof the BLH–A was increasing with the growth of0.35%from1969to1999, and then the rateincreased with time. Under the background of the global climate warming, the area was growingfaster and faster over time: the growth rate was0.42%from1999to2006,0.44%from2006to2008, and0.49%from2008to2010. And the expansion trend of the lake was also increasing.From1969to1999the dilation rate of the lake was0.42m/a. After1999the rate was around0.6m/a, and was up to0.65m/a after2008. Through calculation, the BLH–A expanded51.8mtoward QTR in41years, which would do damage to the roadbed of QTR. This result wasconsistent with field monitoring data, which showed that the shore of the lake collapsed and fellback constantly. From August2007to October2010, all the monitoring points along the lakeshoredrew back more than0.6m, with the maximum of3.2m.
     (4) In order to analyze the evolvement law of Thermokarst Lake with the change of the timein41years from1969to2010, or before and after the Qinghai-Tibet highway and theQinghai-Tibet railway construction, combining with the geological environment sensitivity factorsand images of remote sensing dynamic monitoring project to Thermokarst Lake. The results showthat, during the41years, with increasing the PDmn, the total area of the thermokarst lakes and theannual growth rate increase accordingly. In addition, in the first30years, they grow slow;however, the number and the total area of the thermokarst lakes grow faster after the finishing ofthe Qinghai-Tibet railway construction. Moreover, the results forecast that the area of the totalthermokarst lakes will become doubling in the near50years, which is4.5%of the study area.After100years, the area will almost achieve five fold than that in2010, which could be10.0%ofthe study area.
引文
[1]邱国庆.冻土学辞典[M].兰州:甘肃科学技术,1994.
    [2]周幼吾,郭东信,邱国庆,程国栋,李树德.中国冻土[M].北京:科学出版社,2000.
    [3] Pewe TL. The periglacial environment in North America during Wisconsin Time in the lastPleistencene [C]. S.C. Pother, Ed: University of Minnesota Press, Minneapolis, Minn.1983,157-189.
    [4]童伯良,李树德等.青藏高原多年冻土的某些特征及其影响因素,青藏冻土研究论文集,北京:科学出版社,1983,1-11.
    [5] Lawson DE. Response of permafrost terrain to disturbance: a synthesis of observations from northernAlaska, USA [J]. Arctic and Alpine Research.1986,18(1):1-17.
    [6]程国栋.青藏铁路工程与多年冻土相互作用及环境效应[J].中国科学院院刊,2002,1:21-25.
    [7] Thomas L. D., Thomas R. K.,2000. Simulation of early20th century global warming. Science,2877:2246-2250.
    [8] Heike L.,Peter A.,2000. Global warming: a climate of uncertainty. Nature,408:896-897.
    [9] Peter M. C., Richard A. B., Chris D.J., Steven A. S., Ian J.T,2000. Acceleration of global warming dueto carbon-cycle feedbacks in a coupled climate model. Nature,408:184-187.
    [10]Sydney L, John I. A., Julian W., Thomas L. D., Keith W. D., Anthony J. B.,2001. Anthropogenicwarming of eatth climate system. Science,292:267-270.
    [11]Hansen J., Ruedy R., Sato M., Lo K.,2002. Global warming continues. Science,295:275.
    [12]Thomas R. K., Kevin E. T.,2003. Modern gloabal climate change. Science,302:1719-1723.
    [13]Gerald A. M., Warren M. W., William D.C., Julie M. A.,Aixye H., Lawrence E.B., Warren G. S.,HaiyanT.,2005. How much more global warming and sea level rise? Science,307:1769-1772.
    [14]王绍武,龚道溢;,对气候变暖问题争议的分析[J].地理研究,2001,20(2):153-160.
    [15]Wu QB and Zhang TJ. Recent permafrost warming on the Qinghai-Tibetan Plateau [J]. Journal ofGeophysical Research,2008,113, D13108:.
    [16]马钰,唐朝淑,周余萍.青海30年来气温、降水变化的诊断分析[J].青海环境.1992,(2):32-41.
    [17] Liu XD, Chen BD. Climate warming in the Tibetan Plateau during recent decades. InternationalJournal of Climatology [J].2000,20:1729-1742.
    [18]康兴成.青藏高原地区近40年来气候变化的特征[J].冰川冻土.1996,18(增刊):281-287.
    [19]丁一汇.中国西部环境变化的预测.中国西部环境演变评估第二卷[M].北京:科学出版社,2003:38-44.
    [20]秦大河,丁一汇.中国西部环境演变评估.北京:科学出版社,2002.
    [21]王绍令.青藏公路沿线多年冻土的变化及环境问题[J].中国环境科学,1993,3(5):344-349.
    [22]Cheng GD, Huang XM, Kang XC. Recent permafrost degradation along the Qinghai-Tibet Highway
    [C]. In Proceedings of6th International Conference on Permafrost, Vol2.1993,1010-1013.
    [23]Ding Y. J.,1998.Recent degradation of permafrost in China an dthe response to climate warming. In:Proceedings of the7th International Conference of Permafrost. Yellow knife,Canada,1998,June,23-27,225-230.
    [24]金会军,李述训,王绍令,赵林.气候变化对中国多年冻土和寒区环境的影响[J].地理学报,2000,55(2):161-173.
    [25]Niu F. J., Xu J, Lin Z. J., Wang P. Engineering Activity Induced Environmental Hazards inPermafrost Regions of Qinghai-Tibet Plateau [C]. Proceedings of9th International Conference onPermafrost. University of Alaska Fairbanks.2008, PP.1287-1292.
    [26]林战举,牛富俊,刘华,等.青藏高原热融湖对冻土工程影响的数值模拟[J].岩土工程学报,2011.
    [27]F. J. Niu, Z. J. Lin, H. Liu, J. H. Lu, Characteristics of thermokarst lakes and their influence onpermafrost in Qinghai-Tibet Plateau. Geomorphology [J].2011,132(3-4),222-233.
    [28]刘永智,吴青柏,张建民,等.高原多年冻土地区公路路基温度场现场实验研究[J].公路,2000,2:4-8.
    [29]林战举,牛富俊,葛建军,王平,董元宏.青藏铁路北麓河地区典型热喀斯特湖变化特征及其对冻土热状况的影响.冰川冻土,2010,32(2):341-349.
    [30]靳德武.青藏高原多年冻土区斜坡稳定性研究[D].西安:长安大学博士论文,2004.
    [31]王绍令.青藏公路沿线的热喀斯特[M].中国地理学会中国土木工程学会第二届全国冻土学术会议论文选集.兰州甘肃人民出版社,1983,58-64.
    [32]潘卫东,朱元林,吴亚平,张鲁新.青藏高原多年冻土地区不良冻土现象对铁路建设的影响[J].兰州大学学报,2002,(01):127-131.
    [33]余绍水,潘卫东,史聪慧,王小军,梁波.青藏铁路沿线主要次生不良冻土现象的调查和机理分析[J].岩石力学与工程学报,2005,24(06):1082-1085.
    [34]马小杰,张建明,常小晓等.高温-高含冰量冻土蠕变试验研究[J].岩土工程学报.2007,29(6):848-852.
    [35]马小杰,张建明,郑波,李双洋.青藏铁路路基下高温-高含冰量冻土旁压试验研究[J].岩土力学.2008,29(3):764-768.
    [36]许健,牛富俊,林战举.高温高含冰量冻土路基流变特性数值分析[J].中国铁道科学.2008,29(5):13-19.
    [37]Zhang J, Ma X, Zheng B. Experimental study on mechanism of subgrade deformation in permafrostregions along Qinghai-Tibetan Railway[C]. Proceeding of the Ninth International Conference onPermafrost. University of Alaska Fairbanks,2008, PP.2043-2048.
    [38]程国栋,赵林.青藏高原开发中的冻土问题[J].第四纪研究.2000,20(6):521-531.
    [39]林战举,牛富俊,许健.多年冻土区青藏铁路沿线次生冻融灾害成因初步分析[J].工程地质学报.2008,16(Suppl.):666-672.
    [40]程国栋.青藏高原多年冻土区路基工程地质研究[J].第四纪研究.2003,23(2):134-141.
    [41]程国栋.用冷却路基的方法修建青藏铁路[J].中国铁道科学.2003,24(3):1-4.
    [42]Niu FJ, Liu XF, Ma W, Wu QB, Xu J. Monitoring Study on the Boundary Thermal Conditions ofDuct-ventilated Embankment in Permafrost Regions [J]. Cold Regions Science and Technology.2008,53(3):305-316.
    [43]Niu FJ, Xu J, Lin ZJ, Wang P. Engineering Activity Induced Environmental Hazards in PermafrostRegions of Qinghai-Tibet Plateau [C]. Proceedings of9th International Conference on Permafrost.University of Alaska Fairbanks.2008, PP.287-1292.
    [44]王根绪,胡宏昌,王一博等.青藏高原多年冻土区典型高寒草地生物量对气候变化的响应[J].冰川冻土.2007,29(5):671-679.
    [45]吴青柏,沈永平,施斌.青藏高原冻土及水热过程与寒区生态环境的关系[J].冰川冻土.2003,25(3):250-255.
    [46]魏和平.三江源生态环境恶化[EB/OL].中国青年报,2008.3.13.
    [47]Romanovskii NN, Hubberten HW, Gavrilov AV. et al. Thermokarst and land-ocean interaction, LaptevSea region, Russia [J]. Permafrost and Periglacial Processes.2000. V.11. P.137–152.
    [48]Czudek T, Demek J. Thermokarst in Siberia and its influence on the development of lowland relief [J].Quaternary Research,1970.1:103–120.
    [49]Soloviev PA. Thermokarst phenomena and landforms due to frost heaving in central Yakutia [J].Builetyn Peryglacjalny,1973,23:135–155
    [50]Czudek T, Demek J. Thermokarst in Siberia and its influence on the development of lowland relief [J].Quaternary Research,1970.1:103–120.
    [51]Burn CR, Smith MW. Development of thermokarst lakes during the Holocene at sites near Mayo,Yukon Territory [J]. Permafrost Periglacial Process,1990,1:161–176
    [52]Hinzman LD, Goering DJ, Li S, Kinney TC. Numeric Simulation of Thermokarst Formation duringDisturbance. Disturbance and recovery in Arctic lands: an ecological perspective [C].1997. CrawfordRMM(Ed.).
    [53]Osterkamp TE, Romanovsky VE. Evidence for warming and thawing of discontinuous permafrost inAlaska [J]. Permafrost and Periglacial Process,1999,10:17–37.
    [54]Harris C. Climate Change, Mountain Permafrost Degradation and Geotechnical Hazard [M]. U. M.Huber et al.(eds.), Global Change and Mountain Regions, Springer Publisher,2005, PP.215-224.
    [55]Burn CR. Tundra lakes and permafrost,Richards Island,western Arctic coast,Canada [J]. Can.,Journal of Earth Science,2002,39:1281-1298.
    [56]Burn CR. Lake-bottom thermal regimes, western Arctic coast, Canada [J]. Permafrost and PeriglacialProcesses,2005,6:355-367.
    [57]Ling F, Zhang T. Numerical simulation of permafrost thermal regime and talik development undershallow thermokarst lakes on the Alaskan Arctic Coastal Plain [J]. Journal of Geophysical Research,2003,108(16):26–36.
    [58]Ling F, Zhang T. Modeling study of talik freeze-up and permafrost response under drained thaw lakeson the Alaskan Arctic Coastal Plain [J]. Journal of Geophysical Research,2004,109(01111):57–65.
    [59]Lin ZJ, Niu FJ, Xu ZY, et al. Thermal Regime of a Thermokarst Lake and its Influence on Permafrost,Beiluhe Basin, Qinghai-Tibet Plateau [J]. Permafrost and Periglacial Processes,2010,21:315-324.
    [60] Feng L, Wu QB, Zhang TJ, Niu FJ. Modelling Open-Talik Formation and Permafrost Lateral Thawundera Thermokarst Lake, Beiluhe Basin, Qinghai-Tibet Plateau [J]. Permafrost and PeriglacialProcesses,2012,23:312-321.
    [61]Lin ZJ, Niu FJ, Liu H, Lu JH. Hydrothermal Processes of Alpine Tundra Lakes, Beiluhe Basin,Qinghai-Tibet Plateau [J]. Cold Regions Science and Technology,2011,65:446-455.
    [62]崔巍,吴青柏,刘永智.热融湖塘对多年冻土的热影响[J].冰川冻土,2010,32(4):755-759.
    [63]孙志忠,刘明浩,武贵龙,贠汉伯.非贯穿型热喀斯特湖下部及其周围多年冻土特征[J].冰川冻土,2012,34(2):37-43
    [64]Zimov SA, Schuur EAG, Chapin FS, Permafrost and the global carbon budget [J]. Science,2006,312,1612-1613.
    [65]Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, MorisonJ, Zhang T, Barry RG, Observational evidence of recent change in the northern high-latitudeenvironment [J]. Climatic Change,2000,46,159-207.
    [66] Schuur EAG, Edward AG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE, The effect ofpermafrost thaw on old carbon release and net carbon exchange from tundra [J]. Nature,2009,459,556-559.
    [67]孙晓新,宋长春,王宪伟,毛瑢,郭跃东,路永正.多年冻土退化对湿地甲烷排放的影响研究进展[J].生态学报,2011,31(18):5379-5386.
    [68]Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS, Thermokarst Lakes as a Source ofAtmospheric CH4During the Last Deglaciation [J]. Science,2007,318,633-636.
    [69]Blodau C, Rees R, Flessa H, et al. A snapshot of CO2and CH4evolution in a thermokarst pond nearIgarka, northern Siberia [J]. Journal of Geophysical research,2008,113, G03023.
    [70]Desyatkin AR, Takakai F, Fedorov PP, et al. CH4emission from different stages of thermokarstformation in Central Yakutia, East Siberia [J]. Soil Science and Plant Nutrition,2009,55,558-570.
    [71]王慧妮,刘海松,董晟,倪万魁,林战举.青藏高原热融湖塘动态监测中高分辨率遥感数据处理方法研究[J].冰川冻土,2013,35(1).
    [72]Chu Jinhai, Peng Peng, Li Zheng, et al. The Fusion Method for QuickBird Data in Mine RemoteSensing Monitoring [J]. Remote Sensing for Land&Resources,2009,(3):107-109.
    [73]Hu Gang, Liu Zhe, Xu Xiaoping, et al. Research and Recent Development of Image Fusion at PixelLevel [J]. Application Research of Computers,2008,(3):650-655.
    [74]Liu Songtao, Zhou Xiaodong. Recent Development of Image Fusion Techniques [J]. Laser&Infrared,2006,(8):627-631.
    [75]K b A, Jong M Reynolds, et al.. Glacier and Permafrost Hazards in High Mountains [M]. U. M.Huber et al.(eds.), Springer Publisher.2005, PP.225-243.
    [76]Hinkel KM, Frohn RC, Nelson FE, Eisner WR, Beck RA, Morphometric and Spatial Analysis of ThawLakes and Drained Thaw Lake Basins in the Western Arctic Coastal Plain, Alaska [J]. Permafrost andPeriglacial Processes,2005,16,327-341.
    [77]Smith LC, Sheng Y, Macdonald GM, Hinzman LD, Disappearing Arctic Lakes, Science,2005,308,1429.
    [78]Charon B. The global remote sensing of lakes [M]. Wetlands and Rivers for Hydrological and ClimateResearch. IGARSS,1995,3,1979-1981.
    [79]Morgenstern A, Grosse G, Gunther F, Fedorova, I, Schirrmeister L, Spatial analyses of thermokarstlakes and basins in Yedoma landscapes of the Lena Delta [J]. The Cryosphere,2011,5,849-867.
    [80]梁凤仙,罗祥瑞.冰缘地貌现象在航片上的识别标志[J].冰川冻土,1981,3(4):72-74.
    [81]卓宝熙,高原多年冻土地区遥感图像工程地质分区的探讨[J].工程地质学报,2003,11(03):225-231.
    [82]傅肃性.卫星遥感与政府决策[M].北京:宇航出版社,1997.
    [83]王跃峰,肖抒,曾涛.西藏湖泊TM影像遥感分析[J].西藏科技,2005,145(5):23-26.
    [84]杨日红,于学政,李玉龙.西藏色林错湖面增长遥感信息动态分析[J].国土资源遥感,2003,2,64.
    [85]Lachenbruch AH, Brewer MC, Greene GW, Marshall BV.. Temperatures in permafrost [C]. InTemperature: its measurement and control in science and industry. Vol.3, Part1. Edited by C.M.Herzfeld. Reinhold, New York,1962, pp.791–803.
    [86]徐敩祖.冻土物理学[M].北京:科学出版社,2001:1-55.
    [87]鲁安新,姚檀栋,王丽红,刘时银,郭治龙.青藏高原典型冰川和湖泊变化遥感研究[J].冰川冻土.2005第27卷第6期.783-791.
    [88]Liu J. G. SmoothingFilter-based IntensityModulation:A Spectral Preserve Image Fusion Technique forImproving Spatial Details [J]. International Journal of Remote Sensing,2000,21(18):3461-3472.
    [89]Schowengerdt R A. Reconstruction of Multispectral Image Data Using Spatial Frequency Content [J].Photogrammetric Engineering and Remote Sensing,1980,(10):1325-1334.
    [90]余树影,王海燕,韩鹏飞,王西平.浅谈遥感影像纠正方法及精度分析[J].测绘技术装备,2010,(2):22-23.
    [91]李奕,高雅萍,唐尧.基于QuickBird数据的信息提取方法研究—以耕地提取为例[J].广东农业科学,2011,(17):144-146.
    [92]徐敩祖.冻土物理学[M].北京:科学出版社,2001:1-55.
    [93]鲁嘉濠,牛富俊,林战举,等.考虑局地因素坡向影响的青藏高原工程走廊冻土分布与制图研究[J].地理与地理信息科学,2012,3.
    [94]汤国安,杨昕.ARCGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006
    [95]Aniya A. Landslide-Susceptibility Mapping in the Amahata River Basin [J]. Japan. Ann. Assoc. Am.Geogr.,1985,75(1):102-114
    [96]刘海燕.黄陵县地质灾害危险性评价[D].西安:长安大学,2011.
    [97]张有全,宫辉力,李巧刚.基于GIS的北京市延庆县地质灾害易发性区域划分[J].中国地质灾害与防御学报,2006,17(4):17-20.
    [98]程花.基于GIS的原州区地质灾害危险性评价[D].西安:长安大学,2012.
    [99]唐川.德国波恩地区滑坡特征与危险性评价[J].水土保持学报,2000,3.
    [100]林战举.多年冻土区热喀斯特湖特征及其对冻土环境与工程的影响研究[D].中国科学院寒区旱区环境与工程研究所,2011.
    [101]宋辞,裴韬,周成虎.1960年以来青藏高原气温变化研究进展[J].地理科学进展,2012,(11):1503-1509.
    [102]蔡英,李栋梁,汤懋苍等.青藏高原近50年来气温的年代际变化.高原气象,2003,22(5):464-470.
    [103]李林,陈晓光,王振宇等.青藏高原区域气候变化及其差异性研究.气候变化研究进展,2010,6(3):181-186.
    [104]李林,朱西德,秦宁生等.青藏高原气温变化及其异常类型的研究.高原气象,2003,22(5):524-530.
    [105]康兴成青藏高原地区近40年来气候变化的特征.冰川冻土,1996,18(S1):281-288.
    [106]刘晓东,侯萍.青藏高原及其邻近地区近30年气候变暖与海拔高度的关系.高原气象,1998,17(3):245-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700