用户名: 密码: 验证码:
岩体裂隙与管道动水注浆浆液扩散封堵机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于地下工程岩体涌水,注浆技术是其主要治理手段之一。运动的地下水环境是涌水注浆治理的最大特点。动水条件下注浆增加了注浆成功的难度。浆液扩散规律也与非动水条件下注浆大不一样。浆液在动水作用下的运移扩散规律及封堵机理是目前急需解决的科学问题。本文以流体力学理论和地下水溶质运移理论为基础,通过理论分析与注浆模拟试验相结合的方法,探讨了注浆压力的产生机理,研究了岩体中管道和裂隙在动水条件下注浆浆液的扩散与封堵机理,并分别提出了相应的注浆封堵原则和条件。
     主要研究内容及成果包括:
     (1)从动水注浆研究的角度,对工程涌水类型进行了划分;提出了涌水的基本三要素:涌水水源、涌水通道及涌入空间;概化了动水注浆工程地质模型,根据被注介质空隙类型及注浆位置特点主要可分为三类:浅孔裂隙(或小型溶管)注浆堵水、深孔裂隙(或小型溶管)注浆堵水、深孔大型管道孔洞注浆堵水。
     (2)考虑注浆动力系统全特性和被注介质阻力特性,对注浆压力提出了新的认识:注浆压力即为在某一时刻,动力系统所能给予的作用力和浆液流动扩散阻力在一定注浆流量Q时不断平衡得到的力。建立了注浆压力的数学模型,该模型反应了注浆过程中注浆压力和流量的变化波动机制。提出了浆液扩散阻力特性值SH的概念,SH即为注浆孔单位长度上,单位注浆流量所需要的有效注浆压力水头,它直观反映了地层的可注性情况及注浆过程特征。最后以注浆压力数学模型为基础,对简单管道及裂隙静水注浆时浆液的扩散规律进行了分析,理论推导了浆液扩散半径、扩散速度公式等。
     (3)组装了注浆试验系统,并进行了9组动水管道水泥注浆的正交试验。试验主要考虑了水源水头_Hw、注浆流量Q注、动水流量Q_w以及浆液水灰比W/C等因素水平的影响。结果表明,注浆过程中,水源水头及注浆流量大小是影响水泥注浆堵水成败的关键因素。试验发现了浆液进入动水管道时产生的“水击”现象,该现象由浆液的对水的突然冲击引起,导致注浆孔上游水压力出现压力剧增的波动现象。注浆过程中,浆液的扩散存在三种方式:浆液被动水携带出流;浆液先顺水流运移,后逆水流扩散;浆液进入管道后同时向上下游扩散。注浆后,管道的封堵状态分四种:无封堵、浆液充填后溃流不封堵、顶部渗流不完全封堵、完全封堵。通过力学分析,推导了发生“浆液充填后溃流不封堵现象”和“顶部渗流不完全封堵现象”之间的临界渗透流速u_(cr)。
     (4)进行了动水管道化学注浆的正交试验。化学浆液采用凝胶时间可调控的脲醛树脂浆液。试验中,考虑了浆液凝胶时间t_n、管径大小d、水源水头Hw三因素的影响。注浆过程中,浆液的扩散与水泥浆液注浆时相似。试验表明,化学浆液对动水管道的封堵机理主要有三种:注浆孔上、下游胶凝固结封堵、下游胶凝固结封堵、上游胶凝固结封堵。
     (5)以水泥和化学浆液管道注浆的分析结果及封堵机理为基础,分别提出了浆液对动水成功实现扩散封堵的基本原则。水泥浆液封堵的基本原则包括:管道的最大静水压力应小于充填段浆液的屈服剪切力;浆液注入时应保证可以充填全部管道过水断面,不出现浆—水混合流的情况。动水化学注浆封堵的基本原则:充填段浆液固结后与管壁的粘结力应大于静水压力;应调整注浆流量和浆液凝胶时间等因素使浆液的凝胶现象能保证在管道内发生;注浆持续时间应大于浆液浆液凝胶时间。以封堵的基本原则为根据,提出了成功封堵时浆液性质、注浆时间所需满足的条件,并推导了水泥浆液等宾汉流体浆液成功封堵所需的临界流量Qe和速凝类化学浆液不同封堵作用机理时成功封堵所需的临界流量Qe和Q’e。
     (6)进行了有限边界裂隙的动水注浆试验。浆液采用脲醛树脂化学浆液。共计7组试验,分别考虑了裂隙展布宽度B,浆液凝胶时间tn等因素对浆液扩散与封堵规律的影响。浆液在有限边界裂隙中的流动扩散可分为两个阶段:无侧向边界辐向扩散阶段和沿侧向边界扩散阶段。在第一扩散阶段,发现了动水对浆液扩散体绕流时产生的低压漩涡区,具体表现为浆液扩散体尾部水压和流速的降低。化学浆液对动水裂隙的封堵机理分为三种:①全断面浆液扩散固结完全封堵;②固结—绕流—固结完全封堵;③非全断面扩散留存不完全封堵。“全断面扩散固结完全封堵”即浆液进入裂隙后快速进入第二扩散阶段,充填全部裂隙过水断面并凝胶固结;“固结—绕流—固结完全封堵”即浆液在离注浆孔正下游方向较近的某一位置最先固结后,新浆液对其进行绕流,绕流过程中,固结体范围不断增大,最终封堵整个断面;“非全断面扩散留存不完全封堵”即为浆液注入只出现扩散的第一阶段,浆液无法对全过水断面进行封堵,但注浆后浆液在其流域上留存下来,减小了过水断面面积。
     (7)依据浆液在动水裂隙中的封堵机理,分别提出了实现“全断面完全封堵”和“浆液留存不完全封堵”的基本原则。依据封堵原则,提出了成功封堵所需的临界注浆流量Q_j、临界浆液粘结力C,以及其他注浆可控工艺参数所需满足的条件或表达式。
Grouting is the most popular and important method to control the water burst inunderground construction. However, whether this method will be successful inengineering practice depends on hydrodynamic condition. Therefore, it is not only anecessary but also an urgent research to be conducted to understand the groutingmechanism in hydrodynamic condition.
     Theoretical analysis, based on hydromechanics and solute transport inunderground water theory, and physical modeling were employed in this dissertationto study the grouting mechanism which includes grouting pressure and groutingdiffusion in pipe as well as fractures under hydrodynamic condition. The main workand understandings are as follows.
     (1) Four categories of water burst were classified based on the proposed waterinflow components which includes water burst space, water burst enterclose andsource of water burst.
     (2) Grouting pressure was defined on grouting mechanical system and groutedrock resistance. One mathematic model was derived for grouting pressure. Results ofthis model on single pipe and fractures were calculated from this model.
     (3) One pipe grouting model under hydrodynamic condition was carried out tostudy diffusion of cement. Pressure head of hydrodynamic water and grouting volumeare considered as the key factors which can affect the validation of grouting. Aninteresting phenomenon was observed in test named water attack. Three types ofdiffusion and four types of grouted rock were summarized.
     (4) Chemical grouting material was used in one pipe model to compare withcement. The grouting principles were different from chemical grouting material tocement, which resulted three grouting types. These types included upstream gelling,downstream gelling, and both ends gelling.
     (5) The premises of successful grouting were proposed based on the comparisonof cement and chemical grouting material diffusion. Moreover, the parameters forboth quick and un-quick setting slurry were discussed to clarify the required conditionwhich controlled the quality.
     (6) A finite boundary fracture physical modeling was carried out to study thegrout diffusion law. A low pressure swirl area was generated when dynamic waterflow around. Therefore, two stages of diffusion were summarized. Especially, the sealing mechanism of chemical grouting was classified as total cross-section sealing,gelling with flow around and partial cross-section sealing.
     (7) The principles for qualified grouting were proposed under hydrodynamiccondition based on theoretical analysis and physical modeling. Total cross-section andpartial cross-section sealing were discussed to guide the engineering practice with therequirement of characteristics of grouting material, grouting time and groutingvolume.
引文
[1]李忠.在建铁路隧道水砂混合物突涌灾害的形成机制、预报及防治[D].徐州:中国矿业大学,2010
    [2]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[D].徐州:中国矿业大学,1999
    [3]郝哲,王来贵,刘斌.岩体注浆理论与应用[M].北京:地质出版社,2007
    [4]韩立军等编著.岩土加固技术[M].徐州:中国矿业大学出版社,2005
    [5]《岩土注浆理论与工程实例》协作组编著.岩土注浆理论与工程实例[M].北京:科学出版社,2001
    [6]冯旭海.压密注浆作用机理与顶升效应关系的研究[D].北京:煤炭科学研究总院,2003
    [7]丁振宇.上海地铁隧道壁后注浆的地表顶升回落规律的研究[D].北京:煤炭科学研究总院.2004
    [8]葛运广,刘家海.注浆技术在沉井纠偏中的应用[J].江苏煤炭,2003,(2):50~51
    [9] M.J.Yang, Z.Q.Yue, P.K.K.Lee, B.Su, L.G.Tham. Predietion of Grout Genetration inFraetured Rocks by Numerieal Simulation.2002,39:1384~1394
    [10]石明生.高聚物注桨材料特性与堤坝定向劈裂注桨机理研究[D].大连:大连理工大学,2011
    [11]涂鹏.注浆结石体耐久性试验及评估理论研究[D].长沙:中南大学,2012
    [12]何忠明.裂隙岩体复合防渗堵水浆液试验及作用机理研究[D].长沙:中南大学,2007
    [13] Oda M. An equivalent model for coupled stress and fluid flow analysis in jointed rockmasses[J]. Water Resources Research,1986,22(13)
    [14]张农.巷道滞后注浆围岩控制理论与实践[M].徐州:中国矿业大学出版社,2004
    [15]熊厚金,林天健,李宁.岩土工程化学[M].北京:科学出版社,2011
    [16] A.H.Zettler&R.Poisel, G. stadler. Behaviour of visco-plastic fluids in narrow joints withnon-parallel surfaces investigations of a rock groutiong process, mechanics of Jointed andFaulted Rock, Rossmanith,1995
    [17]何修仁等.注浆加固与堵水[M].沈阳:东北工学院出版社,1990
    [18]郭密文,隋旺华.高压环境条件下注浆模型试验系统设计[J].工程地质学报,2010,(5):720~724
    [19]郭密文.高压封闭环境孔隙介质中化学浆液扩散机制试验研究[D].徐州:中国矿业大学,2010
    [20] Eisa, K.. Compensation grouting in sand[D].London: University of Cambridge,2008.
    [21] Adam Bezuijen. Compensation grouting in sand--Experiments, field fxperiences andmechanisms[D]. Delft: Delft University of Technology,2010.
    [22] Irupati Bolisetti. Experimental and numerical investigations of chemical grouting inheterogeneous porous media[D]. Ontario: University of Windsor,2005.
    [23]李术才,张霄,等.地下工程涌突水注浆止水浆液扩散机制和封堵方法研究[J].岩石力学与工程学报.2011,30(12):2378~2395
    [24]王档良.多孔介质动水化学注浆机理研究[D].徐州:中国矿业大学,2011
    [25] Kishida Kiyoshi, Sawada Atsushi, Yasuhara Hideaki, et al. Estimation of fracture flowconsidering the inhomogeneous structure of single rock fractures[J]. Soils andFoundations,2013
    [26] Kishida Kiyoshi, Kobayashi Kenichiro, Hosoda Takashi, et al. Development of groutinjection model to single fracture in considering inertia term and its application on parallelplate experiments[J]. Zairyo/Journal of the Society of Materials Science. Japan,2012
    [27]阮文军.浆液基本性能与岩体裂隙注浆扩散研究[D].吉林:吉林大学,2003
    [28]罗平平,王兰甫,范波,等.基于MBM随机隙宽单裂隙浆液渗透规律的模拟研究[J].岩土工程学报,2012,34(2):309~316
    [29]罗平平,陈蕾,邹正盛.空间岩体裂隙网络灌浆数值模拟研究[J].岩土工程学报,2007,29(12):1844–1848
    [30]郝哲,王介强,何修仁.岩体裂隙注浆的计算机模拟研究[J].岩土工程学报,1999,21(6):727-730.
    [31]孙斌堂,凌贤长,凌晨.渗透注浆浆液扩散与注浆压力分布数值模拟[J].水利学报,2007,31(11):1402~1407
    [32]罗平平,何山,张玮,赵庆锋.岩体注浆理论研究现状与展望[J].山东科技大学学报(自然科学版),2005,24(1):46~48
    [33]郑玉辉.裂隙岩体注浆浆液与注浆控制方法的研究[D].长春:吉林大学,2005
    [34]杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,20(6):839~841
    [35]阙云,刘强华,李丹等.渗透注浆扩散理论探讨[J].重庆交通学院学报,2006,25(5):105~108
    [36]苏培莉.注浆浆液在裂隙岩体网络中的流动规律研究[D].西安:西安科技大学,2007
    [37]赵林.基于分形理论的裂隙岩体注浆扩散规律研究[D].成都:西南交通大学,2008
    [38] Tirupati B. Experimental and numerical investigations of chemical grouting inheterogeneous porous media[D]. Windsor, Canada:University of Windsor,2005
    [39] Almer E C, Vander Stoel. Pile foundation improvement by permeation grouting[C]//Proceedings of the3rd International Specialty Conference on Grouting and GroundTreatment,2003:728~739
    [40]王国际.注浆技术理论与实践[M].徐州:中国矿业大学出版社,2000
    [41] Louis C. and Y.N.T. Maini, Determination of in situ hydraulic parameters in jointed rock[J].Proc.2nd congr. ISRM,1970.
    [42] Noorishad J. et al. A finite element method for coupled stress and fluid flow analysis infractured rock mass. Int.[J]. Rock Mech.Min. Sci.Geomech. Abstr.1982
    [43] Noorishad J. Coupled thermal–hydraulic-mechanical phenomens in saturated fracturedporous rocks: Numerical approach. J Geoph.Res1989
    [44] Oda, M. Permeability tensor for discontinuous rock masses[J], Geotechnique,1985
    [45] Romero, L., L. Moreno, and L. Neretnieks, Nuctran: A computer program to calculateradionuclide transport in the near field of a repository[R], SKB Arbetsrapp.AR-95-14, Swed.KSrnbrlnslehautering AB, Stockholm,1995
    [46] Cocas, M.C., E. Ledoux,G de Marshy, A. Barbreau,Calmels, B. Gaillard, and R. Margritta,Moedling fracture flow with a stochastic discrete fracture network: Calibration andvalidation,2. The transport model [J]. Water Resour. Res,1990
    [47] Dershowitz, W.S., Rock mechanics approaches for understanding flow and transportpathways[A], paper presented at EUROCK'96, ISRM International Symposium onprediction and Performance in Rock Mechanics and Rock Engineering, Int. Soc. of RockMach., Torino, Italy, September2-5,1996.
    [48] Berkowitz, B., I.Beer, and C. Braester, Continuum models for contaminant transport infractured porous formations[J],Water Resour. Res.,1988,24(8)
    [49]陈长植.工程流体力学[M].武汉:华中科技大学出版社,2006
    [50]刘鹤年.流体力学[M].北京:中国建筑工业出版社.2004
    [51]刘嘉材.裂缝灌浆扩散半径研究[C].中国水利水电科学院科学研究论文集.北京:水利电力出版社,1982:186~195
    [52] Baker, C. Comments on paper Rock Stabilization in Rock Mechanics[J], Muler,Springer-Verlag NY,1974
    [53]张良辉.岩土灌浆渗流机理及渗流力学[D].北方交通大学博士学位论文,1996
    [54]石达民,吴理云.关于注浆参数研究的一点探索[J].矿山技术,1986(2)
    [55] W. Wittke.采用膏状稠水泥浆灌浆新技术[C].现代灌浆技术译文集.北京:水利电力出版社,1991:48~58
    [56]湛铠渝.单一裂隙动水注浆模拟试验研究[D].徐州:中国矿业大学,2010
    [57]赵林.基于分形理论的裂隙岩体注浆扩散规律研究[D].西南交通大学硕士论文,2008
    [58]孙克国.注浆控制岩溶隧道突水地质灾害的机制和模拟方法研究[D].济南:山东大学,2010
    [59]杨晓东,刘嘉材.水泥浆材灌入能力研究[C].中国水利水电科学院科学研究论文集.北京:水利电力出版社,1987:184~191
    [60]郑长成.裂隙岩体注浆的模拟研究[D].长沙:中南工业大学,1999
    [61]葛家良等.基岩结构面特征及其注浆浆液扩散的GJL二维模型[C].全国基岩与混凝土裂缝化学灌浆处理学术研讨会论文集,2002
    [62]吴吉春,薛禹群.地下水动力学[M].北京:水利水电出版社,2009
    [63]陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999
    [64]潘别桐,徐光黎.岩体结构模型及应用[M].中国地质大学出版社,1990
    [65]宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学,2004,25(2):227~232
    [66]祝云华,刘新荣,梁宁慧,等.裂隙岩体渗流模型研究现状与展望[J].工程地质学报.2008,16(02):178~183
    [67]湛铠瑜,隋旺华,高岳.单一裂隙动水注浆扩散模型[J].岩土力学,2011,32(6):1659~1663
    [68]张改玲,湛铠瑜,隋旺华.水流速度对单裂隙化学注浆浆液扩散影响的试验研究[J].煤炭学报,2011,36(3):403~406
    [69]湛铠瑜,隋旺华,王文学.裂隙动水注浆渗流压力与注浆堵水效果的相关分析[J].岩土力学,2012,33(9):2650~2655
    [70]李术才,张霄,张庆松,等.地下工程涌突水注浆止水浆液扩散机制和封堵方法研究[J].岩石力学与工程学报,2011,30(11):2377~2395
    [71]刘人太,李术才,张庆松,等.一种新型动水注浆材料的试验与应用研究[J].岩石力学与工程学报,2011,30(7):1454~1459
    [72]张霄.地下工程动水注浆过程中浆液扩散与封堵机理研究及应用[D].济南:山东大学,2011
    [73]刘健,刘人太,张霄,等.水泥浆液裂隙注浆扩散规律模型试验与数值模拟[J].岩石力学与工程学报,2012,31(12):2444~2452
    [74]王帅.基于动水注浆试验与数值模拟的动水注浆压力场研究[D].济南:山东大学,2012
    [75]梁化强,赵光思,梁恒昌.地面注浆控制井壁破裂变形的理论与实践[J].中国安全科学学报,2009,(1):5~9
    [76]王志骅,汤友谊.立井井筒工作面预注浆堵水技术的研究与应用[J].煤炭技术,2009,(3):116~118
    [77]曹胜根,李国富,姚强岭,王福海.煤层底板突水水量预测及注浆改造技术[J],岩石力学与工程学报.2009,(2):312~318
    [78]曹晨明,冯志强.低粘度脲醛注浆加固材料的研制及应用[J].煤炭学报,2009,(4):482~486
    [79]史秀志,林杭,曹平.注浆效应对边坡稳定性的影响[J].中南大学学报(自然科学版),2009,(2):492~497
    [80]艾桂根.高压旋喷注浆技术在广核大厦地基处理中的应用[J].东华理工大学学报(自然科学版),2009,(1):78~81
    [81]徐如意,曹杰,冯永杰,刘广庆.化学注浆材料治理无自稳破碎围岩的实践[J].煤炭工程,2009,(6):31~33
    [82]柴新军,钱七虎,杨泽平,等.点滴化学注浆技术加固土遗址工程实例[J].岩石力学与工程学报,2009,(S1):2980~2985
    [83]黄红元,荣耀.饱和砂层驱水渗透注浆分析[J].岩土力学,2009,(7):2016~2020
    [84]王一新,李华茂.裂隙岩体注浆研究现状[J].路基工程,2009,(5):13~14
    [85] J.C.Duple, J.Canou, D.Gouvenot. An advanced experimental set-up for studyingamonodirectional grout injection process[J]. Ground Improvement,2004(8)
    [86] Adel M. El-Kelesh and Tamotsu Matsui.Compaction Grouting and Soil Compressibility[C].Proceedings of The Twelfth International Offshore and Polar Engineering Conference.Japan,2002
    [87] Patricia M. Gallagher; Carolyn T. Conlee; and Kyle M. Rollins. Full-scale field testing ofcolloidal silica grouting for mitigation of liquefaction risk [J]. Journal of Geotechnical andGeoenvironmental Engineering,2007
    [88] Chen Yong-gui,Ye Wei-min,Zhang Ke-neng. Strength of copolymer grouting materialbased on orthogonal experiment [J]. J. Cent. South Univ. Technol,2009
    [89] Ozgurel,H. Gurkan,Gonzalez,H.A.,Vipulanandan,C. Two dimensional model studyon infiltration control at a lateral pipe joint using acrylamide grout [C]. Proceedings of thePipeline Division Specialty Conference,2005
    [90] Morikawa,Yoshito;Tokoro,Takehiko;Takahashi,Norio. Evaluation of the cohesion ofchemically grouted sands [J]. Journal of the Society of Materials Science,1998
    [91] Soga K, Au S, Jafari M, and Bolton M. Laboratory investigation of multiple groutinjections into clay [J]. Geotechnique,2004
    [92]李术才,李树忱,张庆松,等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217~225
    [93]曹胜根,刘长友.高档工作面断层破碎带顶板注浆加固技术[J].煤炭学报,2004,29(5):545~549
    [94]刘招伟,张顶立,张民庆.圆梁山隧道毛坝向斜高水压富水区注浆施工技术[J].岩石力学与工程学报,2005,24(10):1728~1734
    [95]倪宏革,孙峰华,杨秀竹,等.采用粘土固话浆液进行岩溶路基注浆加固试验研究[J].岩石力学工程学报,2005,24(7):1242~1247
    [96]张成平,张顶立,王梦恕,等.高水压富水区隧道限排衬砌注浆圈合理参数研究[J].岩石力学工程学报,2007,26(11):2270~2276
    [97]伍振志,傅志锋,王静,等.浅埋松软地层开挖中管棚注浆法的加固机制及效果分析[J].岩石力学工程学报,2005,24(6):1025~1029
    [98]周书明,陈建军.软流塑淤泥质地层地铁区间隧道劈裂注浆加固[J].岩土工程学报,2002,24(2):222~224
    [99]张霄,李术才,张庆松,等.矿井高压裂隙涌水综合治理方法的现场试验[J].煤炭学报,2010,35(8):1314~1318
    [100]张霄,李术才,张庆松,等.关键孔注浆方法在高压裂隙水封堵中的应用研究[J].岩石力学与工程学报,2011,30(7):1414~1421
    [101] Funehag J, Gustafson G. Design of grouting with silica soil in hard rock—new methods forcalculation of penetration length,part I[J]. Tunnelling and Underground Space Technology,2008,23(1):1~8
    [102] Tirupati B. Experimental and numerical investigations of chemical grouting inheterogeneous porous media[D]. Windsor, Canada:University of Windsor,2005
    [103] Miller E A, Roycrof G A. Compaction grouting test program for liquefaction control[J].Journal of Geotechnical and Geoenvironmental Engineering,2004,130(4):355~361
    [104] Michael J, Byle P E F. Design consideration for inclusions by limited mobility displacementgrouting[C]. Proceedings of the3rd International Specialty Conference on Grouting andGround Treatment.2003:1071~1081
    [105] Wang S Y. Fundamental study of static and dynamic compaction grouting in completelydecomposed granite soil in Hong Kong[D]. Hong Kong:City University of Hong Kong,2006
    [106] Wong I H, Poh T Y. Effects of jet grouting on adjacent ground and structures[J]. Journal ofGeotechnical and Geoenvironmental Engineering,2000,126(3):247~256
    [107] Nikbakhtan B, Ahangari K. Estimation of jet grouting parameters in Shahriar dam, Iran[J].Journal of China University of Mining and Technology,2010,20(3):472~477
    [108] Chien S C. A study of ground improvement using electroosmotic chemical grouting[D].Taipei: National Taiwan University of Science and Technology,2008
    [109] Chien S C, Ou C Y, Lee Y C. A novel electroosmotic chemical treatment technique for soilimprovement[J]. Applied Clay Science,2010,50(4):481~492
    [110]国家安全生产监督管理总局.煤矿防治水规定[M].北京,煤炭工业出版社,2009
    [111]李永军,彭苏萍.华北煤田岩溶陷落柱分类及其特征[J].煤田地质与勘探,2006,34(4):53~57
    [112] National Resear ch Council. Rock fractures and fluid flow: contemporary understandingand applications[M]. Washington: National Academy Press,1996
    [113]卫迦,田华兵.岩溶管流水力学模型的典型研究——以后寨地下河为例[J].成都理工学院学报,1997,24(增刊):58~64
    [114]王档良,隋旺华,黄小明,等.岩体中灌浆压力变化规律试验研究[J].金属矿山,2008,(1):53~56
    [115]徐冰寒,高岳,徐亚飞.改进型化学浆液在钱营孜煤矿副井井筒防水堵漏中的应用[J].煤田地质与勘探,2012,40(3):55~58
    [116]张民庆,黄鸿健.齐岳山隧道高压裂隙水注浆堵水技术[J].铁道工程学报,2010,136(1):68~72
    [117]刘志军.特大型灰岩突水动水注浆封堵技术研究[D].山东科技大学,2006
    [118]王杰.岩土注浆理论与工程实例[M].北京:科学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700