用户名: 密码: 验证码:
中国长江流域第四纪红土年代学研究及末次间冰期以来古气候演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化与区域响应研究是当今科学界广为关注的研究课题。中国南方第四纪红土是特定气候条件下的产物,且形成时间跨度大,蕴含着丰富的古气候信息,是研究中国南方古气候、古环境变化的重要信息载体。本文通过大规模面上调查,选择长江中下游地区为研究区域,以长江沿岸宣城、郎溪、九江等地的第四纪红土剖面为重点研究剖面,通过研究土壤粒度和元素地球化学特征,揭示了研究区域第四纪红土的成因及物源;并采用光释光(OSL)测年技术,研究了典型第四纪红土上部黄棕色土—红土二元结构土壤剖面的年代学特征与古气候演变意义;还对第四纪红土剖面L*-a*-b*颜色特征进行深入研究,探讨红度(a*)作为古气候指标的可行性;并对长江流域第四纪晚期由于古气候演变造成成土母质多元性,对现代土壤发生、分类和分布的影响进行了分析和研究。主要获得如下结果:
     (1)第四纪红土剖面(P-GD、P-JJ、P-LX1和P-XZ1),从顶部的黄棕色土,至均质红土和网纹红土,无明显沉积间断。全剖面粒度细小而均匀,不含>2mm的砾石,砂粒(>63μm)含量低,粗粉砂(10-63μm)富集明显,细粉砂(2-10μm)和粘粒(<2μm)含量高。研究剖面各层次粒度组成特征和粒度频率分布曲线,均与下蜀黄土和北方黄土相似;常量元素组成特征,也与下蜀黄土和北方黄土相近;剖面各层次,微量元素分配曲线基本重合,与下蜀黄土和北方黄土也十分相似。这些结果均表明,研究剖面各层(黄棕色土、均质红土和网纹红土)物源相似,均具有类似下蜀黄土的风积成因特性。
     (2)选择典型黄棕色土—红土二元结构土壤剖面,采用光释光(OSL)测年技术,进行年代学研究。结果表明,黄棕色土底部年龄小于60ka B. P.,主体形成于末次冰期;网纹红土年龄约为80–134ka B.P.,形成于末次间冰期;而均质红土的年龄约为60-80ka B. P.,处于末次间冰期向末次冰期过渡时期。
     (3)中国南方第四纪红土剖面(P-LX1、P-JJ、P-XN和P-YW)的红度(a*),随剖面深度增加而逐渐增大,但在网纹层出现了较大的波动。全剖面a*与粘粒(<2μm)和游离铁(Fed)含量、铁的游离度(Fed/Fet),及其它风化指标呈极显著正相关性(ρ<0.01)。在空间分布上,中国红土的a*随纬度的降低而升高,与年平均降水量和年平均气温呈显著正相关关系。这说明中国南方红土的a*,可指示地表水热条件,有气候指示意义。红土a*反映了赤铁矿的含量。由于红土赤铁矿含量与风化成土作用强度密切相关,a*可作为气候指标。第四纪红土网纹层,赤铁矿受强烈水分活动影响而溶蚀,铁质流失,土层发白,使得a*偏低。因此,a*并不总是能指示风化强度。但由于赤铁矿比磁赤铁矿更稳定,红土a*是比磁化率更好的古气候指标。
     (4)长江流域第四纪红土剖面(P-GD、P-JJ、P-LX1和P-XZ1),物质均匀而连续,但风化强度有随深度增加而增强的趋势。尤其是从剖面下部的埋藏红土→黄棕色土,清晰地记录了一次重大的古气候转型事件:其时,气候由湿热变为干冷,导致红土发育终止,代之以广泛的风尘沉积。结合OSL年代学和土壤发生学研究成果,可解析古气候事件:研究剖面的黄棕色土层,形成于末次冰期,对应于深海氧同位素曲线的MIS2阶段;均质红土,形成于末次间冰期至末次冰期的过渡时期,对应于MIS3阶段;网纹红土形成于末次间冰期,对应于MIS5阶段。但由于网纹红土强度风化,无法进一步区分其中的亚气候事件。
     (5)在长江流域,末次古气候轮回,对现代土壤发生和分类有重要影响。比如,宣城市一小山坡分布的序列土壤剖面:P-YL1、P-YL2和P-YL3。P-YL1发育于末次冰期黄棕色土;P-YL2发育于均质红土;P-YL3发育于末次间冰期网纹红土。按照中国传统土壤分类,这三个剖面应为典型地带性土壤:黄棕壤、黄红壤和红壤;按中国系统分类,分别为酸性淋溶土、湿润淋溶土和富铁土。末次古气候轮回,造成成土母质的多元性,使得不同地带性土壤出现在同一个小区域,有的与现代气候条件不适应。说明土壤的发生和分布,除了受现代气候的控制,还深受古气候演变的影响,尤其是在中亚热带气候变化敏感地区。
The study of past global climatic changes and regional responses has attractedwordwide attention since recent decades. The Quaternary Red Clay (QRC) in southernChina, a residue of highly weathering under long-term warm and humid climate, has along history and contains much paleoclimatic information, which hence is regarded asan important carrier of past environment for studying paleoclimatic changes insouthern China. Some representative QRC profiles in Xuancheng and Langxi,southern Anhui province, and Jiujiang, Jiangxi province, belonging to the lower andmiddle reaches of the Yangtze River, were selected after many field investigations.Grain-size and geochemical characteristics of the QRC profile were study to revealthe sources and forming processes of the red clay in the study areas. TheYellow-brown Earth (YBE)–Red Clay (RC) sections of the upper QRC profiles weredated by the optically stimulated luminescence (OSL) method, followed by analysesof weathering indexes, to separate and identify possible paleoclimatic events in theYangtze River Valley, Southeast China, during the late Quaternary period. Color ofthe QRC profiles was measured using the L*-a*-b*color system and the correlationbetween the redness (a*) and weathering degree was studied to discuss the feasibilityof using a*as a paleoclimatic indicator. Moreover, soil variations in the study areaswere also widely investigated to study the influence of paleoclimatic change onpedogenic processes and soil distribution during the Last Glacial–Interglacial cycle.The results are as follows:
     (1) The transfer from the YBE to the Uniform Red Clay (URC) and theReticulate Red Clay (RRC) of the selected QRC profiles, P-GD, P-JJ, P-LX1andP-XZ1, are gradual and continuous, without any depositional hiatuses. Grain sizes ofthe profiles are generally fine and uniform, with no gravel (>2mm) and little sand(>63μm), but a high content of coarse silt (10-63μm), also high contents of fine silt(2-10μm) and clay (<2μm). Moreover, the grain-size characteristics and grain-sizefrequency curves of the representative layers of the QRC profiles are similar to thoseof the typical aeolian loess in northern China and Xiashu loess in the Yangtze RiverValley. The vertical distributions of major elements of the QRC profile are alsouniform, continuous and similar to those of the Xiashu Loess and the loess in northernChina. The trace-element distributing curves of the representative layers of the profiles are almost identical with each other and also similar to the Xiashu Loess andthe typical aeolian loess in northern China in pattern. This suggests that all of the YBE,URC and RRC of the QRC profiles in the study areas have aeolian-dust characteristicsand share the same source provenance with the Xiashu Loess along the Yangtze River.
     (2) The YBE–RC soil profiles in the study areas were dated with the opticallystimulated luminescence (OSL) method. The results indicated that the YBE wasformed during the Last Glacial, with OSL age less than60ka B. P.; the RRC mainlyduring the Last Interglacial, with the OSL age ranges from80to13460ka B. P.; theURC during the transitional time between the above two, with the OSL age rangingfrom60to80ka B. P.
     (3) Redness (a*) of the QRC profiles, P-LX1, P-JJ, P-XN and P-YW, increaseswith depth increasing downwards, but oscillates in the RRC layers. a*of the profilesis positively significantly correlated with clay (<2μm) content, free Fe (Fed), Fed/Fetratios and other soil weathering indexes of the QRC (ρ<0.01). a*of the red clay indifferent areas of southern China is negatively significantly correlated with thelatitudes where it is located. Moreover, it is positively significantly correlated with theannual mean temperature and precipitation of its locations, suggesting that a*of thered clay could indicate hydrothermal conditions of the surface and has paleoclimaticimplications. a*actually reflects the content of hematite in the QRC and is a potentialpaleoclimatic indicator as hematite content in the red clay is generally positivelycorrelated with its weathering strength.. a*of the RRC of the profiles, however, isoften significantly reduced due to the dissolution of hematite during long-termintensive water logging, and hence is not correlated with its highly weathering degree.In spite of this, a*is still more promising than magnetic susceptibility to be used as apaleoclimatic indicator, as hematite is more stable than maghemite during thepost-depositional reticulating processes of the RRC.
     (4) The QRC profiles in the Yangtze River Valley are generally uniform andcontinuous. The weathering degree of the profiles, however, is gradually intensifiedwith the depth increasing downwards. Especially, the transfer from the YBE to RCmight record a great paleoclimatic change in the Yangtze River Valley during the lateQuaternary period, when the humid and warm interglacial climate was replaced by thedry and cold glacial climate and the rubifying processes were terminated and replacedby widespread dust deposition. Combined with the OSL dating and pedogenic studies,some paleoclimatic events could be separated and identified in the YBE–RC profiles..The YBE was formed during the Last Glacial, correlated with the marineoxygen isotopic stage (MIS)2; the URC was formed during the transitional time fromthe Last Interglacial to the Last Glacial, correlated with the marine oxygen isotopicstage (MIS)3; the RRC mainly during the Last Interglacial, correlated with MIS5.Sub-class paleoclimatic events of the RRC cannot be identified possibly due to itsstrong weathering degree and overlapped paleoclimatic information.
     (5) Pedogenesis and soil classification in the Yangtze River Valley are deeplyinfluenced by the last paleoclimatic cycle during the Last Glacial–Interglacial period.A soil sequence, P-YL1, P-YL2and P-YL3, distributed along a small hill inXuancheng, southern Anhui province, were studied. P-LX1was derived from theYBE, the Xiashu Loess during the Last Glacial; P-YL2from the URC; P-YL3fromthe RRC formed during the Last Interglacial. According to the Chinese traditional soilclassification, they belong to typical zonal soils and are classified as Yellow-brownSoil, Yellow-red Soil and Red Soil, respectively. According to the newly establishedChinese Soil Taxonomy (CST), they could be classified as Acidic–Luvisols, Udic-Luvisols and Ferrisols, respectively. The great climatic change during the last Glacial–Interglacial cycle made soil parent materials diversified and thus led to thecoexistence of different zonal soils in a small scale in the study areas, where some soiltypes are not correlated with the present climatic conditions. This suggests that thepedogenic processes are not only controlled by modern climate, but also significantlyinfluenced by paleoclimatic changes during the late Quaternary, especially inmid-subtropical Southeast China sensitive to climatic change.
引文
[1] An Z S, Kulla G, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation onthe Loess Plateau of central China during the last130000years [J]. Quaternary Research,1991,36,29-36.
    [2] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of theHimalaya-Tibetan plateau since Late Miocene times [J]. Nature,2001,411:62-66.
    [3] An Z S, Porter S C. Millennial-scale climatic oscillations during the last interglaciation incentral China [J]. Geology,1997,25(7):603-606.
    [4] Ashley G M. Interpretation of polymodal sediments [J]. Journal of Geology,1978,86,411-21.
    [5] Balsam W, Ji J, Chen J. Climatic interpretation of the Luochuan and Lingtai loess sections,China, based on changing iron oxide mineralogy and magnetic susceptibility [J]. Earth andPlanetary Science Letters,2004,223(3):335-348.
    [6] Bronger A, Catt JA. Paleosols: problems of definition, recognition and interpretation. In:Bronger A, Catt J A.(Eds.), Paleopedology: Nature and Applications of Paleosols [J]. CatenaVerlag, Cremlingen-Destedt, Germany, Catena Supplement,1989,16,1-7.
    [7] Chapman S L, Horn M E. Parent material uniformity and origin of silty soils in northwestArkansas based on zirconium-titanium contents [J]. Soil Science Society of America Journal,1968,32(2):265-271.
    [8] Chen F H, Bloemendal J, Feng Z D, et al. East Asian monsoon variations during OxygenIsotope Stage5: evidence from the northwestern margin of the Chinese loess plateau [J].Quaternary Science Reviews,1999,18(8):1127-1135.
    [9] Chen F H, Qiang M R, Feng Z D, et al. Stable East Asian monsoon climate during the LastInterglacial (Eemian) indicated by paleosol S1in the western part of the Chinese LoessPlateau [J]. Global and Planetary Change,2003,36(3):171-179.
    [10] Comell R, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences anduses [M]. Wiley. Com,2003, pp:573.
    [11] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climatefrom a250-kyr ice-core record [J]. Nature,1993,364(6434):218-220.
    [12] Ding Z L, Liu T S, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoonvariations in the past800,000years [J]. Quaternary Research,1995,44:149-159.
    [13] Drees L R, Wilding L P. Elemental variability within a sampling unit [J]. Soil Science Societyof America Journal,1973,37(1):82-87.
    [14] Fang X M, Ono Y, Fukusawa H. P, et al. Asian summer monsoon instability during the past60,000years: magnetic susceptibility and pedogenic evidence from the western ChineseLoess Plateau [J]. Earth and Planetary Science Letters,1999,168(3),219-232.
    [15] Fernandez R N, Schulze D G, Coffin D L, et al. Color, organic matter, and pesticideadsorption relationships in a soil landscape [J]. Soil Science Society of America Journal,1988,52(4),1023-1026.
    [16] Fine P, Singer M J, Verosub K L, et al. New evidence for the origin of ferrimaneticsusceptibility in Loess from China [J]. Soil Science Society of America Journal,1993,57:1537-1542.
    [17] Galvao L S, Vitorello I. Role of organic matter in obliterating the effects of iron on spectralreflectance and colour of Brazilian tropical soils [J]. International Journal of Remote Sensing,1998,19(10),1969-1979.
    [18] Garcia D, Fonteilles M, Moutte J. Sedimentary fractionations between Al, Ti, and Zr and thegenesis of strongly peraluminous granites [J]. The Journal of Geology,1994:411-422.
    [19] Griffis C L. Electronic sensing of soil organic matter [J]. Transactions of the ASAE-AmericanSociety of Agricultural Engineers,1985,28.
    [20] GRIP Members. Climate instability during the last interglacial period recorded in the GRIPice core [J]. Nature,1993,364,203-207.
    [21] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China [J]. Nature,1982,300,431-433.
    [22] Heller F, Liu T S. Palaeoclimatic and sedimentary history from magnetic susceptibility ofloess in China [J]. Geophysical Research Letters,1986,13:1169-1172.
    [23] Heller F, Shen C D, Beer J, et al. Quantitative estimates of pedogenic ferromagnetic mineralformation in Chinese loess and palaeoclimatic implications [J]. Earth and Planetary ScienceLetters,1993,114:385-390.
    [24] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China [J]. Nature,300,431-433.
    [25] Hu X F, Cheng T F, Wu H X. Do multiple cycles of aeolian deposit-pedogenesis exist in thereticulate red clay sections in southern China?[J]. Chinese Science Bulletin,2003,48(12),1251-1258.
    [26] Hu X F, Du Y, Liu X J, et al. Soil profile of aeolian loess overlying red clay in southern Anhuiprovince: A pedogenic response to the Last Glacial–Interglacial cycle in mid-subtropicalSoutheast China. Manucript (not publicated).
    [27] Hu X F, Jiang W, Ye W, et al. Yellow‐brown earth on Quaternary red clay in Langxi County,Anhui Province in subtropical China: Evidence for paleoclimatic change in late Quaternaryperiod [J]. Journal of Plant Nutrition and Soil Science,2008,171(4),542-551.
    [28] Hu X F, Su Y, Ye R, et al. Magnetic properties of the urban soils in Shanghai and theirenvironmental implications [J]. Catena,2007,70(3),428-436.
    [29] Hu X F, Wei J, Du Y, et al. Regional distribution of the Quaternary Red Clay with aeoliandust characteristics in subtropical China and its paleclimatic implications [J]. Geoderma,2010(159):317-334
    [30] Hu X F, Wei J, Xu L F, et al. Magnetic susceptibility of the Quaternary Red Clay insubtropical China and its paleoenvironmental implications [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2009,279(3):216-232.
    [31] Huang C C, Pang J L, Zhao J B. Chinese loess and the evolution of the East Asia monsoon [J].Progress in Physical Geography,2000,24,75-96.
    [32] IUSS Working Group WRB. World reference base for soil resource2006[C]. World SoilResources Repots, No.103. FAO, Rome.
    [33] IUSS Working Group WRB,. World reference base for soil resources2006[M].2006, Rome,Italy.
    [34] Jenny H. Factors of Soil Formation [M]. McGraw-Hill Book Co.,1941, New York.
    [35] Ji J F, Balsam W, Chen J. Mineralogic and climatic interpretations of the Luochuan loesssection (China) based on diffuse reflectance spectrophotometry [J]. Quaternary Research,2001,56(1),23-30.
    [36] Ji J F, Chen J, Balsam W, et al. Quantitative analysis of hematite and goethite in the Chineseloess-paleosol sequences and its implication fordry and humd variability. QuaternarySciences,2007,27(2),221-229.
    [37] Ji J F, Chen J, Balsam W, et al. High resolution hematite/goethite records from Chinese loesssequences for the last glacial‐interglacial cycle: Rapid climatic response of the East AsianMonsoon to the tropical Pacific [J]. Geophysical Research Letters,2004,31, L03207, doi:10.1029/2003GL018975.
    [38] Keigwin L D, Curry W B, Lehman S J, et al. The role of the deep-ocean in north-Atlanticclimate change between70-kyr and130-kyr ago [J]. Nature,1994,371,323–326.
    [39] Ketterings Q M., Bigham J M. Soil color as an indicator of slash-and-burn fire severity andsoil fertility in Sumatra, Indonesia [J]. Soil Science Society of America Journal,2000,64(5),1826-1833.
    [40] Kharita M H, Stokes R, Durrani S A. TL and PTLL in nature fluorlte previously irradiatedwith gamma rays and heavy ions [J]. Radiation Measurements,1995,24(4):469-472.
    [41] Kovda B A. Agrology Principle [M]. Science Press, Beijing,1983, pp.19-20.
    [42] Kukla G., An Z S. Loess stratigraphy in Central China [J]. Paleogeography, Palaeoclimatology,Palaeoecology,1989,72,203-225.
    [43] Kukla G., Heller F, Liu X M, et al. Pleistocene climate in China dated by magneticsusceptibility [J]. Geolngy,1988,16:811-814.
    [44] Lai Z P, Brückner H, Z ller L, et al. Existence of a common growth curve for silt-sized quartzOSL of loess from different continents [J]. Radiation Measurements,2007,42(9):1432-1440.
    [45] Lai Z P, Brückner H. Effects of feldspar contamination on equivalent dose and the shape ofgrowth curve for OSL of silt-sized quartz extracted from Chinese loess [J]. Geochronometria,2008a,30(1):49-53.
    [46] Lai Z P, Brückner H, Fülling A, et al. Effects of thermal treatment on the growth curve shapefor OSL of quartz extracted from Chinese loess [J]. Radiation Measurements,2008b,43(2):763-766.
    [47] Lai Z P, Z ller L, Fuchs M, et al. Alpha efficiency determination for OSL of quartz extractedfrom Chinese loess [J]. Radiation Measurements,2008,43(2):767-770.
    [48] Lu S G. Lithological factors affecting magnetic susceptibility of subtropical soils, ZhejiangProvince, China [J]. Catena,2000,40(4),359-373.
    [49] Lucas S. Lazy rewriting and context-sensitive rewriting [J]. Electronic Notes in TheoreticalComputer Science,2002,64:234-254.
    [50] Ma Y J, Liu C Q. Trace element geochemistry during chemical weathering-As exemplifiedby the weathered crust of granite, Longnan, Jiangxi [J]. Chinese Science Bulletin,1999,44(24):2260-2263.
    [51] Maher B A. Characterisation of soils by mineral magnetic measurements [J]. Physics of theEarth and Planetary interiors,1986,42(1),76-92.
    [52] Maher B A, Tayor R G. Formation of ultrafine grained magnetite in soils [J]. Nature,1989,30:178-281.
    [53] Maher B A, Thompson R. Paleorainfall reconstructions from pedogenic magneticsusceptibility variations in the Chinese loess and paleosols [J]. Quaternary Research,1995,44(3),383-391.
    [54] Mehra O P, Jackson M L. Iron oxide removal from soils and clays by a dithionite-citratesystem buffered with sodium bicarbonate [J]. Proceedings7th nat. Conf. Clays,1960,5, pp.317-327.
    [55] Muhs D R, Bettis E A, Been J M. Impact of climate and parent material on chemicalweathering in loess-derived soils of the Mississippi River Valley [J]. Soil Science Society ofAmerica Journal,2001,65(6):1761-1777.
    [56] Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquotregenerative-dose protocol [J]. Radiation measurements,2000,32(1):57-73.
    [57] Ortiz I, Simon M, Dorronsoro C, et al. Soil evolution over the Quaternary period in aMediterranean climate (SE Spain)[J]. Catena,2002,48,131-148.
    [58] Porter S C. High-resolution paleoclimatic information from Chinese eolian sediments basedon grayscale intensity profiles [J]. Quaternary Research,2000,53(1):70-77.
    [59] Porter S C, An Z S. Correlation between climate events in the North Atlantic and Chinaduring the last glaciation [J]. Nature,1995,375,305-308.
    [60] Post D F, Bryant R B, Batchily A K., et al. Correlation between field and laboratorymeasurements of soil color [J]. In: bigham, J.M., Ciolkosz, E.J.(Eds.), Soil color [M]. SoilScience Society of America Madison, WI,1993, pp.35-49.
    [61] Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESRdating: large depths and long-term time variations [J]. Radiation measurements,1994,23(2):497-500.
    [62] Rink W J. Electron Spin Resonance (ESR) dating and ESR applications in quaternary scienceand archaeometry [J]. Radiation Measurements,1997,27(5-6):975-1025.
    [63] Robertson A R. The CIE1976color-difference formulae [J]. Color Research and Application,1977,2,7-11.
    [64] Ruhe R V. Geomorphic surfaces and the nature of soils [J]. Soil Science,1956,82,441-455.
    [65] Schoeneberger P J, Wysocki D A, Benham E C, et al. Field Book for Describing andSampling Soils [M]. Version2.0. Natural resources conservation service,2002.
    [66] Schulze D G, Nagel J L, Van Scoyoc G E, et al. Significance of organic matter in determiningsoil colors. Soil color, doi:10.2136/sssaspecpub31.c5,1993, pp.71-90.
    [67] Schwertmann U. Transformation of hematite to goethite in soils [J]. Nature,1971232,624-625.
    [68] Shields J A, Paul E A, Arnaud R J, et al. Spectrophotometry measurement of soil color and itsrelationship to moisture and organic matter. Canadian Journal of Soil Science,1968,48(3):271-280.
    [69] Shen Z X, Cao J J, Zhang X Y, et al. Spectroscopic analysis of iron-oxide minerals in aerosolparticles from northern China [J]. Science of the total environment,2006,367(2):899-907.
    [70] Sillitoe R H, McKee E H. Age of supergene oxidation and enrichment in the Chileanporphyry Copper province [J]. Ecomic Genlogy,1996,91:164-179.
    [71] Singh B, Gilkes R J. Properties and distribution of iron oxides and their association withminor elements in the soils of south‐western Australia [J]. Journal of Soil Science,1992,43(1),77-98.
    [72] Soil Survey Staff. Soil Classification [M]. A comprehensive System-7thApproximation,1960,USDA. Washington. D. C.
    [73] Soil Survey Staff. Soil Taxonomy. US Dept. Agriculture Handbook [M],1975, No.436.Washington. D. C.
    [74] Sun J, Ding Z. Deposits and soils of the past130,000years at the desert–loess transition inNorthern China [J]. Quaternary Research,1998,50(2):148-156.
    [75] Sun J, Liu T. Multiple origins and interpretations of the magnetic susceptibility signal inChinese wind-blown sediments [J]. Earth and Planetary Science Letters,2000:180(3):287-296.
    [76] Sun Y B, He., Liang L J, et al. Changing color of Chinese loess: geochemical constraint andpaleoclimatic significance [J]. Journal of Asian Earth Sciences,2011,40,1131-1138.
    [77] Torrent J, Schwertmann U, Fechter H, et al. Quantitative relationships between soil color andhematite content [J]. Soil Science,1983,136(6):354-358.
    [78] Torrent J, Barrón V, Liu Q. Magnetic enhancement is linked to and precedes hematiteformation in aerobic soil [J]. Geophysical Research Letters,2006,33,L02401:10.1029/2005GL024818.
    [79] Torrent J, Schwertmann U, Schulze D G. Iron oxide mineralogy of some soils of two riverterrace sequences in Spain [J]. Geoderma,1980,23(3),191-208.
    [80] Tsoar H, Pyr K. Dust transport and the question of desert loess formation [J]. Sedimentology,1987,34,139-154.
    [81] Vandenberghe J, An A S, Nugteren G, et al. New absolute time scale for the quaternaryclimate in the Chinese loess region by grain-size analysis [J]. Geology,1997,25(1):35-38.
    [82] Wills S A, Burras CL, Sandor J A. Prediction of soil organic carbon content using field andlaboratory measurements of soil color. Soil Science Society of America Journal,2007,71(2):380-388.
    [83] Xiao J, Porter S C, An Z, et al. Grain-size of Quartz as an indicator of winter monsoonstrength on the loess Plateau of central China during the last130,000yr [J]. QuatemaryResearch,1995,43(1):22-29.
    [84] Xiong S, Sun D, Ding Z. Aeolian origin of the red earth in southeast China [J]. Journal ofQuaternary Science,2002,17(2):181-191.
    [85] Xu Y, Zhang Y, Lin E, et al. Analyses on the climate change responses over China underSRES B2scenario using PRECIS [J]. Chinese Science Bulletin,2006,51(18):2260-2267.
    [86] Yang S L, Ding Z L. Color reflectance of Chinese loess and its implications for climategradient changes during the last two glacial-interglacial cycles [J]. Geophysical ResearchLetters,2003,30(20):2058.
    [87] Yang S L, Fang X M, Li J J, et al. Transformation functions of soil color and climate [J].Science in China Series D: Earth Sciences,2001,44(1),218-226.
    [88] Yin Q, Guo Z. Mid-Pleistocene vermiculated red soils in southern China as an indication ofunusually strengthened East Asian monsoon [J]. Chinese Science Bulletin,2006,51(2):213-220.
    [89] Yu L Z, Oldfield F, Wu Y S, et al. Paleoenvironmental implications of magneticmeasurements on sediment core from Kunming Basin, Southwest China [J]. Journal ofPaleolimnology,1990,3(2):95-111.
    [90] Zhang M K, Wilson M J, He Z L. Iron oxides and their relations to colors in some soils ofsouthern China [J]. Pedosphere,1998,8(1),53-58.
    [91] Zhou L P, Oldfield E, Wintle A G, et al. Partly pedogenic origin of magnetic variations inChinese Loess [J]. Nature,1990,346:737-739.
    [92]安芷生.最近130Ka洛川黄土堆积序列与格陵兰冰芯记录[J].科学通报,1994,39(24):2254-2256.
    [93]安芷生,王苏民,吴锡浩,等.中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动[J].中国科学(D辑),1998,28(6):481-490.
    [94]蔡方平,胡雪峰,杜艳,等.安徽郎溪黄棕色土-红土二元结构土壤剖面的成因与长江流域第四纪晚期古气候演变[J].土壤学报,2012,49(002):220-229.
    [95]常庆瑞,李岗.太白山北坡垂直带土壤发生特性与分类—腐棕土[J].西北农业大学学报,1995,23(4):69-73.
    [96]陈健飞.闽东南不同母岩发育的赤红壤性状的研究[J].土壤通报,1987,(6):17-20转47.
    [97]陈健飞.土壤水分和温度状况的估算[J].土壤,1989,21(3):160-162.
    [98]陈世益.广西贵港靖西玻璃陨石的发现与研究[J].中南工业大学学报,1997,28(2):110-112.
    [99]陈铁梅.第四纪测年的进展与问题[J].第四纪研究,1995,(2):182-191.
    [100]陈一萌,陈兴盛,宫辉力,李小娟,魏明建.对黄土磁化率、粒度年龄模型的检验(自检)[J].地理研究,2006,25(3):415-420.
    [101]陈一萌,陈兴盛,宫辉力,魏明建,李小娟.土壤颜色—一个可靠的气候变化代用指标.干旱区地理,2006,29(3),309-313
    [102]陈云.元谋盆地的第四纪红土[J].海洋地质与第四纪地质,1994,14(1):75-86.
    [103]崔东,荣雪,王晓磊,等.中国土壤颜色与气候指标的定量研究[J].农业科技与装备,2011,10:007.
    [104]邓成龙,胡守云.环境磁学某些研究进展评述[J].海洋地质与第四纪地质,2000,20(2):93-101.
    [105]丁梦林,方仲景,计凤桔.对长江下游雨花台砾石层及网纹红土地层划分及时代的新认识[A].第四纪冰川I与第四纪地质论文集(第三集).北京:科学出版社,1987,987:39-43.
    [106]丁仲礼,刘东生.1.8Ma以来黄土-深海古气候记录对比[J].科学通报,1991,(18):1401-1403.
    [107]丁仲礼,刘东生.中国黄土研究新进展(一)黄土地层[J].第四纪研究,1989,(1):24-35.
    [108]丁仲礼,刘东生,刘秀铭,等.250万年以来的37个气候旋廻[J].科学通报,1989,(19):1494-1496.
    [109]丁仲礼,余志伟,刘东生.中国黄土研究新进展(三)时间标尺[J].第四纪研究,1991,4,336-348.
    [110]杜乃秋,孔昭宸,山发寿.青海湖QH85-14C钻孔孢粉分析及其古气候古环境的初步探讨[J]. Journal of Integrative Plant Biology,1989,10:011.
    [111]樊启顺,赖忠平,刘向军,等.晚第四纪柴达木盆地东部古湖泊高湖面光释光年代学[J].地质学报,2010,84(011):1652-1660.
    [112]冯金良,赵泽三,高国瑞.试论红土化作用及红土的工程地质分类[J].水文地质工程地质,1993,20(3):32-35.
    [113]符必昌,黄英,方丽萍.红土化作用及红土的工程地质分类[J].云南地质,1997,16(2):197-206.
    [114]弓虎军.中国黄河中游地区新近纪红粘土的成因[C].西北大学博士毕业论文,2007.
    [115]龚子同.中国土壤系统分类:理论·方法·实践[M].科学出版社,1999,1-903.
    [116]龚子同.中国土壤系统分类(修订方案)[M].科学出版社,2003,北京.
    [117]龚子同,陈鸿昭,骆国保.人为作用对土壤环境质量的影响及对策[J].土壤与环境,2000,9(1):7-10.
    [118]龚子同,陈鸿昭,刘良梧.中国古土壤与第四纪环境[J].土壤学报,1989,26(4),379-387.
    [119]龚子同,李庆逵.红色风化壳的生物地球化学[J].中国红壤.北京:科学出版社,1983:24-40.
    [120]龚子同,张甘霖.中国土壤系统分类:我国土壤分类从定性向定量的跨越[J].中国科学基金,2006,5:293-296.
    [121]龚子同,张甘霖,骆国保,等.规范我国土壤分类[J].土壤通报,1999,30,1-4.
    [122]顾延生.江西修水第四纪网纹红土的形成时代和古气候学研究[D]:硕士学位论文[D].,1996.
    [123]顾延生,李长安.植硅石分析在第四纪环境研究中的应用[J].地质科技情报,1997,16(4):55-58.
    [124]顾兆炎.黄土-古土壤序列碳酸盐同位素组成与古气候变化[J].科学通报,1991,36(10):767-770.
    [125]郭曼,安韶山,常庆瑞,等.宁南宽谷丘陵区土壤矿质元素与氧化铁的特征[J].水土保持研究,2005,12(3):38-40.
    [126]郭盛乔,王苏民,杨丽娟.末次盛冰期华北平原古气候古环境演化[J].地质论评,2005,51(4):423-427.
    [127]郭正堂,彭淑贞,郝青振,等.晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系[J].第四纪研究,1999,19(6):556-567.
    [128]何柳,孙有斌,安芷生.中国黄土变化的控制因素和古气候意义.地球化学,2010,39(5):447-455.
    [129]何群,陈家坊.土壤中游离铁和络合态铁的测定[J].土壤,1983,15(6):156-242.
    [130]何勇,秦大河,任贾文,等.临夏塬堡全新世黄土剖面古土壤有机质碳同位素的气候记录[J].冰川冻土,2002,24(5):512-516.
    [131]胡雪峰,程天凡,巫和昕.南方网纹红土内是否可能存在多个“沉积-成土”过程的旋回?[J].科学通报,2003,48(9):969-975.
    [132]胡雪峰,龚子同.土壤发生学与第四纪研究[J].热带亚热带土壤科学,1998,70):257-259.
    [133]胡雪峰,龚子同.江西九江泰和第四纪红土成因的比较研究[J].土壤学报,2001,38(1):l-9.
    [134]胡雪峰,龚子同.土壤磁化率—作为一种气候指标的局限性[J].土壤,1999,(1):39-42.
    [135]胡雪峰,龚子同,夏应菲.安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义[J].土壤学报,1999b,36(3):301-307.
    [136]胡雪峰,龚子同,夏应菲,等.安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义[J].土壤学报,1999,36(3):301-307.
    [137]胡雪峰,沈铭能,方圣琼.皖南网纹红土的粒度分布特征及古环境意义[J].第四纪研究,2004,24(2):160-166.
    [138]胡雪峰,朱煜,沈铭能.南方网纹红土多元成因的粒度证据[J].科学通报,2005,50(9):918-925.
    [139]黄成敏,王成善,何毓蓉,等.元谋盆地古红土的土壤发生学特征及古环境意义.土壤通报,2004,35(3):251-256.
    [140]黄春长.环境变迁[M].北京:科学出版社,2000,95.
    [141]黄姜侬,方家骅,邵家骥,等.南京下蜀黄土沉积时代的研究[J].地质论评,1988,34(3):240-247.
    [142]黄维,翦知湣, Bühring C.南海北部ODP1144站颜色反射率揭示的千年尺度气候波动.海洋地质与第四纪地质,2003,23(3):6-9.
    [143]黄镇国.中国南方红色风化壳[M].海洋出版社,1996.
    [144]黄镇国,张伟强.末次冰期盛期中国热带的变迁[J].地理学报,2000,55(5):587-595.
    [145]黄镇国,张伟强.中国红土期气候期构造期的耦合[J].地理学报,2000,55(2):200-208.
    [146]黄镇国,张伟强,陈俊鸿.中国红土与自然地带变迁Ξ[J].地理学报,1999,54(3).
    [147]黄镇国,张伟强,陈俊鸿,等.中国南方红色风化壳[M].北京:海洋出版杜,1996b.
    [148]黄镇国,张伟强,陈俊鸿.中国红土与自然地带变迁[J].地理学报,1999,54(3).
    [149]黄镇国,张伟强,陈俊鸿.中国的红土期[J].热带地理,1998,18(1):34-41.
    [150]蒋复初,王苏民.九江地区网纹红土的时代[J].地质力学学报,1997b,3(4):27-32.
    [151]蒋复初,吴锡浩.川西高原甘孜黄土地层学[J].地球学报:中国地质科学院院报,1997,18(4):413-420.
    [152]蒋复初,吴锡浩,肖华国,等.九江地区网纹红土的时代[J].地质力学学报,1997a,3(4):27-32.
    [153]康安,朱筱敏,韩德馨,等.柴达木盆地第四纪孢粉组合及古气候波动[J].地质通报,2003,22(1):12-15.
    [154]李长安,顾延生.网纹红土中的植硅石组合及其环境意义的初步研究[J].地球科学:中国地质大学学报,1997,22(2):195-198.
    [155]李德文,崔之久,刘耕年.湘桂黔滇藏一线覆盖型岩溶地貌特征与岩溶(双层)夷平面[J].山地学报,2000,18(4):289-295.
    [156]李德文,崔之久,刘耕年等.湘桂黔滇藏红色岩溶风化壳的发育模式[J].地理学报,2002,57(3):293-300.
    [157]李虎侯.释光技术测定年龄的现状[J].第四纪研究,1997,(3):240-257.
    [158]李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569-1574.
    [159]李吉均,方小敏.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学: D辑,1996,26(4):316-322.
    [160]李吉均,张林源,邓养鑫,等.庐山第四纪环境演变和地貌发育问题[J].中国科学, B辑,1983,13(8):734-743.
    [161]李庆逵.中国红壤[M].北京:科学出版社,1983.
    [162]李庆逵.中国红壤[M].科学出版社,1983,24.
    [163]李徐生,韩志勇,杨达源.镇江下蜀黄土的稀土元素地球化学特征研究[J].土壤学报,2006,43(1):1-7.
    [164]李徐生,韩志勇,杨达源,等.镇江下蜀黄土的稀土元素地球化学特征研究[J].土壤学报,2006,43(1):1-7.
    [165]李徐生,韩志勇,杨达源,等.末次冰期鄱阳湖西南缘地区的风尘堆积[J].海洋地质与第四纪地质,2006,26(1):101-108.
    [166]李徐生,鹿化煜.皖南第四纪风尘堆积序列粒度特征及其意义[J].海洋地质与第四纪地质,1997,17(4):73-81.
    [167]李徐生,杨达源.镇江下蜀黄土一古土壤序列磁化率特征与环境记录[J].中国沙漠,2002,22(1):27-32.
    [168]李徐生,杨达源,韩辉友.皖南风尘堆积-古土壤序列磁化率初步研究[J].安徽师大学报(自然科学版),1998,21(1):64-69.
    [169]李徐生,杨达源,鹿化煜,等.皖南第四纪风尘堆积序列粒度特征及其意义[J].海洋地质与第四纪地质,1997,17(4):73-81.
    [170]李徐生,杨达源,鹿化煜.皖南风成堆积序列氧化物地球化学特征与古气候记录.海洋地质与第四纪地质,1999,19(4):75-82.
    [171]李徐生,杨达源,鹿化煜.镇江下蜀黄土粒度特征及其成因初探[J].海洋地质与第四纪地质,2001,21(1):25-32.
    [172]李驭亚.华南第四纪网状红土虫状白斑的成因探讨[J].地质论评,1965,23(2):144-145.
    [173]梁斌,谢树成,顾延生,等.安徽宣城更新世红土正构烷烃分布特征及其古植被意义[J].地球科学:中国地质大学学报,2005,30(2):129-132.
    [174]刘东生.黄土与环境[J].西安交通大学学报(社会科学版),2002,22(4):7-12.
    [175]刘东生.黄土与环境[M].北京:科学出版社,1985.
    [176]刘东生,丁仲礼.中国黄土研究新进展(二)古气候与全球变化[J].第四纪研究,1990,1,1-9.
    [177]刘金陵,叶萍宜.上海,浙江某些地区第四纪孢粉组合及其在地层和古气候上的意义[J].古生物学报,1977,16(1):1-10.
    [178]刘良梧,龚子同.古红土的发育与演变[J].海洋地质与第四纪地质,2000,20(3):37-42.
    [179]刘良梧,龚子同.宣城第四纪红色粘土剖面的发育特征[J].第四纪研究,2000,20(5):464-468.
    [180]刘晓东,鹿化煜,安芷生.利用黄土沉积速率的相关性建立序列年龄的新方法[J].沉积学报,1999,17(1):145-148.
    [181]刘秀铭,刘东生.中国黄土磁性矿物特征及其古气候研究[J].第四纪研究,1993,3:281-287.
    [182]刘选,韩德亮,崔高嵩,等.黄海盆地西部下蜀黄土成因机制的新探索[J].海洋科学,2000,24(5):52-54.
    [183]刘雪梅.兰州黄土150ka以来的植硅石与古气候初步研究[J].地球科学-中国地质大学学报,1999,1.
    [184]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D辑),1998,28(3):278-283.
    [185]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,42:66-69.
    [186]卢演俦,尹功明,陈杰等.第四纪沉积物的光释光测年[J].地球科学——中国地质大学学报,1996,20(6):668-668.
    [187]罗札诺夫.土壤形态学[M].北京:科学出版社,1988.
    [188]吕厚远,韩家懋,吴乃琴,等.中国现代土壤磁化率分析及其古气候意义[J].中国科学(B辑),1994,24:1290-1297.
    [189]吕厚远,刘东生,吴乃琴,等.末次间冰期以来黄土高原南部植被演替的植物硅酸体记录[J].第四纪研究,1999,4:336-349.
    [190]吕厚远,王永吉.晚更新世以来洛川黑木沟黄土地层中植物硅酸体研究及古植被演替[J].第四纪研究,1991,1:72-84.
    [191]毛江龙,李亚兵,王计平,等.南京江北地区全新世土壤粒度分布及古环境意义[J].海洋地质与第四纪,2005,25:127-132.
    [192]南京土壤研究所土壤系统分类课题组,中国土壤系统分类课题研究协作组.中国土壤系统分类检索(第三版)[M].中国科学技术大学出版社,2001,合肥.
    [193]乔彦松,郭正堂,郝青振,等.安徽宣城黄土堆积的磁性地层学与古环境意义[J].地质力学学报,2002a,8(4):369-375.
    [194]乔彦松,郭正堂,郝青振.皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义[J].科学通报,2003,48(13):1465-1469.
    [195]乔彦松,郭正堂,郝青振,等.安徽宣城黄土堆积的磁性地层学与古环境意义[J].地质力学学报,2002b,8(4):369-375.
    [196]石培宏,杨太保,田庆春,等.靖远黄土-古土壤色度变化特征分析及古气候意义.兰州大学学报(自然科学版),2012,48(2):15-23.
    [197]史学正,于东升,孙维侠,等.中美土壤分类系统的参比基准研究:土类与美国系统分类土纲间的参比[J].科学通报,2004,49(13),1299-1303.
    [198]施雅风,崔之久,李吉均,等.中国东部第四纪冰川与环境问题[M].北京:科学出版社,1989,321-325.
    [199]施雅风,崔之久,李吉均.中国东部第四纪冰川与环境问题[M].科学出版社,1989,460-470.
    [200]施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化Ξ[J].地理学报,1999a,54(1).
    [201]施雅风,姚檀栋,杨保.近2000a古里雅冰芯10a尺度的气候变化及其与中国东部文献记录的比较[J].中国科学(D辑),1999b,29(1):79-86.
    [202]孙东怀,鹿化煜, David Rea等.中国黄土粒度的双峰分布及其古气候意义.沉积学报,2000,18(3):327-335.
    [203]孙建中,赵景波.黄土高原第四纪[M].科学出版社,1991.
    [204]唐大雄,李洪玉,王清.我国南方红土的工程地质特性[A]/第三届工程勘察学术交流会议论文选集[C].中国建筑工业出版社,1988:62-66.
    [205]王春林.湖南第四系蠕虫状网纹红土的成因及其对新构造运动研究的意义[J].湖南师范大学自然科学学报,1986,9(1):100-106.
    [206]王伟铭,杨浩.江西星子县第四纪红土层的植硅石和孢粉研究及意义[J].微体古生物学报,1997,14(1),41-48.
    [207]王永吉,吕厚远,衡平,等.植物硅酸体的研究及在我国第四纪地质学中的初步应用[J].海洋地质与第四纪地质,1991,11(3):113-123.
    [208]王先彦,鹿化煜,季峻峰,等.青藏高原东北缘中新世红色土状堆积序列的成因及其对亚洲干旱过程的指示[J].中国科学(D辑),2006,36(3):261-272.
    [209]王毓华.中国红粘土特征及建筑地基工程处理方法[J].西部探矿工程,1996,18(4):6-7.
    [210]汪海斌,陈发虎,张家武.黄土高原西部地区黄土粒度的环境指示意义[J].中国沙漠,2002,22(1):21-26.
    [211]魏骥,胡雪峰,许良峰,等.长江中下游地区第四纪红土的二元结构及古气候意义[J].土壤学报,2010,47(5):826-835.
    [212]韦复才,唐健生.我国红土工程地质研究新进展及今后主要研究方向[J].矿产与地质,2005,19(111):568-572.
    [213]吴标云.南京下蜀黄土沉积特征研究[J].海洋地质与第四纪地质,1985,5(2):113-121.
    [214]吴次芳,陆景冈,何黎明.亚热带山地土壤的地球化学特征及其与新构造运动的关系[J].地理学报,1992,47(1):6-11.
    [215]吴殿龙,陈辉,张倩.不同母质发育古红土中微量元素的地球化学特征[J].农业科技与装备,2009,3:14-16.
    [216]吴锡浩,徐和聆,蒋复初,等.长江中下游地区网纹红土中撞击事件记录的首次发现与初步研究[J].地质地球化学,1995,4:83-86.
    [217]席承藩.土壤是气候变化的长期记录者[J].第四纪研究,1990,(1):82-89.
    [218]席承藩.关于中国红色风化壳的几个问题[J].中国第四纪研究,1965,4(2):42-54.
    [219]席承藩.论华南红色风化壳[J].第四纪研究,1991,(1):1-8.
    [220]夏应菲,杨浩.电子自旋共振(ESR)方法在第四纪红土年代学研究中的应用[J].江苏地质,1997,220-223.
    [221]熊尚发,丁仲礼,刘东生.赣北红土与北京邻区黄土及沙漠砂的粒度特征对比[J].科学通报,1999,44(11):1216-1219.
    [222]熊尚发,刘东生,丁仲礼.南方红土的剖面风化特征[J].山地学报,2000,18:7-12.
    [223]熊毅等.土壤胶体:土壤胶体的物质基础.第一册[M].科学出版社,1983,132-246.
    [224]熊毅.中国土壤[M].科学出版社,1987.
    [225]徐馨.天目山冰桌的发现及其古气候意义[J].科学通报,1985,22:014.
    [226]徐馨.长江中下游网纹层问题的讨论.第四纪冰川与第四纪地质论文集(第一集)[C].北京:地质出版社,1984,104-112.
    [227]徐义芳,朱照宇.英峰岭剖面红土的粘土矿物和化学特征与成土环境关系[J].地球化学,1999,28(3),281-288.
    [228]杨达源.中国东部的第四纪风尘堆积与季风变迁[J].第四纪研究,1991,(4):354-360.
    [229]杨达源,韩辉友,周旅复,等.安徽宣城地区中晚更新世风成堆积与环境变迁[J].海洋地质与第四纪地质,1991,11(2):97-104.
    [230]杨源达,李徐生.中国东部新构造运动的地貌标志和基本特征[J].第四纪研究,1998,18(3):249-255
    [231]杨浩,夏应菲,赵其国.红土系列剖面的磁化率特征与古气候冷暖变换[J].土壤学报,1995,32(2):195-196.
    [232]杨浩,赵其国,李小平.安徽宣城风成沉积—红土系列剖面ESR年代学研究[J].土壤学报,1996,33(3):293-300.
    [233]杨立辉,叶玮,朱丽东,等.中国南方第四纪红土的形成年代[J].热带地理,2005,25(4):293-297.
    [234]杨守业,李从先,李徐生,等.长江下游下蜀黄土化学风化的地球化学研究[J].地球化学,2001,30(4):402-406.
    [235]杨守业,李从先,张家强.苏北滨海平原冰后期古地理演化与沉积物物源研究.古地理学报,2000,2(2),65-72.
    [236]杨守业,韦刚健,夏小平,等.长江口晚新生代沉积物的物源研究: REE和Nd同位素制约[J].第四纪研究,2007,27(3):339-346.
    [237]杨守业,李从先,张家强.苏北滨海平原冰后期古地理演化与沉积物物源研究[J].古地理学报,2000,2(2):65-72.
    [238]杨学震,钟炳林,谢小东.丘陵红壤的土壤侵蚀与治理[M].北京:中国农业出版社,2005.
    [239]杨元根,刘丛强,袁可能,等.南方红土形成过程及其稀土元素地球化学[J].第四纪研究,2000,(5):471-480.
    [240]姚檀栋.古里雅冰芯中末次间冰期以来气候变化记录研究[J].中国科学: D辑,1997,27(5):447-452.
    [241]姚檀栋.末次冰期青藏高原的气候突变——古里雅冰芯与格陵兰GRIP冰芯对比研究[J].中国科学(D辑),1999,29(2):175-184.
    [242]叶玮,杨立辉,朱丽东,等.中亚热带网纹红土的稀土元素特征与成因分析[J].地理科学,2008,28(1):40-44.
    [243]尹秋珍,郭正堂.中国南方的网纹红土与东亚季风的异常强盛期[J].科学通报,2006,51(2):186-193.
    [244]于振江,黄多成.安徽省沿江地区网纹红土和下蜀土的形成环境及其年龄[J].安徽地质,1996,6(3):48-56.
    [245]袁宝印,夏正楷,李保生,等.中国南方红土年代地层学与地层划分问题[J].第四纪研究,2008,28(1):1-13.
    [246]袁国栋,龚子同.第四纪红土的土壤发生及其古地理意义[J].土壤学报,1990,27(1):54-62.
    [247]张甘霖,龚子同.土壤调查实验室分析方法[M].北京:科学出版社,2012,38-39.
    [248]张建军,杨达源,陈曰友,等.长江中下游地区下蜀黄土磁化率曲线与环境变迁[M].沉积学报,2000,18(1):18-21.
    [249]张平中,王先彬,王苏民,等.江西九江地区晚更新世生态变迁的土壤有机质碳同位素证据[J].冰川冻土,1998,20(2):150-156.
    [250]张玉芬,李长安,陈国金,等.江汉平原湖区周老镇钻孔磁化率和有机碳稳定同位素特征及其古气候意义[J].地球科学:中国地质大学学报,2005,30(1):114-120.
    [251]赵其国.我国富铝化土壤诊断土层的初步研究及其在分类上的应用[J].土壤学报,1984,21(2):61-71转121-122.
    [252]赵其国.我国红壤现代成土过程和发育年龄的初步研究[J].第四纪研究,1992,(4):341-351.
    [253]赵其国,杨浩.中国南方红土与第四纪环境变迁的初步研究[J].第四纪研究,1995,(2):107-116.
    [254]赵其国,谢为民,贺湘逸,等.江西红壤[M].江西,江西科学出版社,1988,1-55.
    [255]赵倩,李志忠,靳建辉,等.福建长乐第四纪红土微量元素揭示的气候环境变化[J].重庆师范大学学报(自然科学版),2012,4,9.
    [256]郑乐平,胡雪峰,方小敏.长江中下游地区下蜀黄土成因研究的回顾[J].矿物岩石地球化学通报,2002,21(1):54-57.
    [257]郑祥民.东海嵊山岛风尘黄土地层的初步研究[J][J].华东师范大学学报:自然科学版),1998:62-66.
    [258]朱诚.庐山、黄山与天目山地区第四纪沉积环境比较研究[J].地理科学,1996,16(1):37-45.
    [259]朱丽东,叶玮,周尚哲.金衢盆地第四纪红土沉积粒度组成特征[J].海洋地质与第四纪地质,2006,26(4):111-116.
    [260]朱丽东,周尚哲,李凤全.庐山JL红土剖面的色度气候意义[J].热带地理,2007,27(3):193-197.
    [261]朱丽东,周尚哲,叶玮,李风全,等.网纹红土稀土元素地球化学特征的初步研究[J].中国沙漠,2007,27(2):194-200.
    [262]朱景郊.网纹红土的成因及其研究意义[J].地理研究,1988,7(4):12-20.
    [263]朱显谟.江西红壤之气候问题[J].土壤学报,1948,1(1):51-56.
    [264]朱显漠.中国南方的红土与红色风化壳[J].第四纪研究,1993,(1):75-84.
    [265]朱照宇,罗树文.华南雷州半岛第四纪多旋回火山岩—红土系列的层序与年代[J].第四纪研究,2001b,21(3):270-276.
    [266]朱照宇,郑洪汉,张国梅,等.华南热带红土期及风化矿物初步研究[J].第四纪研究,1991,1:18-28.
    [267]朱照宇,周厚云,乔玉楼,等.华南玻璃陨石的原生层位及其事件地层学意义[J].地质力学学报,2001a,7(4):296-302.
    [268]朱宗敏,杨文强,林文姣,等.安徽宣城第四纪网纹红土的磁组构特征及其意义[J].海洋地质与第四纪地质,2006,26(4):105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700