用户名: 密码: 验证码:
黄土高原不同树种枯落叶混合分解对土壤性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区人工纯林由于物种组成单一,层次结构简单加之复杂的自然条件原因而出现了林木老化、更新困难、土壤衰退等现象,严重影响着当地林地的稳定性和林业的可持续经营。通过研究不同树种的种间关系来营造科学合理的混交林是解决人工纯林问题的有效途径。
     不同树种枯落叶混合分解对土壤性质的影响及相互作用的探讨是种间关系研究的重要内容之一。土壤是森林生态系统中林木赖以生存的物质基础,而枯落叶作为养分的基本载体,是连接林木与土壤的中间体,在维持土壤肥力、促进森林生态系统正常物质循环和养分平衡方面起着重要的作用。枯落叶的分解影响着林地土壤的生物学和化学性质,进而影响着林木的种间协调性和森林的可持续性。因此,研究不同树种枯落叶混合分解对土壤性质的影响以及在对土壤性质的影响中是否存在相互作用,可以为林木种间关系的探索和科学营造混交林提供依据。
     该研究通过对黄土高原常见的13个树种枯落叶进行单独和混合分解试验,探讨了不同树种枯落叶混合分解对土壤微生物、酶活性和化学性质的影响及在对土壤性质影响中是否存在相互促进或抑制作用,同时用主成分分析法综合判断了枯落叶混合分解对土壤性质影响的综合效应。结果表明:
     (1)13个树种枯落叶单独混土分解不同程度提高了土壤脲酶(油松54%~柠条110%)、脱氢酶(樟子松85%~紫穗槐288%)和磷酸酶(白桦81%~柠条301%)活性,增加了有机质(沙棘29%~白桦55%)和碱解N(樟子松11%~柠条49%)含量。同时,这13种枯落叶单独分解后土壤蔗糖酶、蛋白酶活性和速效K含量也有一定程度的提高。不同树种枯落叶单独分解对土壤速效P和CEC的影响差异较大,油松、刺槐、白桦、辽东栎、白榆、旱柳、柠条和紫穗槐枯落叶单独分解后土壤速效P含量均有显著增加,而落叶松、侧柏、小叶杨和沙棘均显著减少。除小叶杨和辽东栎外,各个树种枯落叶单独分解均使土壤CEC显著降低。柠条和紫穗槐枯落叶进行单独分解对土壤性质的改善作用最明显。
     (2)针叶树种与其他树种枯落叶混合分解的研究表明:油松分别与沙棘、刺槐、小叶杨和紫穗槐枯落叶成对混合分解对土壤性质的影响综合表现为相互促进,而与柠条、落叶松、白桦、辽东栎和侧柏枯落叶成对混合分解对土壤性质综合表现为相互抑制,与白榆枯落叶作用不明显;樟子松分别与白桦、刺槐、白榆和柠条枯落叶混合分解对土壤性质的影响存在相互促进作用,而与小叶杨、沙棘、紫穗槐、侧柏和辽东栎枯落叶混合分解对土壤性质的影响存在相互抑制作用,与落叶松枯落叶无明显作用;落叶松分别与刺槐、紫穗槐和白桦枯落叶混合分解对土壤性质的影响存在相互促进作用,而分别与柠条、侧柏、白榆、辽东栎、小叶杨枯落叶存在相互抑制作用,与沙棘枯落叶无明显作用;侧柏分别与紫穗槐、白桦、柠条和沙棘枯落叶混合分解对土壤存在相互促进作用,而与小叶杨、白榆、刺槐和辽东栎枯落叶则相反。
     (3)阔叶树种枯落叶混合分解的研究表明:小叶杨与白榆枯落叶混合分解对土壤性质的影响存在相互促进作用,而与柠条、紫穗槐、沙棘和辽东栎枯落叶则存在相互抑制作用,分别与刺槐、白桦枯落叶混合分解对土壤影响的作用不明显;刺槐分别与白桦和沙棘枯落叶分解对土壤的影响存在相互促进作用,而与辽东栎和柠条枯落叶则存在相互抑制作用,刺槐与白榆枯落叶分解相互作用不明显;白桦分别与沙棘、紫穗槐和柠条3种灌木树种枯落叶分解对土壤性质的影响存在相互促进作用,而分别与辽东栎和白榆相反;辽东栎分别与柠条和沙棘枯落叶分解对土壤性质的影响存在相互促进作用,而分别与紫穗槐和白榆相反;白榆分别与沙棘和旱柳枯落叶分解对土壤性质的影响存在相互促进作用,而分别与紫穗槐和柠条相反;旱柳分别与沙棘和紫穗槐枯落叶混合分解对土壤性质的影响存在相互促进作用,而与柠条枯落叶分解则相反。
     (4)灌木树种沙棘、柠条和紫穗槐枯落叶两两混合分解后,沙棘与紫穗槐枯落叶、柠条与紫穗槐枯落叶两种组合对土壤性质的影响综合表现为相互促进作用,而沙棘与柠条枯落叶对土壤性质的影响综合表现为相互抑制。沙棘、柠条和紫穗槐这3种固氮树种枯落叶混合分解并不总是对土壤氮素和其他养分的影响产生促进作用,可能与分解过程中产生的化合物有关。
     (5)不同类型枯落叶混合分解后存在两大情况,一种是对土壤性质作用的叠加效应,也称加性效应(additive effects),本文中表现为不同枯落叶混合分解后土壤性质实测值与预测值无明显差异,即对土壤性质无明显相互作用,占全部作用结果的少数部分;另一种是非加性效应(nonadditive effects),表现为不同枯落叶分解对土壤性质的影响存在相互促进或抑制作用,占全部结果的大多数。产生促进作用的原因是枯落物混合为分解者提供更为有利的微环境,使得微生物数量、活性和群落结构更加完善,同时,高质量的枯落叶通过分解者将有效养分通过被动扩散和菌丝桥转移给了质量较低的枯落叶,从而加快了混合枯落叶的分解速度和土壤养分的提高。而抑制作用是因为不同枯落叶在混合分解过程中释放了一些次级化合物,如单宁酸、多酚类,它们能抑制枯落物的分解,影响养分的输入。
On the Loess Plateau, recent observations have found a decline in the plantationproductivity and the presence of soil degradation on planted monoculture stands of differenttree species because of single species composition and hierarchical structure, and toughnatural conditions. This phenomena have serious affected the local forest ecosystem stabilityand sustainable development. To study the interspecific relationship of the different treespecies and plant scientific mixed forest is the effective way of solving the problems ofplanted monoculture stands.
     Soil is an important component of forest ecosystems, and it is the material foundation ofthe survival of trees. As the basic carrier of nutrients, litterfall become intermediates betweenforest and soil. Litterfall controls nutrient cycling and primary productivity and contributes tothe maintenance of soil fertility. Litter decomposition affects the physicochemical propertiesand biological activities of forest soil, and then affects coordination between the species andthe sustainability of the forest. Therefore, knowledge about the decomposition of mixed litterand its effect on soil properties is important for evaluating interspecific relationships andcompatibility in mixed forests.
     In this study, leaf litter mixtures consisting of13trees species were ground and mixedwith soil to analyze the effects of their decomposition on the quantity of soil microbes, theactivities of soil enzymes and the soil chemical properties and to determine the interactionsbetween the different types of litter within a mixture during decomposition. Meanwhile, thesynthetical effects of different decomposed litter mixtures on soil properties were judgedusing principal component analysis. The results showed that:
     (1) The decomposition of single-species leaf litter increased urease activity by54~110%, dehydrogenase activity by85~288%, phosphatase activity by81~301%, soil organicmatter by29~55%, and available N by11~49%. Meanwhile, the saccharase activity,protease activity and available K content have been increased to some extent. Single-speciesleaf litter had mixed effects on available P and cation exchange capacity (CEC). Decomposedsingle litter from Pinus tabulaeformis, Robinia pseudoacacia, Betula platyphylla, Quercusliaotungensis, Ulmus pumila, Salix matsudana, Caragana microphylla and Amorpha fruticosa increased available P content, but single litter form Larix principis-rupprechtii, Platycladusorientalis, Populus simonii, Hippophae rhamnoides decreased the available P. Except for P.simonii and Q. liaotungensis, decomposed single litter from other species decreased the CEC.The leaf litters from C. microphylla and A. fruticosa showed the best in improving soil.
     (2) The result of the decomposition from coniferous species litter with other speciesshowed that: in terms of soil properties as a whole, the decomposed litter mixtures made fromP. tabulaeformis combined separately with H. rhamnoides, R. pseudoacacia, P. simonii or A.fruticosa showed synergistic interactive effects on soil, but litter mixtures from P.tabulaeformis combined separately with C. microphylla, L. principis-rupprechtii, B.platyphylla, Q. liaotungensis, or P. orientalis showed antagonistic interaction effects, and thelitter mixtures from P. tabulaeformis combined with U. pumila had no obvious interactiveeffects on soil; The decomposed litter mixtures made from Pinus sylvestris var. mongolicacombined separately with B. platyphylla, R. pseudoacacia, U. pumila, or C. microphyllashowed synergistic interactive effects on soil, but litter mixtures form Pinus sylvestris var.mongolica combined separately with P. simonii, H. rhamnoides, A. fruticosa, P. orientalis, orQ. liaotungensis showed antagonistic interaction effects, and the litter mixtures form P.tabulaeformis with U. pumila had no obvious interactive effects; The litter of L.principis-rupprechtii was mixed with that of R. pseudoacacia, A. fruticosa, or B. platyphylla,separately showed synergistic interaction effects on soil, whereas L. principis-rupprechtiilitter was mixed with that of C. microphylla, P. orientalis, U. pumila, Q. liaotungensis, or P.simonii, separately showed antagonistic interaction effects, L. principis-rupprechtii litter wasmixed with that of H. rhamnoides had no obvious interactive effects; The litter of P.orientalis was mixed with that of A. fruticosa, B. platyphylla, C. microphylla, or H.rhamnoides, separately showed synergistic interaction effects on soil, but P. orientalis litterwas mixed with P. simonii, U. pumila, R. pseudoacacia, or Q. liaotungensis did reversely.
     (3) The result of the decomposition between broadleaf tree species litter showed that:When P. simonii litter was mixed with litter from U. pumila, the resulting litter mixturesshowed synergistic interaction effects on soil. But when P. simonii litter was mixed separatelywith litter from C. microphylla, A. fruticosa, H. rhamnoides, or Q. liaotungensis, the resultinglitter mixtures showed antagonistic interaction effects. When P. simonii litter was mixedseparately with litter from R. pseudoacacia or B. platyphylla, the resulting litter mixtures hadno obvious interactive effects; When R. pseudoacacia litter was mixed separately with litterfrom B. platyphylla or H. rhamnoides, the resulting litter mixtures showed synergisticinteraction effects on soil. But when R. pseudoacacia litter was mixed separately with litterfrom Q. liaotungensis or C. microphylla, the resulting litter mixtures showed antagonistic interaction effects. R. pseudoacacia litter was mixed with that from U. pumila had no obviousinteractive effects; The litter of B. platyphylla was mixed separately with that of H.rhamnoides, A. fruticosa, or C. microphylla showed synergistic interaction effects on soil, butmixed with Q. liaotungensis or U. pumila did reversely; The litter of Q. liaotungensis wasmixed separately with that of C. microphylla or H. rhamnoides showed synergistic interactioneffects on soil, but mixed with A. fruticosa or U. pumila did reversely; Q. liaotungensis litterwas mixed separately with that of H. rhamnoides or S. matsudana showed synergisticinteraction effects on soil, but mixed with A. fruticosa or C. microphylla did reversely; S.matsudana litter was mixed separately with that of H. rhamnoides or A. fruticosa showedsynergistic interaction effects, whereas mixed with C. microphylla showed antagonisticinteraction effects on soil.
     (4) When shrub species (H. rhamnoides, C. microphylla and A. fruticosa) litter wasmixed with pair-wise decomposition, the resulting litter mixtures made from H. rhamnoidescombined with A. fruticosa, and litter mixtures made from C. microphylla combined with A.fruticosa showed synergistic interaction effects on soil, but the resulting litter mixtures madefrom H. rhamnoides combined with C. microphylla showed antagonistic interaction effects.Litter mixtures form tree species of fixing nitrogen did not always increase the soil available,may because of the release of antimicrobial compounds during decomposition.
     (5) There are two cases after the decomposition of different litter mixtures, one is thesuperposition effect of litter mixtures on soil properties, also called additive effects, our resultshowed that there was no obvious difference between measured and predicted value of soilproperties. That is, different litter had no obvious interaction on soil properties. The additiveeffects were a few part of all action results; Another is nonadditive effect, characterized thatthe decomposed litter mixture showed synergistic or antagonistic interactive effects on soilproperties, which is the majority of all of result. As for synergistic interactions, it has beenreconsider that litter mixtures create diverse microhabitats and niches supporting a diverseand abundant decomposer community. And the preferential exploitation of high-quality litterby decomposers leads to a high nutrient availability and allows nutrient transfer, by passivediffusion and/or through fungal hyphae, to the low-quality litter that will undergo a morerapid decomposition in the mixture. As for antagonistic interactions, it has been found that therelease of antimicrobial compounds, such as tannins and polyphenols, from a litter componentwithin a mixture, may slow down litter decay thus generating antagonistic interactions.
引文
白岗栓,侯喜录,张占雄.2006.油松-沙棘混交模式对生境和油松生长的影响.林业科学,42(8):37~43
    鲍士旦.2000.土壤农化分析.北京:中国农业出版社
    毕杰和.2008.浅析调节混交林的种间关系.内蒙古林业调查设计,31(4):61~62
    蔡艳,薛泉宏,侯琳,汤莉.2002.黄土高原几种乔灌木根区土壤微生物区系研究.陕西林业科技,1:4~9
    陈楚莹,汪思龙.2004.人工混交林生态学.北京:科学出版社
    陈堆全.2001.木荷凋落物分解及对土壤作用规律的研究.福建林业科技.28(2):35~38
    陈法霖,郑华,阳柏苏,欧阳志云,张凯,肖燚,屠乃美.2011.中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响.生态学报,31(11):3027~3035
    陈际伸.2001.混交林营造及其机理的研究概况.江西林业科技,2:26~28
    陈金林,吴春林,姜志林.2002.栎林生态系统凋落物分解及磷素释放规律.浙江林学院学报,19(4):36~37
    陈俊蓉,洪伟,吴承祯,张文娟,李键,范海兰,陈灿.2008.不同桉树土壤微生物数量的比较.亚热带农业研究,4(2):146~150
    陈立新,陈祥伟,段文标.1998.落叶松人工林凋落物与土壤肥力变化的研究.应用生态学报,9(6):581~586
    程东升.1993.森林微生物生态学.哈尔滨:东北林业大学出版社
    程丽娟,薛泉宏.2000.微生物学实验技术.北京:世界图书出版公司:63~67,80~83
    董林根,姜小娟,方茂盛.1998.雷竹覆盖栽培林地土壤微生物的初步研究.浙江林学院学报,3(4):236~239
    樊后保,李燕燕,黄玉梓,林德喜,袁颖红,黄荣珍.2006.马尾松纯林改造成针阔混交林后土壤化学性质的变化.水土保持学报,20(4):77~81
    高志红,张万里,张庆费.2004.森林凋落物生态功能研究概况及展望.东北林业大学学报,32(6):79~83
    耿增超,张社奇,王国栋,刘建军.2006.黄土高原油松人工林地:土壤养分及化学性质的时空效应.西北农林科技大学学报(自然科学版),34(8):99~104
    关松荫.1986.土壤酶及其研究法.北京:农业出版社
    郭剑芬,杨玉盛,陈光水,林鹏,谢锦升.2006.森林凋落物分解研究进展.林业科学,42(4):93~100
    郭忠玲,郑金萍,马元丹.2006.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究.生态学报,26(4):1037~1046
    郭梓娟,宋西德,赵宏刚.2007.沙棘、侧柏混交林生物量、林地土壤特性及其根系分布特征的研究.水土保持通报,27(3):18~23
    哈兹耶夫.1980.土壤酶研究方法.郑洪元,译.北京:科学出版社
    郝向春.2002.松栎混交林的形成及其生态功能研究.山西林业科技,2:13~17
    贺敏,刘增文,李亮,郭冠春,王林,周丽萍.2010.陕北地区阔叶树种枯落叶对针叶纯林土壤微生物的影响.西北林学院学报,25(3):7~11
    胡亚林,汪思龙,黄宇,于小军.2005.凋落物化学组成对土壤微生物学性状及土壤酶活性的影响.生态学报,25(10):2662~2668
    胡延杰,翟明普,武觐文,贾黎明.2002.杨树刺槐混交林及纯林根际微生物数量及其生化强度的季节性动态研究.土壤通报,33(3):219~222
    胡肄慧,陈灵芝,陈清朗,孔繁志,缪有贵.1987.几种树木枯叶分解速率的试验研究.植物生态学与地植物学丛刊,11(2):124~132
    胡肄慧,陈灵芝,孔繁志,鲍显诚.1986.两种中国特有树种的枯叶分解速率.植物生态学与地植物学丛刊,10(1):35~43
    黄昌勇.2000.土壤学.北京:中国农业出版社.
    黄德明.2003.十年来我国测土施肥的进展.植物营养与肥料学报,9(4):495~499
    黄锦学,黄李梅,林智超,陈光水.2010.中国森林凋落物分解速率影响因素分析.亚热带资源与环境学报,5(3):56~63
    贾黎明,翟明普,胡延杰.1997a.杨树刺槐种间氮素养分转移.见:沈国舫(主编).混交林研究——全国混交林与树种间关系学术讲座会文集.北京:中国林业出版社:42~49
    贾黎明,翟明普,胡延杰.1997b.杨树刺槐混交林种间磷素营养关系.见:沈国舫(主编).混交林研究——全国混交林与树种间关系学术讲座会文集.北京:中国林业出版社:50~57
    贾黎明,翟明普.1996.油松白桦混交林中生化他感作用的生物测定.北京林业大学学报,18(4):1~8
    贾黎明,翟明普,尹伟伦.1995.油松、辽东栋混交林中生化他感作用的研究.林业科学,31(6):491~498
    蒋三乃,翟明普,贾黎明.2001.混交林种间养分关系研究进展.北京林业大学学报,23(2):72~77
    焦峰,温仲明,焦菊英,卜耀军,赫晓慧,马祥华.2005b黄土丘陵区人工小叶杨生长空间差异及其土壤水分效应.西北植物学报,25(7):1303~1308
    焦峰,温仲明,焦菊英,李锐.2005a.黄土丘陵区退耕地土壤养分变异特征.植物营养与肥料学报,11(6):724~730
    焦树仁.2001.辽宁省章古台樟子松固沙林提早衰弱的原因与防治措施.林业科学,37(2):131~138
    焦如珍,杨承栋,屠星南,张家诚.1997.杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化.林业科学研究,10(4):373~379
    孔垂华,胡飞.2001植物化感(相生相克)作用及其应用.北京:中国农业出版社
    李冬坡,武志杰.2003.长期培肥黑土脲酶活性动态变化及其影响因素.应用生态学报,14(12):2208~2212.
    李杰,彭方仁,黄宝龙.1999.农林复合系统种群互作研究进展.世界林业研究,12(5):10~14
    李立平,张佳宝,朱安宁,邢维芹,唐立松.2004.土壤养分有效性测定及其方法.土壤通报,35(1):84~90
    李小胜,陈珍珍.2010.如何正确应用SPSS软件做主成分分析.统计研究,27(8):105~108
    李志辉,李跃林,杨民胜,朱日光,李前华.2000.桉树人工林地土壤微生物类群的生态分布规律.中南林学院学报,20(3):24~28
    厉婉华.1994.苏南丘陵区不同林分下根际根外土壤微生物区系及酶活性.生态学杂志,13(6):11~14
    廖利平, Lindley D K,杨永辉.1997.森林叶凋落物混合分解的研究Ⅰ.缩微(Microcosm)实验.应用生态学报,8(5):459~464
    林波,刘庆,吴彦,庞学勇,何海.2003.川西亚高山针叶林凋落物对土壤理化性质的影响.应用与环境生物学报,9(4):346~351
    林波,刘庆,吴彦.2004.亚高山针叶林人工恢复过程中凋落物动态分析.应用生态学报,15(9):1491~1496
    林成芳,高人,陈光水,杨玉盛,钟羡芳.2007.凋落物分解模型研究进展.福建林业科技,34(3):227~234
    林开敏,章志琴,邹双全,曹光球.2006.杉木与阔叶树叶凋落物混合分解对土壤性质的影响.土壤通报,37(4):258~262
    刘畅,满秀玲,刘文勇,姚月锋,范金凤.2006.东北东部山地主要林分类型土壤特性及其水源涵养功能.水土保持学报,20(6):30~33
    刘鑫,满秀玲,陈立明,李文影.2007.坡位对小叶杨人工林生长及土壤养分空间差异的影响.水土保持学报,21(5):76~81
    刘增文,杜良贞,张晓曦,祝振华,袁娜,时腾飞.2012.黄土高原不同树种枯落叶混合分解效应.生态学报,32(8):2596~2602
    刘增文,段而军,刘卓玛姐,冯顺煜.2009.黄土高原半干旱丘陵区不同树种纯林土壤性质极化研究.土壤学报,46(6):1110~1120
    刘增文,高文俊,潘开文,杜红霞,张丽萍.2006.枯落物分解研究方法和模型讨论.生态学报,26(6):1993~2000
    刘增文,潘开文,杜红霞,张丽萍,高文俊.2006.森林植物—枯落物—土壤微生物系统N关系研究进展.西北林学院学报,21(1):72~75
    罗明,庞峻峰,李叙勇,刘平,万兰英.1997.新疆天山云杉林区森林土壤微生物学特性及酶活性.生态学杂志,16(1):26~30
    孟向东,张平究,李泽熙.2011.生态恢复下湿地土壤微生物研究进展.云南地理环境研究,23(4):101~105
    莫江明,薛碌花,方运霆.2004.鼎湖山主要森林植物凋落物分解及其对N沉降的响应.生态学报,24(7):1413~1421
    宁小斌.2009.农林复合系统及其种间相互作用研究进展.湖北林业科技,1:41~44
    彭少麟,刘强.2002.森林凋落物动态及其对全球变暖的响应.生态学报,22(9):1535~1546
    漆良华,张旭东,周金星,彭镇华,岳祥华,黄玲玲.2009.湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征.林业科学,45(8):14~20
    任得元,李建康,李莉.2009.秦岭山区人工纯林土壤微生物群落特征研究.陕西林业科技,(2):26~36
    任海,彭少麟,刘鸿先,余作岳.1998.小良热带人工混交林的凋落物及其生态效益研究.应用生态学报,9(5):458~462
    任叔辉.2007.人工混交林种间关系的调控技术.林业实用技术,(3):12~14
    沈国舫.2001.森林培育学.北京:中国林业出版社
    宋西德,罗伟祥,侯琳.1995.沙棘、侧柏混交林效益的研究.水土保持学报,9(4):113~117
    苏芳莉,刘明国,韩辉.2006.樟子松不同林型沙地土壤肥力的差异.东北林业大学学报,34(6):26~28
    宋漳,朱锦懋,杨玉盛.2000.闽北常绿阔叶林土壤微生物学特性的研究.福建林学院学报,20(4):317~320
    孙翠玲,佟超然,徐兰成.2001.杨树不同栽培模式生长量、土壤微生物及酶活性的研究.林业科学,14(3):336~339
    田呈明,刘建军,梁英梅,刘永华.1999.秦岭火地塘林区森林根际微生物及其土壤生化特性研究.水土保持通报,19(2):19~22
    田大伦,赵坤.杉木人工林生态系统凋落物的研究Ⅰ:凋落物的数量、组成及动态变化.中南林学院学报,1989,A09:38~44
    田大伦,朱小年.杉木人工林生态系统凋落物的研究Ⅱ:凋落物的养分偏量及分解速率.中南林学院学报,1989,A09:45~55
    万忠梅,吴景贵.2005.土壤酶活性影响因子研究进展.西北农林科技大学学报(自然科学版),33(6):87~92
    王岩,沈其荣,史瑞和,黄东迈.土壤微生物量及其生态效应.南京农业大学学报,1996,19(4):45~51
    王春阳.2011.黄土高原生态重建中植物凋落物碳氮在土壤中转化特性研究.[博士学位论文].杨凌:西北农林科技大学
    王凤友.1989.森林凋落量研究综述.生态学进展,6(2):82~98
    王光玉.2003.杉木混交林水源涵养和土壤性质研究,林业科学,39(1):15~20
    王海燕,雷相东,陆元昌,周燕华,何楚林.2009.海南4种典型林分土壤化学性质比较研究.林业科学研究,22(1):129~133
    王激清,刘全清,马文奇,江荣风,张福锁.2005.中国养分资源利用状况及调控途径.资源科学,27(3):47~53
    王健,刘作新.2004.油松刺槐混交林土壤生物学特性研究.干旱区研究,21(4):348~352
    王清奎,汪思龙,于小军,张剑,刘燕新.2007.杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响.应用生态学报,18(6):1203~1207
    韦如萍,薛立.2002.混交林研究进展.湖南林业科技,29(3):78~81
    温明章,于丹,郭继勋.2003.凋落物层对东北羊草草原微环境的影响.武汉植物学研究,21(5):395~400
    温仲明,从怀军,焦峰,王飞.2005.黄土丘陵沟壑区小叶杨林生长的空间差异分析——以吴旗县为例.水土保持通报,25(1):15~17,24
    吴承祯,洪伟,姜志林,郑发辉.2000.我国森林凋落物研究进展.江西农业大学学报,22(3):405~410
    吴俊民,礼波宁,刘广平,王晓水,吴保国.2000.混交林中落叶松挥发性物质对水曲柳生长的影响.东北林业大学学报,28(1):25~28
    吴锈钢,宋小东,王恩利,李玉航,邰宪武,刘长全,郝春英.2002.沙地樟子松人工林结构调整及更新改造技术措施.防护林科技,12(4):82~83
    吴应建,庄凯波.2001.大力营造混交林提高林业生态建设质量.山西林业,(6):12~18
    徐秋芳,钱新标,桂祖云.1998.不同林木凋落物分解对土壤性质的影响.浙江林学院学报,15(1):27~31
    徐秀梅,王汉杰.2004荒漠带退化山地森林植被的恢复机制.南京林业大学学报,28(2):33~36
    许景伟,王卫东,李成.2000.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究.北京林业大学学报,22(1):51~55
    许光辉,郑洪元.1986.土壤微生物分析方法手册.北京:农业出版社:112~175
    薛立,陈红跃,毕鸿雁,谭绍满.2002.马占相思纯林及柚木纯林土壤养分、微生物和酶活性的研究.华南农业大学学报(自然科学版),23(2)
    薛泉宏,李瑞雪,冯立效,冯浩.1995.黄土高原油松刺槐人工林对土壤肥力影响的研究.陕西林业科技.1995,(2):21~25
    薛智德,梁一民,杨光.2000.侧柏紫穗槐混交理论与技术试验研究.水土保持研究,7(2):140~142
    严昶升,周礼恺,张德生.1988.土壤肥力研究法.北京:农业出版社
    阎恩荣,王希华,周武.2008.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系.植物生态学报,32(1):1~12
    杨承栋.1994.森林土壤研究几个方面的进展.世界林业研究,7(4):14~20
    杨凯,朱教君,张金鑫,闫巧玲.2009.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化.生态学报,29(10):5500~5507
    杨万勤,邓仁菊,张健.2007.森林凋落物分解及其对全球气候变化的响应.应用生态学报,18(22):2889~2895
    杨万勤,王开运.2002.土壤酶研究动态与展望.应用与环境生物学报,8(5):564~570.
    杨万勤,王开运.2004.森林土壤酶的研究进展.林业科学,40(2):152~159
    杨玉海,郑路,段永照.2011.干旱区人工防护林带不同林分凋落叶分解及养分释放.应用生态学报,22(6):1389~1394
    殷秀琴,宋博,邱丽丽.2007.红松阔叶混交林凋落物-土壤动物-土壤系统中N、P、K的动态特征.生态学报,7(1):128~134
    于洋,王海燕,丁国栋,任丽娜,孙嘉,范敏锐.2011.华北落叶松人工林土壤微生物数量特征及其与土壤性质的关系.东北林业大学学报,39(3):76~80
    袁可能.1983.植物营养元素的土壤化学.北京:科学出版社
    曾德慧,尤文忠,范志平,刘明国.2002.樟子松人工固沙林天然更新特征.应用生态学报,13(1):1~5
    曾思齐,周国英,佘济云.1998.湘东丘陵区次生林土壤微生物的分布及酶的活性研究.中南林学院学报,18(2):20~23
    翟明普.1993.混交林和树种间关系的研究现状.世界林业研究,(1):39~45
    张猛,张健.2003.林地土壤微生物、酶活性研究进展.四川农业大学学报,21(4):347~351
    张超,刘国彬,薛萐,宋籽霖,樊良新.2010.黄土丘陵区不同林龄人工刺槐林土壤酶演变特征.林业科学,46(12):23~29
    张东来,毛子军,张玲,朱胜英.2006.森林凋落物分解过程中酶活性研究进展.林业科学,42(1):105~110
    张丽萍,张兴昌,刘增文,孙强,王书斌,孙红彦,于维峰,刘玉杰.2008.人工林凋落叶分解对土壤性质的影响.西北农林科技大学学报(自然科学版),36(9):87~92
    张其水,俞新妥.1990.杉木连栽林地营造混交林后土壤微生物的季节动态研究.生态学报,10(2):121~125
    张其水,俞新妥.1991.杉木连栽林地土壤微生物的季节动态研究.福建林学院学报,11(4):422~427
    张希彪,上官周平.2006.黄土丘陵区油松人工林与天然林养分分布和生物循环比较.生态学报,26(2):373~382
    张晓鹏,潘开文,王进闯,陈其兵.2011.栲-木荷林凋落叶混合分解对土壤有机碳的影响.生态学报,31(6):1582~1593
    张伟华,张昊,李文忠,周心澄.2005.青海大通中国沙棘人工林对土壤有机质和含氮量的影响.干旱区资源与环境,19(1):154~158
    张咏梅,周国逸,吴宁.2004.土壤酶学的研究进展.热带亚热带植物学报,12(1):83~90
    赵晨,韩冰,康君.2009.混交林的研究进展分析.森林工程,25(2):19~21
    赵萌,方晰,田大伦.2007.第2代杉木人工林地土壤微生物数量与土壤因子的关系.林业科学,43(6):7~12
    中国农业百科全书编辑部.1989.中国农业百科全书(林业卷).北京:农业出版社,547~548
    中国农业百科全书编辑部.1996.中国农业百科全书(土壤卷).北京:农业出版社,388~390
    周存宇.2003.凋落物在森林生态系统中的作用及其研究进展.湖北农学院学报,23(2):140~145
    周礼恺.1980.土壤酶的活性.土壤学进展,8(4):9~15
    祝振华.2012.黄土高原常见树种枯落叶混合分解对其养分释放的影响.[硕士学位论文].杨凌:西北农林科技大学
    邹莉,唐庆明,王轶.2010.落叶松、樟子松纯林及混交林土壤微生物的群落分布特征.东北林业大学学报,38(11):63~64,79
    Aerts R, Decaluwe H.1997. Nutritional and plant-mediated controls on leaf litter decomposition of carexspecies. Ecology,78:244~260
    Aerts R.1971. Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems: a triangularrelationship. Oikos,79:439~449
    Berchet V, Boulanger D, Gounot A M.2002. Use of gel electrophoresis for the study of enzymatic activitiesin cold-adapted bacteria. Journal of Microbiological Methods,40:105~110
    Berg B, Berg M P, Bottner P.1993. Litter mass loss rates in pine forests of Europe and Eastern UnitedStates: some relationships with climate and litter quality. Biogeochemistry,20:127~153
    Berg B.2000. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology andManagement,133:13~22
    Blair J M, Parmelee R W, Beare M H.1990. Decay rates, nitrogen fluxes, and decomposer communities ofsingle and mixed species foliar litter. Ecology,71(5):1976~1985
    Burns R G, Dick R P.2001. Enzymes in the Environment: Ecology, Activity and Applications. New York:Marcel Dekker, Inc.
    Burns R G.1978. Soil Enzymes. New York: Academic Press
    Carneval N J, Montagnini F.2002. Facilitating regeneration of secondary forests with the use of mixed andpure plantations of indigenous tree species. Forest Ecology and Management,163:217~227
    Carreiro M M, Sinsabaugh R L, Repert D A, Parkhurst D F.2000. Microbial enzyme shifts explain litterdecay responses to simulated nitrogen deposition. Ecology,81:2359~2365
    Castro-Díez P, Fierro-Brunnenmeister N, González-Mu oz N, Gallardo A.2012. Effects of exotic andnative tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant and Soil,350(1-2):179~191
    Chander K, Goyal S, Kapoor K K.1995. Microbial biomass dynamics during the decomposition of leaflitter of poplar and eucalyptus in a sandy loam. Biology and Fertility of Soils,19(4):357~362
    Chiariallo N, Hickman J C, Mooney M A.1982. Endomycorrhizal role for interspecific transfer ofphosphorus in a community of annual plants. Science,217:941~943
    Cross A F, Schlesinger W H.1999. Plant regulation of soil nutrient distribution in the Northern Chihuahuandesert. Plant Ecology,145:11~25
    De Cesare F, Garzillo A M, Buonocore V, Badalucco L.2000. Use of sonication for measuring acidphosphatase activity in soil. Soil Biology and Biochemistry,32,825~832
    De Marco A, Meola A, Maisto G, Giordano M, De Santo A V.2011. Non-additive effects of litter mixtureson decomposition of leaf litters in a Mediterranean maquis. Plant and Soil,344:305~317
    Durin N, Esposito E.2000. Potential applications of oxidative enzymes and phenol-oxidase-likecompounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental,28(2):83~99
    Eason W R, Newman E I.1992. Preferential cycling of phosphorus: the role of mycorrhiza. In Read DJ(Eds). Mycorrhizas Ecosystems, CAB International. Wallingford UK:378~386
    Ebermayer E.1876. Die qesamte Lehre der woldstreu mit Rucksicht auf die chemische statik woldbaues.Berlin: Julius Springer
    Falcelli M, Pickett S T A.1991.Plant litter: its dynamics and effects on plant community structure. TheBotanical Review,57(1):1~32
    Fog K.1988. The effect of added nitrogen on the rate of decomposition of organic matter. BiologicalReviews,63:433~462
    Gartner T B, Cardon Z G.2004. Decomposition dynamics in mixed-species leaf litter. Oikos,104:230~246
    Guariguata M R, Rheingans R, Montagnini F.1995. Early woody invasion under tree plantations in CostaRica: implications for forest restoration. Restoration Ecology,3:252~260
    Gupta V, Germida J J.1988. Distribution of microbial biomass and its activity in soil aggregate size classesas affected by cultivation. Soil Biology and Biochemistry,20:777~786
    Hansson K, Olsson B A, Olsson M, Johansson U, Kleja D B.2011. Differences in soil properties inadjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. Forest Ecology andManagement,262:522~530
    Harper J L.1977. Population Biology of Plants. London, U K: Academic press
    H ttenschwiler S, Tiunov A V, Scheu S.2005. Biodiversity and litter decomposition in terrestrialecosystems. Annual Review of Ecology, Evolution, and Systematics,36:191~218
    H ttenschwiler S, Vitousek P M.2000. The role of polyphenols in terrestrial ecosystem nutrient cycling.Trends in Ecology&Evolution,15:238~243
    Herrera-Cervera J A, Caballero-Mellado J, Laguerre G, Tichy H-V, Requena N, Amarger N,Martínez-Romero E, Olivares J, Sanjuan J.1999. At least five rhizobial species nodulate Phaseolusvulgaris in Spanish soil. FEMS Microbiology Ecology,30(1):87~97
    Hobbie S E.2000. Interactions between litter lignin and soil nitrogen availability during leaf litterdecomposition in a Hawaiian Montane forest. Ecosystems,3(5):484~494
    Hui D, Jackson R B.2009. Assessing interactive responses in litter decomposition in mixed species litter.Plant and Soil,314:263~271
    JamaludheenV, Mohan Kumar B.1999. Litter of multipurpose trees in Kerala, India: variations in theamount, quality, decay rates and release of nutrients. Forest Ecology and management,115: l~11
    Kato Y, Asano Y.2001. A new enzymatic method of stereoselective oxidation of racemic1,2-indandiols.Journal of Molecular Catalysis B: Enzymatic,13:27~36
    Kavvadias V A, Alifragis D, Tsiontsis A, Brofas G, Stamatelos G.2001. Litterfall, litter accumulation andlitter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology andManagement,144:113~127
    Kelty M J.2006. The role of species mixtures in plantation forestry. Forest Ecology and Management,233(2-3):195~204
    Kiss S, Pasca D, Dragan-Bulardan M.1998. Enzymology of Disturbed Soils. Amsterdam: Elsevier
    Klemmedson J O, Campbell C E.1990. Litterfall transfers of dry matter and nutrients in Ponderosa Pinestands. Canadian Journal of Forest Research,20:1105~1115
    Kourtev P S, Ehrenfeld J G, Huang W Z.2002. Enzyme activities during litter decomposition of two exoticand two native plant species in hardwood forests of New Jersey. Soil Biology and Biochemistry,34:1207~1218
    Kumar B M, Deepu J K.1992. Litter production and decomposition dynamics in moist deciduous forests ofthe Wstern Ghats in Peninsular India. Forest Ecology and Management,50:181~201
    Kumar R, Dahiya J S, Singh D, Nigam P.2000. Production of endo-1,4-β-Glucanase by a biocontrol fungusCladorrhinum foecundissimum, Bioresource Technology,75:95~97
    Langenbruch C, Helfrich M, Flessa H.2012. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior)and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil,352:389~403
    Lecerf A, Risnoveanu G, Popescu C, Gessner M O, Chauvet E.2007. Decomposition of diverse littermixtures in streams. Ecology,88:219~227
    Lorena C A, Noé V D, Victoria C M, Beatriz B M, Leticia S C, Julia M M.2005. Soil nitrogen in relation toquality and decomposability of plant litter in the Patagonian Monte, Argentina. Plant Ecology,181(1):139~151
    Martin A.1964. Introduction to soil microbiology. NewYork: John Wiley&Sons Publishing:19~44
    Marx M C, Wood M, Javis S C.2001. A microplate fluorimetric assay for the study of enzyme diversity insoils. Soil Biology and Biochemistry,33:1633~1640
    Miyamoto T, Hiura T.2008. Decomposition and nitrogen release from the foliage litter of fir (Abiessachalinensis) and oak (Quercus crispula) under different forest canopies in Hokkaido, Japan.Ecological Research,23(4):673~680
    Mukhopadhyay S, Joy V C.2010. Influence of leaf litter types on microbial functions and nutrient status ofsoil: ecological suitability of forest trees for afforestation in tropical laterite wastelands. Soil Biologyand Biochemistry,42(12):2306~2315
    Norgrove L, Hauser S.2000. Leaf properties, litter fall, and nutrient inputs of Terminalia ivorensis atdifferent tree stand densities in a tropical timber-food crop multistrata system. Canadian Journal ofForest Research,30(9):1400~1409
    Polyakova O, Billor N.2007. Impact of deciduous tree species on litterfall quality, decomposition rates andnutrient circulation in pine stands. Forest Ecology and Management,253:11~18
    Rao K S, Maikhuri R K, Saxena K G.1999. Participatory approach to rehabilitation of degraded forest land:a case study in high altitude village of Indian Himalaya. International Tree Crops Journal,10:1~17
    Reich P B, Oleksyn J, Modrzynski J, Mrozinski P.2005. Linking litter calcium, earthworms and soilproperties: a common garden test with14tree species. Ecology,8:811~818
    Rice E L.1984A11elopathy.New York: Academic Press
    Rihani M, Botton B, Villemin G, Abbouyi A E.2003Ultrastructural patterns of beech leaf degradation bySporotrichum pulverulentum. European Journal of Soil Biology,37:75~84
    Ritter E.2005. Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech(Fagus sylvatica) forest. Soil Biology and Biochemistry,37:1~11
    Sariyildiz T, Anderson J M.2003. Interactions between litter quality, decomposition and soil fertility: alaboratory study. Soil Biology and Biochemistry,35:391~399
    Sayed W F, El-Sharouny H M, Zahran H H, Ali W M.2002. Composition of Casuarina leaf litter and itsinfluence on Frankia-Casuarina symbiosis in soil. Folia Microbiologica,47(4):429~434
    Sieverding E.1989. Ecology of VAM fungi in tropical agrosystems. Agriculture, Ecosystems andEnvironment,29:369~390
    Simard S, Durall D M, Jones M D.1997. Carbon allocation and carbon transfer between Betula papyriferaand Pseudotsuga menziessi seedling using a13C pulse-labeling method. Plant and Soil,191(1):41~55
    Song, Q, McComb A, Bell R, Davis J.2005. Leaf-litter application to a sandy soil modifies phosphorusleaching over the wet season of southwestern Australia. Hydrobiologia,545:33~43
    Swift M J, Heal O W, Anderson J M.1979. Decomposition in Terrestrial Ecosystems. Berkley, California,USA: University of California Press
    Taylor B R, Parkinson D, Parsons W F J.1989. Nitrogen and lignin content as predictors of litter decayrates: a microcosm test. Ecology,70:97~104
    Tbbs C H.1976. Effect of sugar maple root exudate on seedling of northern conifer species, USDA forestservice research note northern control forest experiment station, NC-213:29
    Toseano G, Maria L, Greco G.2003. Oxidative polymerisation of phenols by a phenol oxidase from greenolives. Enzyme and Microbial Technology,33(1):47~54
    Veps l inen M, Kukkonen S, Vestberg M, Sirvi H, Niemi R M.2001. Application of soil enzyme activitytest kit in a field experiment. Soil Biology and Biochemistry,33:1665–1672.
    Wang B, Liu G B, Xue S.2012. Effect of black locust (Robinia pseudoacacia) on soil chemical andmicrobiological properties in the eroded hilly area of China’s Loess Plateau. Environmental EarthSciences:65:597~607
    Wardle D A, Nilsson M C, Zackrisson O, Gallet C.2003. Determinants of litter mixing effects in a Swedishboreal forest. Soil Biology and Biochemistry,35,827~835

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700