用户名: 密码: 验证码:
土地利用数据综合结果的质量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以质取胜,以精立业。质量是空间数据的生命,质量问题产生于数据的采集、加工与分析应用等多个环节,旨在对空间数据进行简化处理的地图综合操作是空间数据质量问题产生的重要来源之一,与数据采集、结构化组织、参考系变换等一般性数据处理相比,地图综合对数据质量产生的影响要大得多。合理的地图综合要在空间数据质量损失和质量维护中求得平衡。针对地图综合结果的数据质量评价研究具有重要意义,该问题的研究与通用的空间数据质量评价相比有其独特性,表现在质量评价的对象、参考基准、质量问题的来源与评价模型等方面。
     地图综合数据对象包括以地形图为目标的通用空间数据,也包括顾及语义特征表达的专题数据,土地利用数据便是专题性空间数据的一种。与通用地图综合关注空间特征不同,土地利用数据综合的质量评价更多的关注专题属性特征,涉及土地利用类型、行政级别、土地实体权属等。目前针对地图综合空间特征质量评价的研究已有不少成果,然而对专题属性特征的质量评价,尚缺乏系统、深入的技术策略和方法研究。随着全国第二次土地调查工作的完成,国土资源和城镇化管理各业务对多尺度土地利用数据的需求日益增长,需要通过地图综合建立不同层次的数据库,如何评价不同尺度的土地利用数据库的可靠性,成为该领域亟需解决的问题。
     本文以土地利用数据综合的质量评价为选题,针对尺度变换的特点,在通用空间数据质量评价的基础上拓展研究土地利用数据综合产生的质量问题。从地图综合的多因子约束出发,对土地利用数据综合结果的数据质量进行深入分析,设计了质量评价的模型、算法,从量化的角度在微观(单个对象)、中观(要素群组)和宏观(整个地图)三个空间层次给出评价方法。主要研究内容包括:
     (1)在深入分析土地利用综合结果质量问题的来源、影响因素的基础上提出了空间层次与约束相结合的质量评价指标二维体系。土地利用数据综合结果的质量问题主要体现为与综合前数据在空间位置、拓扑、语义、土地分类结构等方面的不一致及面积失衡问题,本文由质量问题出发,基于综合约束,对土地利用数据综合结果的三种几何形态给出了质量评价指标以及其在约束和空间层次下的二维体系。
     (2)针对土地利用数据综合结果中的面要素,将三种空间层次下的综合评价指标从图形、统计、语义方面进行了归纳,并针对每种指标给出了对应空间层次下的量化评价方法。
     (3)研究了综合前后面积平衡性保持和土地利用类型空间分布特征保持的评价方法。考虑到土地利用数据与区域特征的极大相关性,本文改进了景观指数分析方法,设计了基于空间关联关系的土地分类权重体系支撑下的面积平衡性评价方法;考虑到土地利用分类所具有的空间自相关特性,本文引入探索性空间数据分析的方法,基于Moran's I指数进行综合前后数据各种地类的空间自相关分析,实现了土地分类空间分布特征保持的量化评价。
     (4)归纳了土地利用数据综合中语义质量的四个方面:精度、一致性、完整性和相似性,设计了基于语义隶属度变化的语义精度评价模型、基于面积变化的语义一致性评价模型、基于要素数量变化的语义完整性评价模型和基于信息熵的语义相似性评价模型。考虑到土地利用数据在语义上的层次化,设计了基于语义层次和有序量的混合隶属度计算模型,给出了土地利用现状分类体系的语义隶属度矩阵,实现了三个空间层次下语义质量的量化评价。
     (5)设计了土地利用数据综合结果质量评价概念框架,将评价过程分为三步:要素特征的描述、评价指标的描述、评价结果的整合。构建了三个空间层次下的质量评价模型,并给出了顾及尺度与区域特征的评价指标权重矩阵。使用两个区域的第二次土地调查的多尺度综合成果(基于DOMAP综合软件生成)进行了验证,试验证明本文提出的顾及空间分布模式与空间格局的统计评价方法能够真实的反映数据在综合后对土地分类空间分布特征的保持度,本文提出的基于混合隶属度计算模型的语义质量评价方法能够揭示“综合尺度跨度越大,综合结果语义精度损失越多”的特征。
     本文的研究将通用空间数据质量问题拓展到专业性的数据加工处理中,针对土地利用数据的地图综合与尺度变换的特殊性从多个层次、多个指标进行了研究,提出了三个空间层次下的质量评价指标、评价模型和算法。本研究结合实际应用需求,基于第二次土地资源调查多尺度数据库成果进行了评价指标选择和权重设置,给出了量化的评价方法并进行了试验验证,具有很强的实际意义。对语义质量评价的研究和顾及空间分布模式与空间格局的统计评价方法在理论上是对已有空间数据质量评价研究的补充。
We adhere to the "quality win" and "delicate work" principle in almost every field. As is known to all of us, quality plays an important role in spatial data representation and applications. The quality problem results from the process of data acquisition, data processing, data analysis and data application. Map generalization aims at simplifying data and has been claimed to be one of the most important sources of quality problem. The reason is that map generalization has a greater influence on data quality than the general data processing way, such as data acquisition, transformation of the reference system, etc. On one hand, map generalization needs to delete the details of data. On the other hand, the generalization result must maintain the original spatial distribution and the global information of study area. Therefore, we need to find a balance between quality loss and quality accuracy for a reasonable map generalization. For this reason, the research on quality assessment of the map generalization result has important implications. Compared with the general quality assessment of spatial data, map generalization has its unique features which highlight the objects to be assessed, reference datum, the source of quality problem and the evaluation model.
     The objects to be assessed for map generalization include the general spatial data which mainly represented by the topographic map and the thematic data considering the semantic feature. And land use data is a kind of thematic data and it can provide rich information and mainly describe the polygon feature. And there is a great difference in the rule, operator and result from the general map generalization, which contributes to its own uniqueness in the quality problem. The general map generalization mainly focuses on spatial characteristic. However, the quality assessment of land use generalization pays more attention to thematic attribution, such as land use type, administrative level and land ownership, etc. For the moment, there are many research findings on quality assessment of spatial characteristic for map generalization, but fewer researches with the characteristic of system thorough technical strategy and method on the quality assessment of thematic attribution. Following completion of the second state land investigation, the requirement of land use data for state department and other government agencies is increasing. What is needed now is to establish database with multi-level for map generalization. Consequently, how to assess the quality of land use generalization has become a crucial issue.
     The subject of this paper is researching the quality assessment of land use generalization. For the characteristic of scale transformation, we expand the research of quality problem generated by land use generalization on the basis of quality assessment for the general spatial data. Starting with the generalization constraint, this paper deeply analyzed the quality of land use data generalization and developed some evaluation model, algorithms and operators. They work together and provide quantitative evaluation results from micro, meso and macro levels. The main contents of the paper are depicted as follows:
     (1) On the basis of analyzing the quality problem of land use data generalization, we put forward a two-dimensional quality evaluation index that combined with level and constraint. Land use data is usually composed of polygonal features. And it is characterized with complete coverage, seamlessness, little overlap and hierarchy in semantic. In addition, the constraint, operator and algorithm of land use data generalization are usually different from those of the general map generalization. Thus, there exists particularity in the quality problem of land use data generalization. Specifically, the quality problems appear in the inconformity of topology, area, semantic, land classification structure and spatial location between the original data and the generalization result. Based on the constraints, this paper provided the quality evaluation indexes of the generalization result for land use data by three kinds of geometrical shapes. And it also put forward a two-dimensional quality evaluation index that combined with level and constraint.
     (2) Take polygonal feature, for instance. The evaluation indexes of the three levels are generalized into graphical evaluation, statistical evaluation and semantic evaluation. And there is a specific quantitative evaluation method for each index at the corresponding level.
     (3) This paper has studied two evaluation methods which can help us understand the maintenance of area balance and spatial distribution of the land classification structure. Land use data is closely related to regional characteristic. Based on this, the landscape index analysis method is improved to evaluate the maintenance of area balance, which took into account the structure similarity and pattern stability of land use classification structure with the spatial correlation analysis. Considering land use type has the property of spatial autocorrelation, this paper brought in the exploratory spatial data analysis and realized the evaluation of spatial distribution for the land use type quantitatively with the overall and local Moran's I index.
     (4) We proposed four elements of semantic quality, which were accuracy, consistence, completeness and similarity. And each element has its own evaluation model. Specifically, model for accuracy is based on the semantic membership. Model for consistence is based on area. Model for completeness is based on the quantity of features and model for similarity is based on information entropy. It is known to all that the semantic information of land use data possesses the characteristic of hierarchy. Thus, we built a hybrid membership model which consists of hierarchy structure and order statistic. And further, we constructed the semantic membership matrix for the land use map derived from the second national land survey, which quantitatively evaluated the semantic quality from the three levels mentioned above.
     (5) This paper designed the concept frame for quality evaluation of land use data generalization based on the summary of characteristics of land use data generalization, the evaluation index and the evaluation method. And we broke the evaluation process into three steps which were description of feature characteristics, description of evaluation indexes and integration of evaluation results. What is more, this paper constructed the quality evaluation model at three levels. Simultaneously, the weight matrix which took into account the scale and regional characteristic was also designed. The example analysis on real data which came from the results of the DOMAP software verifies the validity of each evaluation index. The experiments proved that all indexes proposed in this paper can truly reflect the quality of the generalization results for land use data. And it can also reveal the changing features of the quality of generalization result with scales.
     The research of this paper has expanded quality problem of the general spatial data into the professional data processing. For the particularity of land use generalization and scale transformation, we have put forward the evaluation index, model and algorithm in three spatial levels. In addition, this study combining the application of actual data from the second national land investigation project, selected some evaluation index and the weight. At the same time, some quantitative evaluation methods were given and proved by experiment. Hence, this research turned out to be of great practical significance. Moreover, the research on evaluation of semantic quality and the statistic evaluation method based on spatial distribution pattern and spatial structure is an important supplement to the existing research on quality evaluation for spatial data.
引文
[1]Anselin, L. The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association [A]. In:Spatial Analytical Perspectives on GIS in Environmental and Socio-Economic Sciences[M]. London:Taylor & Francis,1996:111-125.
    {2] Anselin L, Bao S. Exploratory Spatial Data Analysis Linking SpaceStat and ArcView[A]. In:Recent Developments in Spatial Analysis-spatial Statistics, Behavioral Modeling and Neurocomputing [M].Berlin:Springer,1997:25-89.
    [3]Anselin L. Interactive Techniques and Exploratory Spatial Data Analysis[A]. In: Geographical Information Systems:Principles [M]. JohnWiley, New York,1999:132-163.
    [4]Armstrong, M. Knowledge Classification and Organization [A]. In:Map Generalization [M].UK:Longman Scientific,1991:86-102.
    [5]Bard, S. Quality Assessment of Generalized Geographical Data [A]. In:Proceedings of the 5th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences[C]. Melbourne, Australia,2002.
    [6]Bard, S. Evaluation of Generalization Quality[A]. In:the Fifth Workshop on Progress in Automated Map Generalization[C]. Paris, France,2003:28-30.
    [7]Bard, S., Quality Assessment of Cartographic Generalization[J]. Transactions in GIS, 2004,8(1):63-81.
    [8]Bard, S., Ruas, A. Why and How Evaluating Generalized Data?[A]. In:Proceedings of 12th International Symposium, Progress in Spatial Data Handling[M]. Springer,2004: 327-342.
    [9]Bader, M., Weibel, R. Detecting and Resolving Size and Proximity Conflicts in the Generalization of Polygonal Maps[A]. In:Proceedings of the 18th International Cartographic Conference [C], Stockholm, Sweden,1997:1525-1532.
    [10]Bastin, L., Fisher, P., and Wood, J. Visualizing uncertainty in multi-spectral remotely sensed imagery[J]. Computers and Geosciences,2002,28(3),337-350.
    [11]Beard, M. Constraints on Rule Formation [A].In:Map Generalization[M]. London: Longman,1991:121-135.
    [12]Bj(?)rke, J. Framework for Entropy-based Map Evaluation[J]. Cartography and Geographic Information Science,1996,23(2):78-95.
    [13]Brassel, K., Weibel, R. A Review and Framework of Automated Map Generalization [J]. International Journal of Geographical Information Systems,1988:2(3):229-244.
    [14]Brazile, F. A Generalization Machine Design That Incorporates Quality Assessment[A]. In:Proceedings of the Eighth International Symposium on Spatial Data Handling[C]. Chrisman, Burnaby,1998:349-360.
    [15]Brazile, F. Semantic Infrastructure and Methods to Support Quality Evaluation in Cartographic Generalization[D]. Zurich:University of Zurich,2000.
    [16]Burrough, P., McDonnell, R. Principles of Geographical Information Systems[M]. Oxford:Oxford University Press,1998:223-258.
    [17]Buttenfield, B. A Rule for Describing Line Feature Geometry[A]. In:Map Generalization [M]. UK:Longman Scientific,1991,150-171.
    [18]Carstensen, L. Angularity and Capture of the Cartographic Line During Digital Data try[J]. Cartography and Geographic Information Systems,1990,17(3):209-224.
    [19]Caspary, W., Scheuring, R. Error-Band as Measures of Geometrical Accuracy[J]. In: Proceedings of EGIS'92,1992:226-233.
    [20]Chakroun, H., Benie, G., Oneill, N., et al. Spatial Analysis Weighting Algorithm Using Voronoi Diagrams [J]. International Journal of Information Science,2000,14(4):319-336.
    [21]Cheng, T. Quality Assessment of Model-Oriented Generalization [A]. In:4th Workshop on Progress in Automated Map Generalization[C]. Beijing, China,2001.
    [22]Cheng, T., Li, Z. Toward Quantitative Measures for the Semantic Quality of Polygon Generalization [J]. Cartographica,2006,41(2):135-147.
    [23]Chrisman, N. A theory of Cartographic Error and Its Measurement in Digital Data Bases[A]. In:Fifth International Symposium on Computer-Assisted Cartography[C]. Bethesda, Maryland,1982:159-168.
    [24]Cliff, A., Ord, J. Spatial Processes:Models and Applications[M]. London:Pion,1981.
    [25]Congalton, R., Mead, R. A Quantitative Method to Test for Consistency and Correctness in Photo interpretation [J]. Photogrammetric Engineering and Remote Sensing, 1983,49(1):69-74.
    [26]David, Y. Spatial Error Analysis:A Unified Application Oriented Treatment[M]. IEEE Press,1998:35-52.
    [27]De Berg, M., van Kreveld, M., Schirra., S. A New Approach to Subdivision Simplification[A].In:Twelfth International Symposium on Computer-Assisted Cartography[C]. Charlotte, USA,1995:79-88.
    [28]Dettori, G., Puppo, E. How Generalization Interacts with the Topological and Metric Structure of Maps[A].In:Proceedings of the Seventh International Symposium on Spatial Data Handling[C]. Delft, The Netherlands,1996:559-570.
    [29]Douglas, D., Peucker, T. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature[J]. Cartographica,1973,10(2):112-122.
    [30]Eckert, M. Die Kartenwissenschaft[M]. Berlin/New York:DeGruyter,1921.
    [31]Ehrliholzer, R. Quality Assessment in Generalization:Integrating Quantitative and Qualitative Methods[A]. In:Proceedings of the 17th International Cartographic Conference[C]. Barcelona,1995:2241-2250.
    [32]Filippovska, Y., Walter V., Fritsch, D. Quality Evaluation of Generalization AIgorithms[A]. In:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. ⅩⅩⅩⅦ, Part B2, Commission 2. ISPRS Congress 2008[C]. Beijing, China,2008.
    [33]Fisher, P. Spatial Data Sources and Data Problems[A]. In:Geographical Information System:Principles and Applications[M].Longman Scientific & Technical,1978:13-42.
    [34]Frank, R-, Ester, M. A Quantitative Similarity Measure for Maps[A]. In:Proceedings of 12th International Symposium. Progress in Spatial Data Handling[M]. Springer,2006. 435-585.
    [35]Freeman, H. Shape Description via the Use of Critical Points[J]. Pattern Recognition, 1978,10:159-166.
    [36]Frolov, Y., Mating, D. The Accuracy of Area Measurement by Point Counting Techniques[J]. Cartographic Journal,1969,6(1):21-35.
    [37]Galanda, M., Weibel, R. An Agent-based Framework for Polygonal Subdivision Generalization[A]. In:Advances in Spatial Data Handling (SDH 2002)[M].Springer-Verlag, Ottawa,2002:121-136.
    [38]Galanda, M. Automated Polygon Generalization in a Multi-agent System[D]. Switzerland, University of Zurich,2003.
    [39]Gan, E., Shi, W. Development of Error Metadata Management System with Application to Hong Kong 1:20000 Digital Data[A]. In:Proceedings of the International Symposium on Spatial Data Quality[C]. Hong Kong, China,1999:396-404.
    [40]Gao, W., Gong, J., and Li, Z. Knowledge-Based Generalization on Land-Use Data[A]. In:the Fifth Workshop on Progress in Automated Map Generalization[C]. Paris, France, 2003:28-30.
    [41]Glemser, M., Klein, U., Fritsch, D., et al. Complex Analysis Methods in Hybrid GIS Using Uncertain Data[J]. Geo-Information system,2000,13 (2):34-40.
    [42]Goodchild, M. Statistical Sspects of the Polygon Overlay Problem[J]. Geographical Information System.1978(6):1-22.
    [43]Goodchild, M. Attribute Accuracy[A]. In:Elements of Spatial Data Quality[M]. Oxford: Pergamon,1995:59-79.
    [44]Goodchild, M. Hunter, G. A Simple Positional Accuracy Measure for Linear Features[J]. International Journal of Geographical Information Science,1997, 11(3):299-306.
    [45]Goodchild, M. Future Direction in Geographic Information Science[J]. Geographic Information Sciences,1999,5(1):1-8.
    [46]Guptill, C., Morrison J. Elements of Spatial Data Quality [M]. Elsevier Science Ltd, 1995.
    [47]Harrie, L. The Constraint Method for Solving Spatial Conflicts in Cartographic Generalization [J].Cartography and Geographic Information Science,1999,26(1):55-69.
    [48]Harrie, L. An Optimisation Approach to Cartographic Generalization[D]. Sweden: Lund Institute of Technology,2001.
    [49]Harrie, L., Sarjakoski, T. Simultaneous Graphic Generalization of Vector Data Sets[J]. Geolnformatica,2002,6(3):233-261.
    [50]Harrie, L.,Weibel,R. Modelling the Overall Process of Generalization[J]. In: Generalization of Geographic Information:Cartographic Modelling and Applications[M]. Elsevier, Amsterdam,2007:67-87.
    [51]Harvey, F., Vauglin, F., and Hadj, A. Geometric Matching of Areas:Comparison Measures and Associated Links[A].In:the Eighth International Symposium on Spatial Data Handling[C]. Vancouver, Canada,1996:11-15.
    [52]Harvey, F., Vauglin. F. Geometric Match Processing:Applying Multiple Tolerances[A].In:Proceedings of the Seventh International Symposium on Spatial Data Handling[C].Delft, The Netherlands,1996:155-171.
    [53]Haunert, J., Wolff, A. Generalization of Land Cover Maps by Mixed Integer Programming [A]. In:Proceedings of 14th International Symposium on Advances in Geographic Information Systems[C]. Virginia, USA,2006:75-82.
    [54]Heisser, M., Vickus G. and Schoppmeyer J. Rule-orientated Definition of the Small Area "Selection" and "Combination" Steps of the Generalization Procedure[A]. In:GIS and Generalization:Methodology and Practice [M], Bristol:Taylor & Francis,1995.
    [55]Hild, H. Automatische Georeferenzierung von Fernerkundungsdaten [D]. Stuttgart, University Stuttgart,2003.
    [56]Hoaglin, D., Mosteller, F. and Tukey, J.探索性数据分析[M].陈忠琏,郭德媛,译.北京:中国统计出版社,1998:52-96.
    [57]Hubert, L., Golledge, R., Costanzo, C., et al. Generalized Procedures for Evaluation Spatial Autocorrelation [J]. Geographical Analysis,1981,13(3):224-233.
    [58]Joao, E. The Importance of Quantifying the Effects of Generalization[A]. In:GIS and Generalization:Methodology and Practice[M]. London:Taylor & Francis,1995:183-193.
    [59]Joao, E. Causes and Consequences of Map Generalization[M]. Taylor & Francis, 1998:25-89.
    [60]Kazemi, S., Lim, S and Ge, L. Integration of Cartographic Knowledge with Generalization Algorithms [A]. In:Proceedings of IGARSS'05[C].2005:3502-3505.
    [61]Kipelainen, T. Knowledge Acquisition for Generalization Rules[J]. Cartography and Geographic Information Science,2000,27:41-50.
    [62]Kolokolova, L, V. Automatic and Interactive Quality Assessment in Technologies of Automated Generalization [A]. In:Proceedings of Scientific Congress "GEO-Sibir 2005" [C]. Novosibirsk, Russia,2005:287-290.
    [63]Lamy, S., Ruas, A., Demazeu, Y., et al. The Application of Agents in Automated Map Generalization[A]. In:19th International Cartographic Conference[C],1999.
    [64]Lee, D. Recent Generalization Development and the Road Ahead [A]. In:the Fifth Workshop on Progress in Automated Map Generalization[C]. Paris, France,2003:28-30.
    [65]Li, Z., Openshaw, S. A Comparative Study of the Performance of Manual Generalization and Automated Generalization of Line Features[A]. In:Geographical Information 1992-1993 (AGI Year Book) [M].1992:501-514.
    [66]Li, Z., Openshaw, S.基于客观综合自然规律的线状要素自动综合的算法[J].武测译文,1994(1):49-58.
    [67]Li, Z., Huang, P. Quantitative Measures for Spatial Information of Maps[J]. International Journal of Geographical Information Science,2002,16(7):699-709.
    [68]Liu, Y., Molenaar, M. and Kraak, M. Semantic Similarity Evaluation Model in Categorical Database Generalization[J]. In:the ISPRS Commission IV Symposium[C]. Ottawa, Canada,2002.
    [69]Mackaness, W., Ruas, A. Evaluation in the Map Generalization Process[A]. In: Generalization of Geographic Information:Cartographic Modeling and Applications, Series of International Cartographic Association[M].Elsevier Science, Amsterdam,2007:89-111.
    [70]Mayya, N., Rajan, V. Voronoi Diagrams of Polygons:A Framework for Shape Representation [J]. Journal of Mathematical Imaging and Vision,1996,6(4):355-378.
    [71]McMaster, R. A Statistical Analysis of Mathematical Measures for Linear Simplification [J]. The American Cartographer,1986,13(2):103-116.
    [72]McMaster, R. Automated Line Generalization [J]. Cartographica,1987,24(2):74-111.
    [73]McMaster, R. The Integration of Simplification and Smoothing Algorithms in Line Generalization[J]. Cartographica,1989,26(1):101-121.
    [74]McMaster, R., Shea, K. Generalization in Digital Cartography[M]. Washington: Association of American Geographers,1992:58-134.
    [75]Mackaness, W., Ruas, A. Evaluation in the Map Generalization Process[A]. In: Generalization of Geographic Information:Cartographic Modelling and Applications[J]. Series of International Cartographic Association. Elsevier Science, Amsterdam,2007:89-111.
    [76]Muller, J. Fractal and Automated Line Generalization[J]. The Cartographic Journal, 1987,24:27-34.
    [77]Muller, J., Mouwes, P. Knowledge Acquisition and Representation for Rule Based Map Generalization:An Example from the Netherlands[A]. In:Proceedings of GIS/LIS 90[C]. Anaheim, California.1990:58-67.
    [78]Muller, J. Generalization of Spatial Databases[A]. In:Geographical Information Systems [M]. London:Longman Scientific,1991:457-475.
    [79]Muller, J., Lagrange, J., and Weibel, R. GIS and Generalization:Methodology and Practice [M].Bristol:Taylor & Franci,1995.
    [80]Mustiere, S., Moulin, B. What is Spatial Context in Cartographic Generalization [A]. In: the Symposium on Geospatial Theory, Processing and Application[C]. Ottawa, Canada, 2002.
    [81]Nakos, B. On the Assessment of Manual Line Simplification Based on Sliver Polygon Shape Analysis[A]. In:the Fourth Workshop on Progress in Automated Map Generalization[C].Beijing, China,2001.
    [82]Neumann, J. The Topographical Information Content of a Map/an Attempt at a Rehabilitation of Information Theory in Cartography[J]. Cartographies,1994,31(1):26-34.
    [83]Painho, M. The Effects of Generalization on Attribute Accuracy in Natural Resource Maps [A]. In:GIS and Generalization, Methodology and Practice[M]. London:Taylor & Francis,1995:194-206.
    [84]Peng, W. Automated Generalization in GIS[D]. The Netherlands:Wageningen Agricultural University,1997.
    [85]Peter, B. Measures for the Generalization of Polygonal Maps with Categorical Data[A]. In:Fourth ICA Workshop on progress in Automated Map Generalization[J]. Beijing, China, 2001.
    [86]Peura, M., Iivarinen, J. Efficiency of Simple Shape Descriptors[A]. In:3rd International Workshop on Visual Form[C]. Capri, Italy,1997.
    [87]Podolskaya, E., Anders, K., Haunert, J., et al. Quality Assessment for Polygon Generalization[J].In:5th International Symposium on Spatial Data Quality (SDQ 2007)[C]. ITC, Enschede, The Netherlands,2007.
    [88]Regnauld, N. Contextual Building Typification in Automated Map Generalization [J]. Algorithmica,2001, (30):312-333.
    [89]Rodriguez, A., Egenhofer, M. Assessing Similarity Among Geospatial Feature Class Definitions[A]. In:Lecture Notes in Computer Science 1580, Springer, Berlin,1999:189-202.
    [90]Ruas, A., Plazanet, C. Strategies for Automated GeneralizationfA]. In:Advances in GIS Research II (SDH'96)[M]. Taylor & Francis,1996:319-336.
    [91]Ruas, A. OO-Constraint Modeling to Automate Urban Generalization Process[A]. In: Proceedings of the Eighth International Symposium on Spatial Data Handling[C]. Burnaby, Canada,1998:225-235.
    [92]Salge, F. Semantic Accuracy[A]. In:Elements of Spatial Data Quality[M].UK:Elsevier Science,1995:139-152.
    [93]Sester, M. Optimization Approaches for Generalization and Data Abstraction[J]. International Journal of Geographical Information Science,2005,19(8):871-897.
    [94]Shannon, C. A Mathematical Theory of Communication[J]. The Bell System Technical Journal,1948(27):379-423&623-656.
    [95]Skopelity, A., Tsoulos, L. On the Parametric Description of the Shape of the Cartographic Line[J]. Cartographica,1999,36(3):57-69.
    [96]Skopelity, A., Tsoulos, L. A Methodology for the Assessment of Generalization Quality [A].In:the Fourth Workshop on Progress in Automated Map Generalization [C]. Beijing, China,2001.
    [97]Smaalen, V. Automated Aggregation of Geographic Objects[A]. In:A New Approach to the Conceptual Generalization of Geographic Databases[D]. The Netherlands:Wageningen University,2003.
    [98]Stehman, S. Estimating the Kappa Coefficient and Its Variance Under Stratified Random Sampling[J]. Photogrammetric Engineering and Remote Sensing,1996, 42(4):401-407.
    [99]Su, B., Li, Z. Expert System for Automated Map Design and Production:A Review and Some Considerations [J]. Cartography,1995(24):33-42.
    [100]Su, B., Li, Z. An Algebraic Basis for Digital Generalization of Area-Patches Based on Morphological Teehniques[J]. The Cartographic Journal,1995(32):148-153.
    [101]Sukhov, V. Information Capacity of a Map Entropy[J]. Geodesy and Aero Photography,1967(X):212-215.
    [102]Sukhov, V. Application of Information Theory in Generalization of Map Contents[R]. International Yearbook of Cartography,1970(X)41-47.
    [103]Switzer, R. Algebraic Topology-homotopy and Homology[M].New York:Springer-Verlag,1975:35-86.
    [104]Sylvie, L., Anne, R., Yves, D., et al. The Application of Agents in Automated Map Generalization[A]. In:19th International Cartographic Conference[C]. Ottawa, Canada, 1999.
    [105]Thapa, K. Data Compression and Critical Points Detection Using Normalized Symmetric Scattered Matrix[J]. Auto-Carto,1989(9):78-89.
    [106]Tobler, W. A Computer Movie Simulating Urban Growth in the Detroit region [J]. Economic Geography,1970,46(2):234-240.
    [107]Toepfer, F.开方根规律在制图综合中应用范围的研究[M].测绘译丛.北京:测绘出版社,1963:38-41.
    [108]Toepfer, F., Pillewizer, W. The Principles of Selection[[J].The Cartographic Journal, 1966,3(1):10-16.
    [109]Turkey, J. Exploratory Data Analysis[M]. Reading:Addison-Wesley,1977:326-339.
    [110]Weibel, R. Models and Experiments for Adaptive Computer-Assisted Terrain Generalization [J]. Cartography and Geographic Information Systems,1992,19(3):133-153.
    [111]Weibel, R. Three Essential Building Blocks for Automated Generalization [A]. In:GIS and Generalization:Methodology and Practice [M]. London:Taylor and Francis,1995: 56-69.
    [112]Weibel, R., Keller, S., and Reichenbacher, T. Overcoming the Knowledge Acquisition Bottleneck in Map Generalization:the Role of Interactive Systems and Computational Intelligence[A]. In:Proceedings of International Conference COSIT '95[C]. Semmering, Austria,1995:139-156.
    [113]Weibel, R. A Typology of Constraints to Line Simplification[A]. In:Advances in GIS Research Ⅱ (7th International Symposium on Spatial Data Handling)[M]. London:Taylor & Francis,1996:533-546.
    [114]Weibel, R., Dutton, G. Constraint-Based Automated Map Generalization[A].In: Proceedings of the Eighth International Symposium on Spatial Data Handling[C]. Burnaby, Canada,1998:214-224.
    [115]Zahn, C., Roskies, R. Fourier Descriptors for Plane Closed Curves[J]. IEEE Transactions on Computers,1977, C-21(3):269-281.
    [116]Zhang, X. Automated Evaluation of Generalized Topographic Maps[D]. The Netherlands:University of Twente,2012.
    [117]艾廷华.城市地图数据库综合的支撑数据模型与方法的研究[D].武汉:武汉测绘科技大学,2000.
    [118]艾廷华,郭仁忠.基于约束Delaunay结构的街道中轴线提取及网络模型建立[J].测绘学报.2000,29(4):348-354.
    [119]艾廷华,刘耀林.土地利用数据综合中的聚合与融合[J1.武汉大学学报(信息科学版), 2002,27(5):486-492.
    [120]艾廷华.基于Monte Carlo于法的不确定性地理现象可视化[Jl.武汉大学学报(信息科学版),2004,29(3):239-244.
    [121]艾廷华,郭宝辰,黄亚锋.1:5万地图数据库的计算机综合缩编[J].武汉大学学报(信息科学版),2005,30(4):297-300.
    [122]艾廷华,杨帆,李精忠.第二次土地资源调查数据建库中的土地利用图综合缩编[J].武汉大学学报(信息科学版),2010,35(8):887-891.
    [123]边丽华,闫浩文,刘纪平等.多边形化简前后相似度计算的一种方法[J].测绘科学,2008,33(6):207-208.
    [124]柏延臣,李新,冯学智.空间数据分析和空间模型[J].地理研究,1999,18(2):185-190.
    [125]陈俊,宫鹏.实用地理信息系统[M].北京:科学出版社,1998:18-26.
    [126]陈军,赵仁亮.GIS空间关系的基本问题与研究进展[J].测绘学报,1999,28(2):95-102.
    [127]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999:26-29.
    [128]陈先伟.土地利用数据库综合的结构化模型和算法研究[D].武汉:武汉大学,2005.
    [129]邓红艳.基于保质设计的自动制图综合研究[D]:郑州:解放军信息工程大学,2006.
    [130]邓红艳,武芳,翟仁健等.面向制图综合质量控制的数据模型——DFQR树[J].测绘学报,2007,36(2):237-243.
    [131]邓红艳,武芳,翟仁健等.基于数据库的保质设计制图综合知识库研究[J].测绘学报,2008,37(1):121-127+134.
    [132]邓敏,刘杨,程涛,等.地图综合中语义质量的度量方法研究[J].地理与地理信息科学,2008,24(5):11-15.
    [133]杜道生,王占宏,马聪丽.空间数据质量模型研究[J].中国图象图形学报,2000,5(7):559-562.
    [134]杜道生,高文秀,龚健雅.GIS专题数据综合的研究[J].地理与地理信息科学,2003,19(3):1-5.
    [135]杜晓初.多重表达中空间拓扑关系等价性研究[D].武汉:武汉大学,2005.
    [136]方爱玲.单个居民地多尺度表达的空间相似性研究[D].兰州:兰州交通大学,2011.
    [137]高文秀,毋河海,龚健雅等GIS中专题属性数据综合的若干问题[J].武汉大学学报(信息科学版),2002(5):505-510.
    [138]高文秀,侯建光,朱俊杰.土地利用数据多尺度表达规则提取与应用[J].中国图象图形学报,2009,14(6):24-30.
    [139]郭焕成,靖学青.土地利用研究的背景、任务及发展趋响[J].地理学与国土研究,1996,12(3):6-11.
    [140]郭庆胜.地图自动综合知识的分类及其形式化描述[J].解放军测绘学院学报,1998a(3):199-203.
    [141]郭庆胜.线状要素图形综合的渐进方法研究[J].武汉测绘科技大学学报,1998b(1):54-58.
    [142]郭庆胜,毋河海,张克权.地图自动综合新理论与方法的研究[J].武汉测绘科技大学学报,1999,24(3):279.
    [143]郭庆胜.地图自动综合理论与方法[M].北京:测绘出版社,2002:5-48.
    [144]黄万里,李虎,林广发等.尺度变化的土地利用类型数据的综合研究[J].地球信息科学学报,2010,12(3):329-335.
    [145]黄亚锋,艾廷华,刘鹏程.顾及Gestalt认知效应的线性岛屿模式识别[J].武汉大学学报(信息科学版),2011(6):717-720.
    [146]黄幼才,刘文宝.顾及数字化误差建模中的粗差探测和抗差估计[J].武汉测绘科技大学学报,1995,20(2):151-156.
    [147]黄远林.地图图形综合指标体系框架与图形结构识别研究[Dl.武汉:武汉大学,2012.
    [148]李精忠.尺度空间地图多重表达的面向对象数据模型研究[D].武汉:武汉大学,2009.
    [149]李精忠,艾廷华.多尺度土地利用数据库构建过程中的拓扑一致性维护[J].测绘通报,2011(8):32-35.
    [150]刘鹏程.形状识别在地图综合中的应用研究[D].武汉:武汉大学,2009.
    [151]刘鹏程.基于傅里叶级数的等高线网络渐进式传输模型[J].测绘学报,2012,41(2):284-290.
    [152]刘涛,杜清运,闫浩文.空间点群目标相似度计算[J].武汉大学学报(信息科学版),2011,36(10):49-53.
    [153]刘杨.面状地图综合的质量评价方法研究[D].长沙:中南大学,2009.
    [154]吕秀琴.解决空间冲突的移位与图形简化方法研究[D].武汉:武汉大学,2008.
    [155]马荣华,蒲英霞,马晓冬.GIS空间关联模式发现[M].北京:科学出版社,2007:97-119.
    [156]钱海忠,武芳,张琳琳等.基于极化变换的点群综合几何质量评估[J].测绘学报,2005(4):361-369.
    [157]钱海忠,武芳,郭健等.基于制图综合知识的空间数据检查[J].测绘学报,2006,35(2):184-190.
    [158]史文中.地理信息系统中几何特征不确定性的通用模型:从1维到N维[J].测绘学报,1997,26(2):160-167.
    [159]史文中.空间数据误差处理的理论和方法[M].北京:科学出版社,1998:15-36.
    [160]史文中,王树良.GIS中属性不确定性的处理方法及其发展[J].遥感学报,2002,6(5):393-400.
    [161]史文中.空间数据与空间分析不确定性原理[M].北京:科学出版社,2005:15-32.
    [162]王超超,史霄,黄娟等.多尺度地理空间点群目标相似度的分析与计算[J].商丘师范学院学报,2011,27(3):1-5.
    [163]王家耀.关于数字地图制图综合中的人机协同问题[J].解放军测绘学院学报,1992(2):121-125.
    [164]王家耀,武芳.数字地图自动制图综合原理与方法[M].北京:解放军出版社,1998:12-53.
    [165]王家耀,邓红艳.基于遗传算法的制图综合模型研究[J].武汉大学学报(信息科学版),2005,30(7):565-569.
    [166]王家耀,钱海忠.制图综合知识及其应用[J].武汉大学学报(信息科学版),2006,31(5):382-386+439.
    [167]王家耀,李志林,武芳.数字地图综合进展[M].北京:科学出版社,2011:1-98.
    [168]王桥,毋河海.地图图斑群自动综合的分形方法研究[J].武汉测绘科技大学学报,1996,21(1):59-63.
    [169]王晞,李伟.空间数据质量的模糊综合评价方法探讨[J].现代测绘,2011,34(3):31-33.
    [170]毋河海.自动综合的结构化实现[ J].武汉测绘科技大学学报,1996(3):79-87.
    [171]毋河海,龚健雅.地理信息系统(GIS)空间数据结构与处理技术[M].北京:测绘出版社,1997:177-184.
    [172]毋河海.地图信息自动综合基本问题研究[J].武汉测绘科技大学学报,2000,25(5):377-386.
    [173]武芳,王家耀.地图自动综合概念框架分析与研究[J].测绘工程,2002,11(2):18-20+48.
    [174]武芳,朱鲲鹏,邓红艳.地图自动综合质量分析与评价标准探析[J].测绘科学技术学报,2007,24(3):160-163.
    [175]武芳,邓红艳,钱海忠等.地图自动综合质量评估模型[M].北京:科学出版社,2009:13-52.
    [176]吴洁,李霖.数字环境下地图综合结果自动评价模型的研究与应用[J].测绘学报,2002(6):34-39.
    [177]应申,郭仁忠,闫浩文等.面向模型的大比例尺制图综合框架设计与实现[J].测绘学报.2002,4(31):344-349.
    [178]张青年.基于空间结构分析的地图概括研究[J].地理研究,2001,20(5):629-636.
    [179]张青年.地图图形结构分析与概括研究[J].中山大学学报(自然科学版),2002,41(11):87-90.
    [180]詹陈胜,武芳,翟仁健等.基于拓扑一致性的线目标空间冲突检测方法[J].测绘科学技术学报,2011,28(5):387-390.
    [181]曾衍伟.空间数据质量控制与评价技术体系研究[D].武汉:武汉大学,2004.
    [182]郑春燕.地图图形综合的最优化算法研究[D].武汉:武汉大学,2008.
    [183]朱鲲鹏,武芳,陈波等.基于约束条件的线要素化简算法质量评估[J].测绘科学,2007,32(3):28-30.
    [184]朱鲲鹏,武芳.线要素化简算法的传递误差模型[J].武汉大学学报(信息科学版),2007,32(10):932-935.
    [185]国土调查办发[2010]9号,第二次全国土地调查成果数据缩编技术规范(试行)[S].国土资源部,2010.
    [186]GB/T 21010-2007,土地利用现状分类标准[s].国土资源部.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700