用户名: 密码: 验证码:
利用卫星遥感技术监测长白山天池火山活动性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于中朝边界的长白山天池火山是一座具有潜在灾害性喷发的大型近代活动火山。长白山天池火山历史上发生了多次喷发事件,曾造成了巨大的灾难,发生在公元946年的大喷发,就规模和猛烈程度而言,属于全球近2000年以来最大的爆炸喷发之一。鉴于此,“九五”和“十五”期间,中国地震局等几家单位对长白山天池火山进行了较为系统的地质、地球物理探测研究,并进行了以地震活动、形变、地球化学变化为主的固定、流动台网监测研究工作,取得了很多有益的成果,但这些常规的监测方法由于受到天池火山地理位置的特殊性(跨国境)、工作条件的复杂性(原始森林、天池湖水)等限制,虽耗费了大量人力物力,但至今天池火山区下部的浅层岩浆统在什么位置、如何展布等问题,一直没有探测认识清楚。也有学者基于GPS、水准的形变监测资料进行了岩浆房参数的反演工作,但由于点距的稀疏性,各个学者给出的岩浆房参数不尽一致,存在争议。常规手段的监测结果表明,长白山天池火山2002‐2006年发生了较明显的岩浆异常扰动事件,但其机理尚不明确。另外,我国缺少现今正在喷发的活动火山,火山岩浆系统的存储、供给与运移动力机制研究方面比较薄弱。
     InSAR(Interferometric Synthetic Aperture Radar,合成孔径雷达干涉测量)技术是近二十年发展起来的全新空间对地观测技术,能够以较高的时间、空间分辨率对地表实现大范围监测,具有其他大地测量手段无法比拟的优势。此外,作为遥感领域的一个重要分支,卫星热红外遥感技术以其安全、有效、宏观、周期性地远距离对地观测的优势,已经广泛应用于各种类型的地表热变化监测。基于InSAR技术和卫星热红外遥感技术的优势,本文以长白山天池火山为主要研究对象,开展了两种技术在火山领域的应用与相关研究。主要研究内容如下:
     1.长白山天池火山的形变背景:收集了我国东北、华北、华南地区1999‐2007年的GPS水平速度场,以及日本及周边地区2000‐2010年的GPS速度场;从国家测绘局大地测量数据处理中心收集了我国东北地区上世纪70、90年代两期一等水准测量资料,采用以水准点间高差变化速率即速率差为观测值、以观测点速率为未知参数的垂直形变网整体平差方法,计算得到了我国东北地区长期地壳垂直形变速率;
     2.利用PSInSAR技术监测长白山天池火山近年来的形变演化:本文基于18景ENVISAT ASAR影像资料,利用PSInSAR技术获取了天池火山2004‐2010年的形变时间序列,结果与同期的水准测量结果吻合的较好,表明PSInSAR可以以毫米级的精度监测火山区地表形变。然后基于考虑地形影响的Mogi模型模拟了PSInSAR获取的累积形变场,确定了浅层岩浆房的空间位置;
     3.利用卫星热红外遥感技术监测长白山天池火山热异常:建立了基于Landsat TM/ETM和ASTER热红外波段遥感影像监测火山热活动的技术方法体系:首先,分别利用单窗算法和温度/比辐射率分离算法反演基于Landsat TM/ETM和ASTER热红外波段遥感影像的区域地表温度,然后分别计算不同地表覆盖类型的温度平均值,去除地表环境因素导致的温度差异影响,最后通过减去天池气象站当日的平均气温,去除气象因素的影响,得到了由火山活动引起的温度异常;
     4.从地震目录以及GPS基准站位移时间序列资料分析长白山天池火山2002‐2006年岩浆扰动事件的机理:2002年以来,太平洋板块俯冲速度有所加快,在日本岛弧地区表现为强震频发,而我国东北地区5级以上中强地震活动也明显增多,是板块俯冲加速导致应力调整在地表的体现。在此应力背景下,长白山天池火山的地幔岩浆房受到较大的应力触发,使得地壳岩浆房与地幔岩浆房的通道打开,引发一次小规模的岩浆补给,造成基性岩浆与酸性岩浆的混染,即触发岩浆扰动事件;
     5.利用InSAR技术研究长周期休眠火山的岩浆系统存储、运移机制:位于俄罗斯勘察加半岛的Kizimen火山历史上仅喷发过一次,是典型的监测能力较低的长周期休眠火山。本文基于ENVISAT ASAR(C波段)和ALOS PALSAR(L波段)两种影像资料(共6个航迹),共得到16个相干性较好的干涉图,结果显示Kizimen火山在2010年喷发前约两年开始发生大范围的地表隆升。形变场在升、降轨道的干涉图上表现迥异,本文采用升、降轨道干涉图联合反演,约束获得了岩浆源的几何参数。根据16幅干涉图得到的体积变化,本文利用加权最小二乘方法计算了体积变化时间序列。最后,结合火山地震目录资料,还原了喷发触发机制。
     通过以上研究,获得以下结论与认识:
     1.相对于华北华南块体,我国东北地区现今地壳水平运动比较活跃,整体趋势性明显;相对于长春基岩点,我国东北地区整体表现为西升东降的差异性垂直运动形变特征。在长期地壳垂直形变意义上,长白山天池火山并无明显的形变异常;
     2.长白山天池火山的岩浆房位于天池下方西北侧,深度约9km,与层析成像等地球物理监测资料一致。另外,由于岩浆上涌触发天池火山区分布的部分断裂两侧活动差异性明显;
     3.长白山天池火山的卫星热红外遥感监测结果表明,2002‐2006年火山活动产生的温度热异常逐年升高,每年上升约3‐7°C;到2005年,热异常达到了27.5°C,比2002年高出约10°C;自2005年开始,温度热异常明显下降,2006年下降了近10°C,以后温度场保持平稳的趋势,恢复到2002年以前的正常水平。与其他常规监测手段(测震、地表形变、流体地球化学)的趋势一致。由岩石变形与温度变化的弹性热力学关系,本文认为长白山天池火山地区在2002‐2006年发生了明显的岩浆扰动事件,导致岩浆房以及周围围岩受压,引起大范围的异常升温现象;
     4.长白山天池火山2002‐2006年的岩浆扰动事件,与同时间段内我国东北地区频发的5级以上中强深、浅源地震一样,都是太平洋板块向欧亚大陆下方加速俯冲造成的区域应力场变化的结果,而非2002年吉林汪清mb7.2深源地震触发;
     5.Kizimen火山的2010年喷发属于典型的裂隙侵入式喷发模式。喷发前,岩浆从深处上侵到7‐18km深处并开始累积存储,侵入始于2008年9月到2009年4月的某个时间。区域应力场的逐渐增加促进了Kizimen火山下方裂隙的拉张破裂,使得上侵的岩浆在裂隙内存储而形成狭长的存储区。裂隙破裂的开始阶段,伴随着区域内零星的地震活动,地表表现为微小的形变,随着岩浆的不断补给,裂隙的逐渐破裂,区域地震活动增加,表现为小震震群活动,以及地表的大范围较大形变。2010年1月前后,裂隙破裂向上传递接近地表,小震震群活动表现为震源深度逐渐变浅。逐渐补给的岩浆使得裂隙内的压力逐渐增大,最终超过了围岩的强度,岩浆从地壳最薄弱处冲出地表,形成了2010年11月中旬的喷发事件。
     总之,本文的研究明确了长白山天池火山的现今形变背景,确定了长白山天池火山下方的岩浆房的空间位置,建立了基于高空间分辨率遥感影像的卫星热红外遥感技术监测火山热异常的技术体系,探讨了长白山天池火山2002‐2006年岩浆扰动事件的机理,并研究了利用InSAR技术推断确定火山岩浆系统的存储、供给与运移动力机制的方法。
The Changbaishan Tianchi volcano, located on the boundary of China and North Korea, is a stratovolcano which has potential eruption possibility. It made many explosive eruption events in history. The catastrophic eruption event that occurred946years ago is throught to be one of the most explosive events during the past2000years. In terms of the high risk of eruptive hazard, several ground‐based monitoring methods (e.g. deformation, seismology, and geochemistry) were used to detect the possible anomalies. However, the magma plumbing system and location of the magma chamber are unclear because those ground‐based methods are confined by the position and land cover of the Tianchi volcano. Also, parameters of the magma chamber from distinct models are different due to the sparseness of GPS sites, benchmarks. Moreover, all those conventional methods showed an obvious magmatic disturbance event occurred during2002‐2006, and the reason is unclear. Furthermore, study on the magma plumbing system is unsubstantial because China is lack of on‐going eruptive volcanoes. InSAR (Interferometric Synthetic Aperture Radar) has matured to become a widely used geodetic technique for measuring deformation of the Earth’s surface during the past two decades. InSAR can achieve a high spatio‐temporal sampling deformation field. Meanwhile, satellite thermal infrared remote sensing technology is proved to be a powerful tool, which can give the thermal anomalies of various land covers. Taking the Changbaishan Tianchi volcano as an example, this thesis finished several studies on volcano applications based on the two technologies. The research contents are as follows,
     1. Deformation background of the Changbaishan Tianchi volcano: Firstly, I gathered the GPS horizontal velocity fields of NE China, North China, South China, and the Japan area. Then, I gathered two periods of the first order leveling measurement results. At last, the vertical deformation field was achieved through an entire network adjustment method.
     2. Time series deformation of the Changbaishan Tianchi volcano based on PSInSAR: A time series deformation field (2004‐2010) was achieved by using PSInSAR technology based on18ENVISAT ASAR images. The results are consistent with the leveling measurements from the same period, which indicates that PSInSAR can detect slow deformation with high accuracy. Then, I modeled one of the accumulative deformation interferograms based on Mogi point source accounting for topography relief, and got the parameters of the magma chamber.
     3. Thermal anomalies of the Changbaishan Tianchi volcano: I established the system detecting the thermal anomalies in the volcanic area. Firstly, the land surface temperature was inversed through the Landsat TM/ETM or ASTER images, based on mono‐window algorithom, and temperature/emissivity separation algorithom, respectively. Then, the average temperatures of three different surface cover types were calculated. This removed the surface terrain effect on the temperature that inversed. At last, the average meterorological temperatures obtained from the Tianchi Meteorological station are substracted from the average temperatures of each type. Thus, the meteorological factor was removed. After this process, the remaining temperature is very likely the thermal anomaly caused by magmatic activity.
     4. The possible mechanism of the magmatic disturbance event that occurred during2002‐2006in the Changbaishan Tianchi Volcano: From2002, the Pacific slab subducted faster than it did before, which was indicated by strong earthquake swarm around the Japan island arc. At the same time, the number of strong earthquakes (Ms>=5) increased in Northeast China, which indicates a stress adjustment due to the subduction accelerating. So the conduit between crustal chamber and mantle chamber opened, which was triggered by the stress change. And then, the magma intrusion event occurred.
     5. Study on the magma plumbing system by InSAR: The Kizimen volcano, located on the Kamcahtka peninsula, Russia, is a typical long‐term dormant volcano. I used ENVISAT ASAR (C band) and ALOS PALSAR (L band) to create16interferograms with reasonable good coherence. The interferograms show that the deformation around the Kizimen volcano occurred about two years before the onset of the eruption. I jointly modeled two interferograms from ascending and descending tracks due to the different fringe patterns. At last, the time series volume changes were achieved by a weighted least square adjustment method. The magma plumbing mechanism was discussed based on the volume changes and earthquake catalogue.
     Conclusions are as follows based on the above studies.
     1. All the GPS horizontal velocities of NE China show a NW movement, with a rate of5mm/y, relative to North and South China blocks. The leveling results show that western part of NE China moves up while eastern part of NE China goes down, relative to the Changchun benchmark. The Changbaishan Tianchi volcano area does not show vertical deformation anomalies for a long term view.
     2. The Mogi point source modeling result shows that the magma chamber of the Changbaishan Tianchi volcano is located at the northwestern part of the Tianchi lake, with depth of9km. This result is consistent with the geophysical measurements. Moreover, the active faults also show obvious deformation due to the magma intrusion.
     3. The thermal infrared remote sensing results show apparent thermal anomalies in the Changbaishan Tianchi volcano during2002‐2006. From2002to2006, the thermal anomalies steadily increased with an annual increment about3‐7°C, and reached the peak of27.5°C in2005, which was about10°C higher than that in2002. As the turn point in2006till2008, the temperature of thermal anomalies suddenly dropped by about10°C back to the normal level as that in2002. The thermal anomalies are consistent with the gound‐based measurements. The thermal anomalies were caused by magma intrusion event, which leads to an intensive stress on magma chamber and countryrock.
     4. Based on the earthquake catalogue and deformation time series of GPS stations, I draw a conclusion that the magmatic disturbance event was caused by the subduction accelerating of the Pacific slab. The location of Wangqing deep earthquake (mb7.2) is too far to trigger the magmatic disturbance enent.
     5. The Kizimen eruption event that occurred in2010was a typical dike‐intrusion case. I infer that magma migrated from a deep source region into a storage zone perhaps7‐18km BSL beneath Kizimen sometime between September2008and April2009. The regional stress field favors the formation of dikes beneath the volcano, and as a result the intruding magma accumulated in an elongate, dike‐like storage zone. The zone dilated progressively over time, accompanied by sporadic earthquakes and subtle surface deformation. Continuing intrusions caused the intruded zone to widen, causing more surface deformation and increasing seismicity. Around January2010, a dike propagated upward to within a kilometer or so of the surface, as evidenced by sudden shoaling of earthquakes. Eventually, increasing magma pressure in the growing intrusion exceeded the confining strength of the host rock and magma breached the surface at the weakest part of the system, triggering the mid‐November2010eruption at Kizimen.
     In a word, after establishing the deformation background of the Changbaishan Tianchi volcano, this thesis confirmed the location of magma chamber. Moreover, this thesis established the volcano monitoring system based on satellite infrared remote sensing technology. It also discussed mechanism of the magma intrusion event that occurred in the Changbaishan Tianchi volcano during2002‐2006. Finally, it showed an example how to study the magma plumbing system by using InSAR.
引文
6周兴志,上官志冠.2008年长白山天池火山流体监测报告.中国地震局地质研究所,2008
    Adam N., A. Parizzi, M. Eineder, et al..2009. Practical persistent scatterer processing validationin the course of the Terrafirma project. Journal of Applied Geophysics,69(1),59‐65.
    Bato, M. P., A. A. Lagmay, E. R. Paguican.2011. Interferometric SAR Persistent Scatterer Analysisof Mayon volcano, Albay, Philippines. American Geophysical Union, Fall Meeting2011,abstract G23A‐0848
    Beauducel, B., P. Briole, J. L. Froger.2000. Volcano‐wide fringes in ERS Synthetic Aperture Radarinterferograms of Etna (1992‐1998): Deformation or tropospheric effect? J. Geophys. Res.,105,16391‐16402.
    Berardino, P., G. Fornaro, R. Lanari, et al..2002. A new Algorithm for Surface DeformationMonitoring based on Small Baseline Diferential SAR Interferograms, IEEETransact.Geoscience and Remote Sensing,40(11):2375‐2383.
    Biggs J., T. Wright, Z. Lu, et al..2007. Multi‐interferogram method for measuring interseismicdeformation: Denali Fault, Alaska, Geophys. J. Int.,170(3),1165‐1179.
    Bonaccorso A., M. Aloisi, M. Mattia.2002. Dike emplacement forerunning the Etna July2001eruption modeled through continuous tilt and GPS data. Geophys. Res. Lett.29(13),1624.
    Branan, Y., A. Harris, M. Watson, et al..2008. Investigation of at‐vent dynamics and dilutionusing thermal infrared radiometers at Masaya volcano, Nicaragua. J. Volcanol. Geotherm. Res.169,34‐47.
    Browne B., P. Izbekov, J. Eichelberger, et al..2010. Pre‐eruptive storage conditions of theHolocene dacite erupted from Kizimen Volcano, Kamchatka. International Geology Review.52(1),95‐110.
    Calkins, J., Oppenheimer, C., Kyle, P..2008. Ground‐based thermal imaging of lava lakes atErebus volcano, Antarctica. J. Volcanol. Geotherm. Res.,177(3),695‐704.
    Carter, A. J., O. A. Girina, M. S. Ramsey, et al..2008. ASTER and field observations of the24December2006eruption of Bezymianny Volcano, Russia,Remote Sens. Environ.,112,2569‐2577.
    Cayol,V., F.H. Cornet.1998. Effects of topography onthe interpretation of the deformation fieldof prominent volcanoes: Application to Etna, Geophys. Res. Lett.,25,1979‐1982.
    Cervelli, P., P. Segall, K. Johnson, et al..2002. Sudden aseismic fault slip on the south flank ofKilauea volcano, Nature,415,1014‐1018.
    Cervelli P, P. Segall, F. Amelung, et al..2002. The12September1999Upper East Rift Zone dikeintrusion at Kilauea Volcano, Hawaii. J. Geophys. Res.,107(B7).
    Chander, G, B. Markham.2003. Revised Landsat‐5TM radiometric calibration procedures andpost calibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing,41(11):2674‐2677.
    Chang, W., R. B. Smith, C. Wicks, et al..2007. Accelerated uplift and source models of theYellowstone caldera,2004‐2006, From GPS and InSAR observations, Science9November2007:318(5852),952‐956.
    Chou F. M., C. P. Chang, J. Y. Yen.2007. Preliminary Results of Persistent ScatterersInterferometry in and Around the Tatun Volcano Group, Northern Taiwan,海峡两岸遥感研讨会.
    Chouet, B.1996. Long‐period volcano seismicity: its source and use in eruption forecasting,Nature,380,309–316, doi:10.1038/380309a0.
    Colesanti C., A. Ferretti, C. Prati, et al..2003. Monitoring landslides and tectonic motions withthe Permanent Scatterers Technique. Engineering Geology,68(1‐2),3‐14.
    Crosetto M., A. Arnaud, J. Duro, et al..2003. Deformation monitoring using remotely sensedradar interferometric data. Proc.,11th FIG Symposium on Deformation Measurements,Santorini.
    Dean, K. G., J. Dehn, E., Kevin, et al..2002. Operational Satellite Monitoring of Volcanoes at theAlaska Volcano Observatory. Advances in Environmental Monitoring and Modeling,1(1):70‐97.
    Dean, K. G., J. Dehn, K. R. Papp, et al..2004. Integrated satellite observations of the2001eruption of Mt.Cleveland, Alaska. Journal of Volcanology and Geothermal Research,135(1‐2):51‐73.
    Dehn, J., K. Dean, K. Engle.2000. Thermal monitoring of North Pacific volcanoes from space.Geology,28(8):755‐758.
    Delacourt C., P. Briole, J. A. Achache.1998. Tropospheric corrections of SAR interferograms withstrong topography: Application to Etna, Geophys. Res. Lett.,25(15),2849‐2852.
    Doin M., P. Lopez‐Quiroz, Y. Yan, et al..2010. Time series analysis of Mexico City subsidenceconstrained by radar interferometry.7th EGU General Assembly2010, Vienna12,EGU2010‐12031.
    Dvorak J. J., D. Dzurisin.1997. Volcano geodesy: the search for magma reservoirs and theformation of eruptive vents. Rev. Geophys.35(3),343‐384.
    Dziak R. P., C. G. Fox.1999. The January1998Earthquake swarm at Axial Volcano, Juan de FucaRidge: Hydroacoustic evidence of seafloor volcanic activity. Geophys. Res. Lett.26(23),3429‐3432.
    Dzurisin, D., C. J. Jr. Wicks, W. Thatcher.1999. Renewed uplift at the Yellowstone calderameasured by leveling surveys and satellite radar interferometry: Bulletin of Volcanology,61,349‐355.
    Dzurisin D..2007. Volcano Deformation–Geodetic Monitoring Techniques (Chichester, UK:Springer‐Praxis Publishing Ltd).
    Einarsson P., B. Brandsdottir.1980. Seismological evidence for lateral magma intrusion duringthe July1978deflation of the Krafla volcano in NE‐Iceland. J. Geophys.47,160‐165.
    Falsaperla, S., S. Alparone, S. Spampinato.2003. Seismic features of the June1999tectonicswarm in the Stromboli volcano region, Italy, J. Volcanol. Geotherm. Res.,125,121–136,doi:10.1016/S0377‐0273(03)00092‐1.
    Farr T. G., M. Kobrick.2000. Shuttle Radar Topography Mission produces a wealth of data, EosTrans. AGU,81(48),583‐585.
    Ferretti A., C. Prati, F. Rocca.2000. Nonlinear subsidence rate estimation using permanentscatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sens.,38,2202‐2212.
    Ferretti A., C. Prati, F. Rocca.2001. Permanent scatterers in SAR interferometry. IEEETransactions on Geoscience and Remote Sensing,39(1),8‐20.
    Ferretti A., G. Savio, R. Barzaghi, et al..2007. Submillimeter accuracy of InSAR time series:experimental validation. IEEE Transactions on Geoscience and Remote Sensing45(5),1142‐1153
    Ferretti A., A. Fumagalli, F. Novali, et al..2009a. Exploitation of distributed scatterers ininterferometric data stacks. presented at the Int. Geoscience Remote Sensing Symp.(IGARSS)Conf., Cape Town, South Africa.
    Ferretti A., A. Fumagalli, F. Novali, et al..2009b. The second generation PSInSAR approach:SqueeSAR, presented at the Int. Workshop ERS SAR Interferometry (FRINGE), Frascati, Italy.
    Ferretti A., A. Fumagalli, F. Novali, et al..2011. A New Algorithm for Processing InterferometricData‐Stacks: SqueeSAR, IEEE Transaction on Geoscience and Remote Sensing,49(9),3460‐3470.
    Fialko Y.2006. Interseismic strain accumulation and the earthquake potential on the southernSan Andreas fault system, Nature,441(7096),968‐971.
    Fournier, T., J. T. Freymueller, P. Cervelli.2009. Tracking magma volume recovery at Okmokvolcano using GPS and an unscented Kalman filter, J. Geophys. Res.,114, B02405.
    Fournier, T. J., M. E. Pritchard, S. N. Riddick.2010. Duration, magnitude, and frequency ofsubaerial volcano deformation events: New results from Latin America using InSAR and aglobal synthesis, Geochem. Geophys. Geosyst.,11, Q01003.
    Frederic E. Volz.1970. Atmospheric turbidity after the Agung eruption of1963and sizedistribution of the volcanic aerosol. J. Geophys. Res.,75(27),5185‐5194.
    Froger, J. L., Y. Fukushima, P. Briole, et al.2004. The deformation field of the August2003eruption at Piton de la Fournaise, Reunion Island, mapped by ASAR interferometry, Geophys.Res. Lett.,31, L14601.
    Gatelli F., A. M. Guamieri, F. Parizzi, et al..1994. The wave‐number shift in SAR interferometry.IEEE Transactions on Geoscience and Remote Sensing,32(4),855‐865.
    Gillespie, A. R., S. Rokugawa, T. Matsunaga, et al..1998. A temperature and emissivityseparation algorithm for Advanced Spaceborne Thermal Emision and ReflectionRadiometer(ASTER) images.IEEE Transactions Oil Geoscience and Remote Sensing,36(4):1113‐1126.
    Ginibre C., G. W rner, A. Kronz.2002. Minor‐and trace‐element zoning in plagioclase:implications for magma chamber processes at Parinacota volcano, northern Chile. Mineralogyand Petrology.143(3),300‐315.
    Goldstein R.M., C. L. Werner.1998. Radar interferogramfiltering for geophysical applicationsNov Geophys. Res. Lett.,25(21),4035‐4038.
    Gourmelen N., F. Amelung, R. Lanari.2010. Interferometric synthetic aperture radar‐GPSintegration: Interseismic strain accumulation across the Hunter Mountain fault in the easternCalifornia shear zone, J. Geophys. Res.,115, B09408.
    Hanssen, R. F..2001. Radar Interferometry: Data Interpretation and Error Analysis. KluwerAcademic Publishers.
    Hill D. P..1992. Temperatures at the base of the seismogenic crust beneath Long Valley Caldera,California, and the Phlegraean Fields Caldera, Italy, in Volcanic Seismology, IAVCEI Proc.Volcanol. Ser., vol.3, edited by P. Gasparini, R. Scarpa, and K. Aki, Springer‐Verlag, New York,433‐461.
    Hill D. P..1996. Earthquakes and carbon dioxide beneath Mammoth Mountain, California,Seismol. Res. Lett.,67(1),8‐15.
    Hooper, A., H. Zebker, P. Segall, et al..2004. A new method for measuring deformation onvolcanoes and other natural terrains using InSAR persistent scatterers, Geophys. Res. Lett.,31,L23611.
    Hooper A., Segall P., Zebker H..2007. Persistent scatterer InSAR for crustal deformation analysis,with application to Volcan Alcedo, Galapagos. J. Geophys. Res.,112, B07407.
    Hooper A..2008. A multi‐temporal InSAR method incorporating both persistent scatterer andsmall baseline approaches, Geophys. Res. Lett.,35, L16302.
    Hooper A., K. Spaans, D. Bekaert, et al..2010a. StaMPS/MTI Manual, version3.2. Delft Instituteof Earth Observation and Space Systems. Delft University of Technology, The Netherlands.
    Hooper A..2010b. A statistical‐cost approach to unwrapping the phase of insar time series.European Space Agency,(Special Publication) ESA SP‐677.
    Hooper, A., D. Bekaert, K. Spaans, et al..2012. Recent advances in SAR interferometry timeseries analysis for measuring crustal deformation. Tectonophysics,514‐517,1‐13.
    Jiménze‐Muňoz J. C., J. A. Sobrino.2003. A generalized single channel method for retrievingland surface temperature from remote sensing data. Journal of Geophysical Research,108(D22):1‐9.
    Johansen I. A., R. Burgmann.2005. Creep and quakes on the northern transition zone of the SanAndreas fault from GPS and InSAR data, Geophys. Res. Lett.,23, L14306.
    Just D., R. Bamler.1994. Phase statistics of interferograms with applications to SyntheticAperture Radar. Appl Optics,33(20),4361‐4368.
    Kampes B. M..2005. Displacement Parameter Estimation Using Permanent ScattererInterferometry, Ph.D. Thesis, Delft University of Technology.
    Kaneko T., A. Yasuda, T. Ishimaru, et al..2002. Satellite hot spot monitoring of Japanesevolcanoes: a prototype AVHRR‐based system. Advances in Environmental Monitoring andModeling,1(1):125‐133.
    Kealy, P. S., S. J. Hook.1993. Separating temperature and emissivity in thermal infraredmultispectral scanner data: Implications for recovering land surface temperatures.IEEEtransactions on geoscience and remote sensing,31(6):1155‐1164.
    Kim S. W., J. S. Won.2007. Slow deformation of Mt. Baekdu stratovolcano observed by satelliteradar interferometry.2003, Proc. FRINGE2003workshop, ESA‐ESRIN.http://earth.esa.int/workshops/fringe03/proceedings/posters/57_kim.pdf.
    Kozhurin A. I..2004. Active faulting at the Eurasian, North American and Pacific plates junction.Tectonophysics.380(3‐4),273‐285.
    Kozhurin A., V. Acocella, P. R. Kyle, et al..2006. Trenching active faults in Kamchatka, Russia:paleoseismological and tectonic implications. Tectonophysics.417,285‐304.
    Lagios E., S. Vassilopoulou, V. Sakkas, et al..2007. Testing satellite and ground thermal imagingof low‐temperature fumarolic fields: The dormant Nisyros Volcano (Greece). ISPRS Journal ofPhotogrammetry&Remote Sensing,62(6),447‐460.
    Lanari R., P. Lundren, E. Sansosti.1998. Dynamic deformation of Etna volcano observed bysatellite radar interferometry, Geophys. Res. Lett.,25,1541‐1544.
    Lanari R., F. Casu, M. Manzo, et al..2007. An overview of the small baseline subset algorithm: aDInSAR technique for surface deformation analysis. Pure and Applied Geophysics,164(4),637‐661.
    Lee C. W., Z. Lu, H. S. Jung, et al..2011. Surface deformation of Augustine Volcano,1992‐2005,from multiple‐interferogram processing using a refined Small Baseline Subset (SBAS)Interferometric Synthetic Aperture Radar (InSAR) approach[A]. The2006eruption ofAugustine Volcano, Alaska: U.S. Geological Survey Professional Paper1769,453‐465.
    Lin Q., J. F. Vesecky, H. A. Zebker.1992. New approaches in interferometric SAR. IEEE Trans. onGeoscience and Remote Sensing,30(3),560‐567.
    López‐Quiroz P., M. P. Doin, F. Tupin, et al..2009. Time series analysis of Mexico City subsidenceconstrained by radar interferometry, J. Appl. Geophys.,69(1),1‐15.
    Lowenstern J. B., R. B. Smith, D. P. Hill.2006. Monitoring super‐volcanoes, geophysical andgeochemical signals at Yellowstone and other large caldera systems. PhilosophicalTransactions of the Royal Society A,364,2055‐2072.
    Lu Z., D. Mann, J. Freymueller.1998. Satellite radar interferometry measures deformation atOkmok volcano, EOS,79,461‐468.
    Lu Z., C. Jr. Wicks, H. A. Power, et al..2000. Ground deformation associated with the March1996earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry,Journal of Geophysical Research,105(B9),21483‐21495.
    Lu Z., D. Mann, J. Freymueller, et al..2000. Synthetic aperture radar interferometry of Okmokvolcano, Alaska: Radar observations, J. Geophys. Res.,105,10791‐10806.
    Lu Z., J. C. Wicks, D. Dzurisin, et al..2002. Magmatic inflation at a dormant stratovolcano:1996‐1998activity at Mount Peulik volcano, Alaska, revealed by satellite radar interferometry,J. Geophys. Res.,107(B7),2134.
    Lu Z., T. Masterlark, D. Dzurisin, et al..2003. Magma supply dynamics at Westdahl volcano,Alaska, modeled from satellite radar interferometry, J. Geophys. Res.,108(B7),2354.
    Lu Z., T. Masterlark, D. Dzurisin.2005. Interferometric synthetic aperture radar study of Okmokvolcano, Alaska,1992‐2003: Magma supply dynamics and postemplacement lava flowdeformation, J. Geophys. Res.,110, B02403.
    Lu Z.2007. InSAR imaging of volcanic deformation over cloud‐prone areas‐Aleutian islands.Photogrammetric Engineering&Remote Sensing,73(3),245‐257.
    Lu Z., D. Dzurisin, C. Wicks, et al..2007. Diverse deformation patterns of Aleutian volcanoesfrom satellite interferometric synthetic aperture radar (InSAR), in Volcanism and Subduction:The Kamchatka Region, Geophys. Monogr. Ser., AGU,172,249‐261.
    Lu Z., D. Dzurisin, J. Biggs, et al..2010a. Ground surface deformation patterns, magma supply,and magma storage at Okmok volcano, Alaska, from InSAR analysis:1. Intereruptiondeformation,1997–2008, J. Geophys. Res.,115, B00B02.
    Lu Z., and D. Dzurisin.2010b. Ground surface deformation patterns, magma supply, and magmastorage at Okmok volcano, Alaska, from InSAR analysis:2. Coeruptive deflation, July–August2008, J. Geophys. Res.,115, B00B03.
    Lundgren P., P. A. Rosen.2003. Source model for the2001flank eruption of Mt. Etna volcano,Geophys. Res. Lett.,30,1388.
    Lundgren P., Z. Lu.2006. Inflation model of Uzon caldera, Kamchatka, constrained by satelliteradar interferometry observations, Geophys. Res. Lett.,33, L06301,.
    Lyons S., Sandwell, D..2003. Fault creep along the southern San Andreas from interferometricsynthetic aperture radar, permanent scatterers, and stacking. J. Geophy. Res.,108(B1),2047‐2070.
    Machida H., F. Arai, H. Morinwaki.1981. Two Korea tephras, Holocene markers in the sea ofJapan and Japan islands, Kagaku,51:562‐569.
    Machida H., F. Arai.1983. Extensive ash falls in and around the sea of Japan from large lateQuaternary eruptions. J. Volcanology Geotherm. Rev.,18(1‐4):151‐164.
    Massonnet D., P. Briole, A. Arnaud.1995. Deflation of Mount Etna monitored by spaceborneradar interferometry, Nature,375,567‐570.
    Massonnet D., K. Feigl.1998. Radar interferometry and its application to changes in the Earth’ssurface. Rev. Geophys.36,441‐500.
    Matiella N. M. A., I. M. Watson, H. Delgado‐Granados, et al..2008. Volcanic emissions fromPopocatépetl volcano, Mexico, quantified using Moderate Resolution ImagingSpectroradiometer (MODIS) infrared data: A case study of the December2000‐January2001emissions, J. Volcanol. Geotherm. Res.,170,76–85.
    Matthews J. P., H. Kamata, S. Okuyama, et al..2003. Surface height adjustments inpyroclastic‐flow deposits observed at Unzen volcano by JERS‐1SAR interferometry, J.Volcanol. Geotherm. Res.,125,247‐270.
    Melekestsev I. V., V. V. Ponomareva, O. N. Volynets.1995. Kizimen Volcano, Kamchatka‐A futureMount St. Helens?. J. Volcanol. and Geoth. Res.65,205‐226.
    Melnikov D. V., V. N. Dvigalo, I. V. Melekestsev.2011. The2010‐2011eruption of Kizimen volcano,Kamchatka: Dynamics of eruptive activity and geologic‐geomorphological impact (based onremote sensing data). Bulletin of Kamchatka Association “Educational‐Scientific Center”. EarthSciences.2(18):87‐101.(in Russian)
    Mogi K.,1958. Relations between the eruptions of various volcanoes and the deformations ofthe ground surface around them. Bull. Earthquake Res. Inst. Univ. Tokyo.,36,99‐134.
    Monti Guarnieri A., S. Tebaldini.2007. Hybrid Cramer‐Rao bounds for crustal displacement fieldestimators in SAR interferometry. IEEE Signal Proc. Lett.,14(12),1012‐1015.
    Napoli, R., G. Currenti, C. D. Negro, A. D. Stefano, F. Greco, and E. Boschi (2011), Magneticfeatures of the magmatic intrusion that occurred in the2007eruption at Stromboli Island(Italy), Bull. Volcanol.,73,1311–1322, doi:10.1007/s00445‐011‐0473.
    Notsu, K., S. Nakai, G. Igarashi, et al..2001. Spatial distribution and temporal variationof3He/4He in hot spring gas released from Unzen volcanic area, Japan, J. Volcanol.Geotherm. Res.,111,89‐98.
    Okada Y..1985. Surface deformation due to shear and tensile faults in a half‐space. Bull. Seism.Soc. Am.75,1135‐1154.
    Pallister J., W. McCausland, S. Jónsson, et al..2010. Broad accommodation of rift‐relatedextension recorded by dyke intrusion in Saudi Arabia. Nature Geoscience.3,705‐712.
    Patane D., C. Chiarabba, O. Cocina, et al..2002. Tomographic images and3D earthquakelocations of the seismic swarm preceding the2001Mt. Etna eruption: Evidence for a dykeintrusion. Geophys. Res. Lett.29(10),1497.
    Pedersen R., F. Sigmundsson.2004. InSAR based sill model links spatially offset areas ofdeformation and seismicity for the1994unrest episode at Eyjafjallajokull volcano, Iceland,Gephys. Res. Lett.,31, L14610.
    Pedersen R., F. Sigmundsson.2006. Temporal development of the1999intrusive episode in theEyjafjallajokull volcano, Iceland, derived from InSAR images, Bull. Volc.,68,377‐393.
    Peltier A., V. Ferrazzini, T. Staudacher, et al..2005. Imaging the dynamics of dyke propagationprior to the2000–2003flank eruptions at Piton de La Fournaise, Reunion Island. Geophys. Res.Lett.,32, L22302.
    Peltier A., M. Bianchi, E.Kaminski, et al..2010. PSInSAR as a new tool to monitor preeruptivevolcano ground deformation: Validation using GPS measurements on Piton de la Fournaise,Geophys. Res. Lett.,37, L12301.
    Peltzer G., F. Crampé, S. Hensley, et al..2001. Transient strain accumulation and fault interactionin the eastern California shear zone, Geology,29,975‐978.
    Pepe A., Manzo M., Casu F., et al..2008. Surface deformation of active volcanic areas retrievedwith the SBAS‐DInSAR technique: an overview. Annals of Geophysics,51(1):247‐263.
    Poland M., Z. Lu.2004. Deformation associated with the January17,2002, eruption ofNyiragongo volcano, Democratic Republic of the Congo, from radar interferometry, Eos Trans.AGU,85(17), Jt. Assem. Suppl., Abstract V53B‐02.
    Ponomareva V., I. Melekestsev, O. Braitseva, et al..2007. Late Pleistocene‐Holocene volcanismon the Kamchatka Peninsula, northwest Pacific region. In: Eichelberger, J., Gordeev, E., Izbekov,P., Kasahara, M., Lees, J.(eds), Volcanism and Subduction: the Kamchatka Region. AmerGeophys Union, Geophys Monogr.172:165‐198.
    Prati C., Ferretti, A., Perissin, D.,2010. Recent advances on surface ground deformationmeasurement by means of repeated space‐borne SAR observations, Journal of Geodynamics,49(3‐4),161‐170.
    Press W., S. Teukolsky, W. Vetterling, et al..1992. Numerical recipes in C, the art of scientificcomputing.994, Cambridge Univ. Press, New York.
    Pritchard M. E., M. Simons.2004. Surveying volcanic arcs with satellite radar interferometry:The central Andes, Kamchatka, and beyond. GSA Today,14(8),4‐11.
    Puysségur B., R. Michel, J. P. Avouac.2007. Tropospheric phase delay in interferometric syntheticaperture radar estimated from meteorological model and multispectral imagery, J. Geophys.Res.,112, B05419.
    Remy D., S. Bonvalot, P. Briole, et al..2003. Accurate measurements of tropospheric effects involcanic areas from SAR interferometry data: Application to Sakurajima volcano (Japan), EarthPlanet. Sci. Lett.,213(3‐4),299‐310.
    Rocca F..2007. Modeling interferogram stacks, IEEE Trans. Geosci. Remote Sens.,45(10),3289‐3299.
    Rosen P., S. Hensley, H. Zebker, et al..1996. Surface deformation and coherence measurementsof Kilauea Volcano, Hawaii, from SIR‐C radar interferometry, J. Geophy. Res.,101,23109‐23125.
    Sandwell D., D. Myer, R. Mellors, et al..2008. Accuracy and resolution of ALOS interferometry:Vector deformation maps of the Father’s day intrusion at Kilauea, IEEE Trans. Geosci. RemoteSens.,46(11),3524‐3534.
    Scharroo R., P. Visser.1998. Precise orbit determination and gravity field improvement for theERS satellites, J. Geophys. Res.,103,8113‐8127, doi:10.1029/97JC03179.
    Schmidt D. A., R. Bürgmann.2003. Time‐dependent land uplift and subsidence in the Santa Claravalley, California, from a large interferometric synthetic aperture radar data set, J. Geophy.Res.,108(B9),2416‐2428.
    Seach J."Kizimen Volcano‐John Seach". Volcanism reference base. John Seach, volcanologist.http://www.volcanolive.com/kizimen.html. Last accessed25June2012.
    Senyukov S. L., I. N. Nuzhdina, S. J. Droznina, et al..2011. Seismicity of the volcano Kizimen. In:Proceedings of the3conference “Problems of geophysical monitoring of Far East of Russia”,Petropavlovsk‐Kamchatsky, Russia,09‐15October2011,144‐148.(in Russian)
    Shangguan Z..1997. Material sources of escaped gases from Tianchi volcanic geothermal area,Changbai Mountain, Sci. China, Series D,40(4),390‐397.
    Shen Z. K., D. D. Jackson, B. X. Ge.1996. Crustal deformation across and beyond the Los Angelesbasin from geodetic measurements, J. Geophys. Res.,101:27957‐27980.
    Shen Z. K., D. D. Jackson.2000. Optimal estimation of geodetic strain rates from GPS data. EOSTransactions AGU,81(19): S406.
    Siebert L., T. Simkin.2002. Volcanoes of the World: An Illustrated Catalog of Holocene Volcanoesand their Eruptions, Global Volcanism Program Digital Information Series GVP‐3, SmithsonianInstitution.
    Sigmundsson F., P. Durand, D. Massonnet.1999. Opening of an eruptive fissure and seawarddisplacement at Piton de la Fournaise volcano measured by RADARSAT satellite radarinterferometry, Geophys. Res. Lett.,26,533‐536.
    Simons M., Rosen, P. A..2007. Interferometric synthetic aperture radar geodesy. In: Schubert, G.(Ed.), Treatise on Geophysics, Elsevier Press,3,391‐446.
    Sousa J. J., A. M. Ruiz, R. F. Hanssen, et al..2010. PSI processing methodologies in the detectionof field surface deformation—Study of the Granada basin (Central Betic Cordilleras,southernSpain). Journal of Geodynamics.
    Sousa J. J., A. J. Hooper, R. F. Hanssen, et al..2011. Persistent scatterer InSAR: a comparison ofmethodologies based on a model of temporal deformation vs. spatial correlation selectioncriteria. Remote Sensing of Environment,115(10),2652‐2663.
    Stevens N. F., J. B. Murray, G. Wadge.1997. The volume and shape of the1991‐1993lava flowfield at Mount Etna, Sicily, Bull. Volcanol.58,449‐454.
    Stueven.2004. A study of land cover and thermal changes at Kilauea Volcano, Hawaii. UW‐LJournal of Undergraduate Rearch VII,1‐4.
    Sturkell E., P. Einarsson, F. Sigmundsson, et al..2003. Deformation of Grimsvotn volcano,Iceland:1998eruption and subsequent inflation, Geophys. Res. Letters,30,1182.
    Van der Kooij, M. Hughes, W. Sato, et al..2006. Coherent target monitoring at high spatialdensity: examples of validation results. European Space Agency,(Special Publication) ESASP‐610.
    Vilardo G., R. Isaia, G. Ventura, et al..2010. InSAR Permanent Scatterer analysis reveals faultreactivation during inflation and deflation episodes at Campi Flegrei caldera. Remote Sensingof Environment,114,2373‐2383.
    VONA/KVERT Information Release, December27,2012. KVERT, Institute of Volcanology andSeismology FEB RAS. URL: http://www.kscnet.ru/ivs/kvert/van/index.php?n=2012‐25.
    Werner C., U. Wegmüller, T. Strozzi, et al..2003. Interferometric point target analysis fordeformation mapping, in IGARSS’03:2003IEEE International Geoscience and Remote SensingSymposium Proceedings, New York,4362‐4364.
    Wright T., B. Parsons, E. Fielding.2001. Measurement of interseismic strain accumulation acrossthe North Anatolian Fault by satellite radar interferometry, Geophys. Res. Lett.,28(10),2117‐2120.
    Wicks C., W. Thatcher, D. Dzurisin.1998. Migration of fluids beneath Yellowstone Calderainferred from satellite radar interferometry: Science,282,458‐462.
    Wicks C. W. Jr., D. Dzurisin, S. Ingebritsen, et al..2002. Magmatic activity beneath the quiescentThree Sisters volcanic center, central Oregon Cascade Range, USA, Geophys. Res. Lett.,29(7),1122.
    Wicks C. W. Jr., W. Thatcher, D. Dzurisin, et al..2006. Uplift, thermal unrest, and magmaintrusion at Yellowstone caldera: Nature,440,72‐75.
    Williams C. A., G. Wadge.1998. The effects of topography on magma chamber deformationmodels: Application to Mt. Etna and radar interferometry. Geophys. Res. Lett.25,1549‐1552.
    Wright T. J., C. Ebinger, J. Biggs, et al..2006. Magma‐maintained rift segmentation at continentalrupture in the2005Afar dyking episode. Nature,442,291‐294.
    Xu, J. D..2007. Active volcano monitoring and research in China: Abstracts Volume.Cities onVolcanoes5th Conference, Shimabara, Japan,90.
    Xu, J., G. Liu, J. Wu, et al..2012. Recent unrest of Changbaishan volcano, northeast China: Aprecursor of a future eruption?, Geophys. Res. Lett.,39, L16305, doi:10.1029/2012GL052600.
    Zebker H. A., J. Villasenor.1992. Decorrelation in interferometric radar echoes. IEEE Transactionson Geoscience and Remote Sensing,30(5):950‐959.
    Zebker H. A., P. A. Rosen, R. M. Goldstein, et al..1994. On the derivation of coseismicdisplacement fields using differential radar interferometry—the Landers earthquake Oct J.Geophy. Res.,99(B10),19617‐19634.
    Zebker H. A., P. A. Rosen, S. Hensley.1997. Atmospheric effects in interferometric syntheticaperture radar surface deformation and topographic maps, J. Geophys. Res.,102,7547‐7563.
    Zebker H. A., A. P. Shanker.2008. Geodetic imaging with time series persistent scatterer InSAR,presented at the AGU, San Francisco, CA.
    白登海,廖志杰,赵国泽等.1994.从MT探测结果推论腾冲热海热田的岩浆热源.科学通报,30(4):344‐347.
    薄立群,徐信良,华仁葵等.2001.火山区突发性地热异常热红外传输机理研究.地理科学,21(5):439‐446.
    薄立群,华仁葵.2003.长白山火山热红外卫星遥感监测原理与框架设计.地质灾害与环境保护,14(1):38‐43.
    陈国浒,单新建, Wooil M Moom等.2008.基于InSAR、GPS形变场的长白山地区火山岩浆囊参数模拟研究.地球物理学报,51(4):1085‐1092
    陈俊勇.2005.对SRTM3和GTOPO30地形数据质量的评估.武汉大学学报信息科学版,30(11):941‐944.
    崔笃信,王庆良,李克等.2007.长白山天池火山近期形变场演化过程分析.地球物理学报,50(6):1731‐1739.
    崔钟燮,魏海泉,刘若新.1995.长白山天池火山喷发历史记载资料的考证,火山灾害与人类环境(刘若新主编),地震出版社,39‐39.
    邓宏钊,张先康.2001.长白山天池火山区上地壳Q值结构,华北地震科学,19(1):1‐9
    丁凤,徐涵秋.2006. TM热波段图像的地表温度反演算法与实验分析.地球信息科学,8(3):125‐130.
    段永红,张先康,杨卓欣等.2003.长白山天池火山区基底结构研究.地震地质,25(3):501‐508.
    樊祺诚,隋建立,孙谦等.2005.天池火山千年大喷发的岩浆混合作用与喷发机制初步探讨.岩石学报,21(6):1703‐1708.
    樊祺诚,隋建立,王团华等.2006.长白山天池火山粗面玄武岩的喷发历史与演化.岩石学报,22(6):1449‐1457.
    樊祺诚,隋建立,王团华等.2007.长白山火山活动历史、岩浆演化与喷发机制探讨.高校地质学报,13(2):175‐190.
    傅维洲.1996.中国东北深震及其构造意义.长春地质学院学报,26(3):316‐321.
    高清武.2004.长白山天池火山水热活动及气体释放特征.地球学报,25(3):345‐350.
    郭良迁.1990.东北断块区的现代地壳垂直形变及其构造活动的意义.东北地震研究,6(3):15‐20
    郭履灿,马石庄.1996.张禹慎.应用地震CT技术研究长白山火山的岩浆囊. CT理论与应用研究,5(1):47‐52.
    郭孟习,孙炜,聂立军等.2002.东北东部地球物理及地质块体特征——对大地构造环境演化的追溯.吉林地质,21(1‐2):38‐49.
    韩宇飞,宋小刚,单新建等.2010. D‐InSAR技术在长白山天池火山形变监测中的误差分析与应用,地球物理学报,53(7):1571‐1579.
    郝建亭,杨武年,李玉霞等.2008.基于FLAASH的多光谱影像大气校正应用研究.95,78‐81.
    胡亚轩,施行觉,王庆良等.2003.腾冲火山区地表垂直形变分析.大地测量与地球动力学,23(2):37‐41.
    胡亚轩,王庆良,崔笃信等.2004.长白山火山区几何形变的联合反演.大地测量与地球动力学,24(4):90‐94.
    胡亚轩,王庆良,崔笃信等.2005.三种压力源模型对火山区地面变形的影响.东北地震研究,21(3):33‐38.
    胡亚轩,王庆良,崔笃信等.2007a. Mogi模型在长白山天池火山区的应用.地震地质,29(1):144‐151.
    胡亚轩,王庆良,崔笃信等.2007b.长白山天池火山区形变监测及火山活动状态分析.大地测量与地球动力学,27(5):22‐25.
    胡亚轩,王庆良,赵慈平.2008.腾冲火山区形变分析.国际地震动态,352(4):42‐47.
    胡亚轩,郝明,王雄等.2009. L曲线法在反演火山区压力源参数中的应用.大地测量与地球动力学,29(2):66‐70.
    皇甫岗,姜朝松.2000.腾冲火山研究.云南科技出版社,1‐418.
    雷建设,赵大鹏.2004.长白山火山的起源和太平洋俯冲板块之间的关系.地球科学进展,19(3):364‐367.
    李成波,施行觉,刘苏苏等.2007.腾冲火山区的GPS形变特征.地球物理学进展,22(3):765‐770.
    李春光,王琼伟,邵德晟等.2000.腾冲火山区的形变特征.地震研究,23(2):165‐171.
    李大明,李齐,陈文寄.2000.腾冲火山区上新世以来的火山活动.岩石学报,16(3):362‐370.
    李克,刘俊清,盘晓东等.2009.2000~2007年期间长白山天池火山区地壳变形监测与分析.地震地质,6(3):15‐20.
    李霓.1995.火山灾害综述,火山灾害与人类环境(刘若新主编),地震出版社,119‐123.
    吕凤军,郝跃生,李平川等.2007.基于FLAASH模块的遥感数据大气校正应用研究.河北地质,2,23‐26.
    梁伟峰,王庆良.2003. InSAR技术在火山监测中的应用.大地测量与地球动力学,23(4):120‐124.
    刘国明,孙鸿雁,郭峰.2011a.长白山火山最新监测信息.岩石学报,27(10):2905‐2911.
    刘国明,杨景奎,王丽娟等.2011b.长白山火山活动状态分析.矿物岩石地球化学通报,30(4):393‐399.
    刘若新,李继泰,魏海泉等.1992.长白山天池火山—一座具潜在喷发危险的近代火山.地球物理学报,35(5):661‐664.
    刘若新,魏海泉,李继泰等.1995.长白山天池火山,火山灾害与人类环境(刘若新主编),地震出版社,1‐13.
    刘若新,魏海泉,李继泰等.1998.长白山天池火山近代喷发.科学出版社,1‐165.
    刘志,张先康,王夫运等.2005.用地震走时反演计算长白山天池火山区二维地壳泊松比.地震学报,27(3):324‐331.
    刘志武,党安荣,雷志栋等.2003.利用ASTER遥感数据反演陆面温度的算法及应用研究.地理科学进展,22(5):507‐514.
    马宏生,刘杰,张国民等.2002.用应变积累释放模型研究中国大陆地块分区地震活动.地震学报,24(6):569‐578.
    孟国杰,申旭辉,伍吉仓等.2007.东北地区现今地壳形变特征研究.大地测量与地球动力学,27(1):19‐23
    牛安福,张兴科,张晶等.吉林汪清7.2级深震前东北地区形变场分布特征.2004.地震,24(1):76‐81.
    覃志豪, Zhang Minghua, Arnon Karnieli等.2001.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报,56(4):456‐466.
    覃志豪, Li W, Zhang M等.2003.单窗算法的基本大气参数估计方法.国土资源遥感,56(2):37‐43.
    覃志豪,李文娟,徐斌等.2004.陆地卫星TM6波段范围内地表比辐射率的估计.国土资源遥感,61(3):28‐32.
    屈春燕,单新建,马瑾.2006.卫星热红外遥感在火山活动性监测中的应用.地震地质,28(1):99‐110.
    上官志冠,武成智.2008.中国休眠火山区岩浆来源气体地球化学特征.岩石学报,24(11):2638‐2646.
    施行觉,胡亚轩,毛竹等.2005.以垂直形变资料反演腾冲火山区岩浆活动性的初步研究.地震研究,28(3):256‐261.
    汤吉,刘铁胜,江钊等.1997.长白山天池火山区大地电磁测深初步观测.地震地质,19(2):164‐170.
    汤吉,邓前辉,赵国泽等.2001.长白山天池火山区电性结构和岩浆系统.地震地质,23(2):191‐200.
    万波,钟以章.1997.东北地区的新构造运动特征分析及新构造运动分区.东北地震研究,13(4):64‐75.
    王超,张红,刘智.2002.星载合成孔径雷达干涉测量.科学出版社,1‐235.
    王庆良,崔笃信,王文萍等.2008.川西地区现今垂直地壳运动研究.中国科学D辑,38(5):598‐610.
    王坤,姜琦刚,程彬.2007.利用ASTER数据反演陆面温度的研究进展.世界地质,26(3):309‐312.
    吴骅,李彤.2006.TM热红外波段等效比辐射率估算.遥感信息,85:(3):26‐28.
    吴建平,明跃红,刘一鸣.2003.2002年8月20日长白山天池火山微震震群特征研究.地震地磁观测与研究,24(4):1‐8.
    吴建平,明跃红,张恒荣等.2005.2002年夏季长白山天池火山区的地震活动研究.地球物理学报,48(3):621‐628.
    吴建平,明跃红,张恒荣等.2007.长白山天池火山区的震群活动研究.地球物理学报,50(4):1089‐1096.
    小泽拓,谷口宏充.2007.利用合成孔径雷达干涉测量技术监测长白山天池火山地表形变场.日本防灾科学技术研究所报告,71,1‐10.
    许才军,何平,温扬茂.2011.利用PSInSAR研究意大利Etna火山的地表形变,武汉大学学报(信息科学版),36(9):1012‐1016.
    杨卓欣,张先康,赵金仁等.2005.长白山天池火山区三维地壳结构层析成像.地球物理学报,48(1):107‐115.
    于泳,洪汉净,刘培洵等.2003.卫星遥感技术在火山监测中的应用.地球物理学进展,18(1):79‐84.
    张凤鸣,张亚江,许晓艳等.2007.日本海西部‐中国东北深震区俯冲运动对东北地区浅震地震的动力作用.东北地震研究,23(1):33‐39.
    张先康,张成科,赵金仁等.2002.长白山天池火山区岩浆系统深部结构的深地震测深研究.地震学报,24(2):135‐143.
    张成科,张先康,赵金仁等.2002.长白山天池火山区及邻近地区壳幔结构探测研究.地球物理学报,45(6):812‐820.
    张立敏,唐晓明.1983.西太平洋板块俯冲运动与中国东北深震带.地球物理学报,26(4):331‐340.
    张萍,孙文福,苗春兰等.2009.东北地区中强地震震源机制解分析.地震地磁观测与研究,30(1):12‐19.
    张兆明,何金国,肖荣波等.2005.利用TM6数据反演陆地表面温度新算法研究.遥感技术与应用,20(6):547‐550.
    张兆明,何国金,肖荣波等.2007.基于MODIS和TM数据的陆面温度反演.中国图象图形学报,12(2):366‐372.
    赵慈平,冉华,陈坤华.2006.由相对地热梯度推断的腾冲火山区现存岩浆囊.岩石学报,22(6):1517‐1528.
    赵大鹏,雷建设,唐荣余.2004.中国东北长白山火山的起源:地震层析成像证据.科学通报,49(14):1439‐1446.
    赵金仁,张先康,杨卓欣等.2003.长白山天池火山区上地壳三维速度层析成像.地球物理学报,46(6):796‐802.
    赵英时.2003.遥感应用分析原理与方法.科学出版社,1‐478.
    中科院地球物理研究所编著.1977.地震学基础.科学出版社,1‐256.
    朱桂芝,王庆良,石耀霖等.2008.各向同性膨胀点源模拟长白山火山区岩浆囊压力变形源,地球物理学报,51(1):108‐115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700