用户名: 密码: 验证码:
西北旱区碎麦秸垫式膜上灌的高效用水机理及土壤环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2011年和2012年连续2年,在甘肃省水利科学研究院民勤试验站布置了碎麦秸垫式膜上灌大田试验,试验系统研究了碎麦秸垫式膜上灌在西北旱区高效用水机理、对西北旱区特色经济作物的生长、产量、土壤环境的影响机制。试验选择覆盖方式和灌水定额两个控制因素,采用双因素完全随机试验设计。覆盖方式设有四个水平:无覆盖(N),秸秆覆盖(S),地膜覆盖(F),碎麦秸垫膜覆盖(SF);灌水定额设有高(H)、中(M)、低(L)三个水平,即:H:900n3/hm2,M:750m3/hm2,L:600,3/hm2;共形成4x3=12个处理水平,重复3次。通过连续两年的田间试验,主要得出以下主要结论:
     (1)覆盖方式对作物出苗率的影响极显著(P<0.01)。2011年向日葵试验结果表明,碎麦秸垫膜覆盖(SF)的出苗率比S的提高了14.33%,比无覆盖(N)处理提高了49.32%。2012年玉米试验结果表明,碎麦秸垫膜覆盖(SF)的玉米出苗率比秸秆覆盖(S)的提高了49.50%,比无覆盖(N)的提高了21.36%。总之,碎麦秸垫膜覆盖(SF)对出苗率的影响接近地膜覆盖(F)的,远远高于秸秆覆盖(S)和无覆盖的(N)。故在西北干旱区利用碎麦秸垫膜覆盖(SF)技术可以解决保护性耕作技术中秸秆覆盖(S)的由于土壤温度过低导致的“出苗率低”等问题。
     (2)覆盖方式对2011年向日葵株高、茎粗、产量及其构成因素、产量性状、收获指数的影响极其显著(P<0.01)。其中碎麦秸垫膜覆盖(SF)的茎粗、百粒重最高,地膜覆盖(F)次之;地膜覆盖(F)的株高、冠干重、茎干重、叶干重、单株生物量、单株粒重、生物产量、籽粒产量最优,碎麦秸垫膜覆盖(SF)的次之。灌水定额对株高、茎粗的主效应在一水灌溉前不显著;一水灌溉后显著;对产量及构成要素、产量性状、收获指数的影响差异不显著。不同的覆盖方式与不同的灌水定额的组合的交互作用对产量及构成要素、产量性状都不显著(P>0.05),对收获指数的影响显著(P<0.05)。从向日葵株高、茎粗、产量及其构成因素、产量性状、收获指数的影响结果考虑,FM.SFM为最佳组合,即地膜覆盖与灌水定额为M、碎麦秸垫膜覆盖与灌水定额为M的组合为最佳组合。
     (3)覆盖方式对玉米株高、茎粗、产量及其构成因素、产量性状、收获指数的主效应极显著(P<0.01)。覆盖方式各水平上的茎粗均值差异极显著(P<0.01),大小次序是:SF>S>F>N,SF的茎粗比N、S、F分别增加2.20mm、0.26mm、0.93mm.SF与N、S之间差异极显著(P<0.01),比N、S的籽粒产量分别高3444.72kg/hm2、4415.79kg/hm2。覆盖方式对穗长、秃顶长的主效应显著(P<0.05),对玉米收获期穗粗、穗行数、穗粒重的主效应不显著(P>0.05)。可见,碎麦秸垫膜覆盖(SF)与地膜覆盖(F)对玉米产量及构成要素的影响无差异。灌水定额对玉米株高、茎粗、产量及其构成因素、产量性状、收获指数的主效应不显著(P>0.05)。覆盖方式与灌水定额的交互作用对玉米株高、茎粗、产量及其构成因素、产量性状、收获指数有一定的显著度。综合考虑以上因素,最佳组合SFM,FM次之。
     (4)覆盖方式和灌水定额对0~120cm土壤含水量的主效应在一水灌溉前不显著,在一水灌溉后显著。碎麦秸垫膜覆盖(SF)中的土壤含水量总体优于地膜覆盖的(F);SF的初始值稍低于F的,播种后25天时田间土壤含水量显示SF中土壤水分最高,在播种前低于F到现在高于F,保墒效果优于F和S,是因为具有地膜、秸秆双重保墒作用。灌水定额较高(H)的处理土壤水分较高,灌水定额中等(M)的处理次之,灌水定额较低(L)的土壤水分含量最小。这主要是因为灌水时灌水定额不同所导致的。故从土壤保墒效果来看,组合SFH的效果最佳,SFM次之。
     (5)从横向时间轴来看,各覆盖方式的0-25cm土壤温度和气温日变化都呈现出随深度增加而逐渐滞后的趋势。无论哪种覆盖方式,峰值均出现在地表处。地膜覆盖(F)有增温作用,使得其峰值出现的时间较无覆盖处理提前1h,而碎麦秸垫膜覆盖(SF)和秸秆覆盖(S)中的秸秆具有降温作用,导致其峰值滞后1h出现。而碎麦秸垫膜覆盖(SF)中的地膜又具有增温效应,使其峰值比秸秆覆盖(S)的高出7℃。从温度变化范围上来看,同峰值的出现一样,各个覆盖方式的温域的最宽值都出现在地表处。各覆盖方式中,地膜覆盖(F)的增温效应导致地膜覆盖后温域比无覆盖处理(N)的宽,碎麦秸垫膜覆盖(SF)和秸秆覆盖(S)的减温效应使其温域变窄。碎麦秸垫膜覆盖(SF)中地膜的增温作用又使得其温域比秸秆覆盖(S)宽7℃。从深度上来看,温度的变化有早、中、晚三种类型:早晨(6:00-7:00),土壤温度随着深度的增加而增加,表层低、底层高呈地底辐射型;中午(8:00~16:00),土壤温度在地表处最高,属地表辐射型;傍晚(17:00~20:00),土壤温度的峰值出现在5cm或10cm处,为中间辐射型。在同一天内,土壤温度呈现出低——高——低的单峰循环规律。0-25cm深度的土壤温度自作物播种后开始到6月中旬都表现出上升的趋势,6月中旬以后各个深度层次的土壤温度都趋于稳定。碎麦秸垫膜覆盖(SF)与无覆盖处理(N)、地膜覆盖(F)的相比,秸秆阻隔了太阳的直接辐射,具有秸秆覆盖(S)的降温效应;与秸秆覆盖(S)相比,又具有地膜的升温作用。
     (6)在作物生育期期,各覆盖方式都具有改善0-40cm土层的土壤容重的作用。N、S、SF具有降低0-10cm土层的土壤容重、增加土壤总孔度的作用,而F具有增加0-10cm土层的土壤容重、减小土壤总孔度的作用。在土壤耕层(0-40cm)范围内,与N相比,SF具有土壤容重小、总孔度大的特点,而F、S具有容重大、总孔度小的特点。说明在碎麦秸垫式膜上灌条件下能改善土壤结构和孔隙度,有利于作物的根系生长。
     (7)2011年向日葵田间,各覆盖方式的0~120cm土壤pH值随着土壤层次的加深有递减的趋势,SF具有降低0-30cm土壤pH值的作用,SF的0-30cm土层的土壤pH值比N、S、F分别降低了3.51%、2.15%、3.69%。2012年玉米田间,各覆盖方式的0-120cm的平均土壤pH值随着生育进程的推进呈现出明显降低的趋势。有覆盖处理中,SF的pH值最小,F的最大,这是因为SF中的碎秸秆的降解过程和根系的分泌物使得土壤pH值降低。这说明碎麦秸垫式膜上灌可明显降低表层土壤的pH值,防止土壤次生盐碱化,使得灌区土地荒漠化得到遏制,土壤环境进一步得到改善。在向日葵和玉米苗期,由于田间土壤裸露多,蒸发强烈,各覆盖方式的土壤盐分都存在不同程度的表聚现象,0-5cm处地膜覆盖(F)的土壤盐分表聚最明显。在整个生育期内,盐分的表聚现象随着生育期的推进逐渐减弱;碎麦秸垫膜覆盖(SF)较明显地抑制了0-5cm的土壤盐分积聚,地膜覆盖(F)却明显使得表层土壤的累积盐分增加。从整个剖面上看,0-120cm土壤的含盐结构变化显著,地膜覆盖(F)具有增加土壤盐分含量的作用,碎麦秸垫膜覆盖(SF)具有脱盐的作用。这是由于播种时灌水后,SF的保墒效果好,表层土壤的含水量大,土层中的盐分随水分向下运动的多,下层内的盐分冲洗量则因水分的减少而减少。这样盐分离开作物主要根系层,有利于作物根系的生长。故碎麦秸垫式膜上灌条件下种植食用向日葵和玉米可以明显抑制表层土壤水溶性总盐的积聚,使得农田土壤环境进一步得到改善,灌区的荒漠化防治得到更有效的控制。
     (8)向日葵田间0~120cm剖面上HCO3含量呈“中间大、两头小的趋势”。碎麦秸垫式(SF)膜上灌可以降低耕层(0-30cm)土壤中HC03含量,增加深层土壤(60~100cm)中HC03含量。在向日葵苗期,N、S、F在0-5cm土层内Cl、SO4含量有积聚现象,尤其是F的表聚现象最明显;而SF具有抑制Cl、SO42在表层积聚的作用。麦秸垫膜式膜上灌可以降低耕层Cl、SO42含量、增加中下层Cl、SO42含量,这主要是SF的双重保墒作用使得上层土壤中的Cl、SO42被往中下层淋洗的结果。
     (9)随着向日葵生育期的推进,各覆盖方式的0~120cm土层中Ca2+、Mg2+含量基本呈下降趋势;F具有加速耕层(0-40cm)土壤中Ca2+、Mg2+流失的作用,而S、SF具有抑制耕层土壤中Ca2+、Mg2+含量降低的作用。可能原因是秸秆覆盖、碎麦秸垫膜覆盖后由于作物根系呼吸、根系分泌物以及碎麦秸和收获后作物根系的腐烂分解,使得pH值降低,抑制了固定态钙、镁溶解性降低。SF的30-60cm土壤Ca2+含量表现出在苗期至开花期下降缓慢、开花至收获期回升快的趋势;而F表现出下降速度快、回升慢的特征。向日葵田间0~120cm土壤剖面中,K+含量特别少。在0~10cm土层内有积聚现象,尤其是S、SF中0-5cm土层较明显。在向日葵苗期,N、S、F中0-5cm土壤Na+含量有明显积聚现象,尤其是F处理,而SF却抑制了土壤Na+含量在表层积聚;SF处理的40-60cm土壤中Na+含量明显增加,这是SF将表层和耕层土壤Na+向下淋洗的缘故。到开花期和收获期时,60~120cm土壤Na+含量明显上升,是因为SF的淋洗效果更为明显。SF并没有大幅度降低Na+含量而是调整了Na+在土壤剖面上的分布。从土壤深度方向来看,0-30cm的土壤SAR较小,中间层30-60cm的土壤SAR最大,深层(60~120cm)的介于前两者之间。这一方面是由于上层Na+淋溶到中下层而使中下层Na+含量增加,另一方面是中下层Ca2+和Mg2+含量下降的结果。碎麦秸垫式膜上灌(SF)条件下,土壤表层(0-5cm)和耕层(0-30cm)土壤SAR较其他处理明显减低。这是因为SF中0-5cm土壤中可溶性Na+的比例下降,同时Ca2+和Mg2+的比例则升高。而SF中30~120cm土壤SAR有增大的趋势,说明中下层土壤中可溶性Na+的比例增加了,而Ca2+和Mg2+的比例则相应降低了。由此可以看出,碎麦秸垫式膜上灌(SF)会使阳离子的组成在整个剖面上发生了改变,使得有益于作物的盐分离子积聚、有害于作物的盐分离子被淋洗,这会为西北旱区土壤环境改善、土壤盐碱化和灌区荒漠化防治起到一定的积极作用。
In order to research high efficient water use mechanism and soil environmental effects of inthe northwest Arid Regions, China, a combination of mulch means and irrigation experimentswere conducted during two consecutive years of2011and2012, at Minqin Experimental Station,Gansu Hydraulic Research Institute, in Minqin city, Gansu, China. The experiments followed acompletely randomized double factors design with four coverage levels: no coverage (N), strawmulching (S), plastic film mulching (F), crushed wheat straw padding plastic film mulching (SF);and three irrigation quota levels: H,900m3/hm2; M,750m3/hm2; L,600m3/hm2. There are12treatments, repeating3times. The main results are as follows.
     (1) Mulch means significantly affected crop emergence rate (P<0.01). The experiment aboutsunflower emergence rate in2011showed that, SF was increased by14.33%with S, and49.32%with N. In2012, corn test results show that, SF was higher49.50%than S,21.36%than N. Inshort, the emergence rate with SF was close to with F, far higher than S and N. So, SF can be usedto solve the question "low emergence rate" with S in the northwest Arid Regions, China.
     (2) Mulching means significantly affected the sunflowers’ height, stem diameter, productionincluding its component factors, characters, harvest index in2011(P0.01) sunflowers plantedwith SF means have the widest stem diameter and the heaviest100kernel weight, and those withF means follows. However, sunflowers in plastic film mulching were the best in plant height, dryweight of root, stem and leaf, single plant biomass and grain weight, biological yield, grain yieldwhile sunflowers with F means take the second place. Irrigation quota doesn’t have a remarkablemain effect on plant height and stem diameter before the irrigation whereas it does after theirrigation. The interaction between different mulching means and different irrigation quota leveldoesn’t show a significant effect on the production and its components, characters (P0.05)while it exerts a significant effect on the harvest index. All factors including plant height, stemdiameter, production and component factors, characters, harvest index of production considered,FM, SFM are the optimal portfolios, that is plastic film mulching and M irrigation quota,crushed wheat straw padding plastic film and M irrigation quota.
     (3) Mulching means significantly affected the corns’ height, stem diameter, productionincluding its component factors, characters, harvest index(P0.01).
     The difference in mean value of stem diameter with different mulching means was very significant(P0.01), the sequence being SF S F N. The stem diameter with SF increased by2.20mm0.26mm0.93mm respectively, compared with those with N S F. There is a significantdifference between SF and N,S (P0.01) with the production of kernel being3444.72kg/hm24415.79kg/hm2higher than that with N, S respectively. The main effect of mulching means onear length, baldhead length was significant (P0.05) while the main effect on ear diameter, rowand weight was not significant (P0.05). Therefore, it can be concluded that crushed wheat strawpadding plastic film and plastic film mulching don’t have an impact corn production and itscomponent factors. The main effect of irrigation quota level on corn plant height, stem diameterand production including its component factors, characters, harvest index was not great. Theinteraction between different mulching means and different irrigation quota level did show somesignificant effect on the production and its components, characters and harvest index. Consideringthe above factors, SFM is the optimal portfolio and FM takes the second place.
     (4) The main effect of mulching means and irrigation quota level on water content of0~120cm soil was not significant before irrigation while significant after irrigation. The overallsoil water content of crushed wheat straw padding plastic film was greater that of plastic filmmulching. The initial value of SF was a bit lower than that of F. The soil water content with SFwas the highest after planting25days. The reason for good water conservation effectiveness wasdue to the double effect of plastic film and straws. The higher irrigation level (H) has the higherwater content and the medium irrigation level (M) follows, the lower (L), the last, which was dueto different irrigation level. Hence, concerning the water conservation effect, SFH is the best andSFM takes the second place.
     (5) In terms of the horizontal time axis, daily variation of the soil temperature and airtemperature of0~25cm soil with different mulching means showed a trend of a gradual increasewith depth first and then a gradual retardation. Regardless of the mulching means, the peak valuealways occurred at the surface. The peak value of plastic film mulching (F)with a warming effectemerged one hour earlier than that of peak no mulching treatment while the peak value of crushedwheat straw padding (SF) and straw mulching (S) with a cooling effect was one hour late. Thefilm of crushed wheat straw padding plastic film mulching (SF) had a warming effect, so its peakwas t7higher than that of straw mulching (S). Like the peak value, the widest breadth value ofthe temperature range for every mulching means appears on the surface. The temperature range ofplastic film mulching (F) with a warming effect was wider than that of no coverage (N); Thetemperature range of crushed wheat straw padding plastic film mulching (SF) and straw mulching(S) was narrower because of their cooling effect. The temperature range of crushed wheat strawpadding plastic film mulching (SF) was7wider than that of straw mulching (S). The change intemperature has three types: in the morning (6:00~7:00), soil temperature increased with anincrease of depth, lower on the surface, and higher in underground; At noon (8:00~16:00), thehighest soil temperature emerge at the surface, the surface radiant; Evening (17:00~20:00), soiltemperature peak appeared in5cm and10cm, the middle radiant. On the same day, the soiltemperature presents the low-high-low unimodal cycle. Soil temperature of0to25cm depthfrom the middle of June after planting showed a rising trend, and after that the temperature isstable. Chopped straw mat film covering (SF) and no cover processing (N),(F) of plastic filmmulching, straw blocking the sun's radiation directly, with straw mulching (S) cooling effect;Compared with straw plastic film mulching (F)and no coverage(N), the crushed wheat strawpadding plastic film mulching (SF) stopped solar direct radiation and has a cooling effect
     (6) In the crop growth period, mulch means improved soil bulk density in0-40cm soil layer.N, S and SF could reduce soil bulk density and increase soil total porosity increased soil totalporosity in0-10cm soil layer, while F increased the soil bulk density and decreased soil totalporosity. Compared with N, SF had the characteristics of low soil bulk density and high totalporosity in the topsoil (0~40cm), while F and S had those of high soil bulk density, low soil totalporosity. It showed that SF could improve the soil structure and porosity, which was beneficial tocrop root growth.
     (7) With the soil depth in0~120cm profile, soil pH value of mulch means decreased at thesunflower field in2011. SF could reduce the soil pH value in0~30cm. Compared with N, S and F,the soil pH value were decreased respectively by3.51%,2.15%and3.69%. In2012, at the cornfield, with the advance of the corn growth, the average soil pH value of mulch means in0~120cmshowed an obvious decreasing trend. Among mulch means, pH in SF was the minimum, and that of F was the maximum. This is results that crushed straw degradation process and root exudatesdecreased the soil pH value. This showed that SF could significantly reduce soil pH value in thesoil surface, prevented soil secondary salinization, which made the desertification of irrigationdistrict contained and the soil environment further improved. In seedling sunflower and maize, forthe many exposed field and strong evaporation, mulch means aggregated soil salinity in soilsurface with different degree, especially in0~5cm with F. In the whole growth period, saltaccumulation in surface weakened with the progress of growth period gradually; SF significantlyinhibited salt accumulation in0~5cm of soil, but F apparently made salt accumulation increase insurface soil. From the profile view, salt structure changed significantly in0~120cm of soil, and Fincreased soil salt content, while SF had the role of desalination. This is because after sowingirrigation SF had good water retention effects, made soil water content fuller, get soil salt movedown with water, and the less moisture the lower salinity irrigation in the lower layer. In this way,salinity leaving crops root zone is conducive to the growth of crop roots. So, Planting sunlowerand corn with SF could obviously inhibit soil soluble salt accumulation into the surface, made thefarmland soil environment improved further, and more effectively prevented and controlled thedesertification of irrigation district.
     (8) The HCO-3content at0~120cm soil in sunflower field showed the trend of "big in themiddle, small in both ends". SF can reduce the HCO-3content in topsoil (0~30cm), and increasedit in deep soil (60~100cm). In sunflower seedling stage, N, S, F accumulated Cl-and SO2-4into0~5cm soil, especially F most obviously; while SF could inhibit the accumulation of Cl-and SO2-4into soil surface. SF could reduce Cl-and SO2-4content in topsoil, and increased it in the lowerlayer. It was mainly because that double water retention role of SF made Cl-and SO2-4leached intothe lower soil.
     (9) With the development stages of sunflower, the Ca2+and Mg2+content with mulch meansin0~120cm decreased. F has accelerated the loss of Ca2+and Mg2+in topsoil (0~40cm), while Sand SF could inhibit their loss. It was because that SF decreased the pH value, and inhibitedsolubility of fixed state calcium and magnesium reducing of the stationary state of calcium andmagnesium. It was the result of plant root respiration, root exudates, and decomposition of crushedwheat straw and the crop root after harvesting. SF slowly declined Ca2+content in30~60cm fromseedling to blossom, and quickly increased it from blossom to harvest. However, F decreasedquickly, and increased slowly. The K+content in0~120cm soil profile of sunflower field was lessin particular. K+accumulated in0~10cm soil, especially in0~5cm soil with S and SF. Insunflower seedling, the Na+content obviously accumulated in0~5cm with N, S and F, especiallywith F. While, SF could inhibit the Na+accumulate into the soil surface. At the same time, Na+content with SF in40~60cm soil increased significantly, because Na+with SF in the surface andcultivated soil was leached down. During blossom and harvest period, the Na+content at60~120cm soil increased significantly, because of more obviously leaching effect with SF. Fromthe point of soil depth, the SAR in0~30cm soil was smaller, that in30~60cm soil was maximum,and that in60~120cm soil was between0~30cm and30~60cm. On the one hand, this is becausethat Na+was leached into the lower layer, at the same time, the Na+content increased in the lowerlayer. On the other hand, it is the result that Ca2+and Mg2+content decreased in the lower layer.The SAR in the soil surface and cultivated soil with SF was significantly lower than othertreatments.This is because that the ratio of soluble Na+in0~5cm soil with SF decreased, while theratio of soluble Ca2+and Mg2+increased. However, soil SAR with SF in30~120cm increased, which explained that ratio of soluble Na+in the lower soil increased, while ratio of Ca2+and Mg2+decreased accordingly. Thus, it can be seen that SF would make the cationic composition changedin the profile. Salt ions beneficial to crops accumulated, those harmful to crops were leached. Thiswould play a certain positive role of improving the soil environment, preventing soil salinization,and curing irrigation area desertification in the northwest arid area, China.
引文
Amin A A. The extent of desertification on Saudi Arabia [J], Environmental Geology,2004,46(1):22~31
    Angers D A, Bolinder M A, Carter M R, et al. Impact of tillage practices on organic carbon and nitrogen storage incool, humid soils of eastern Canada [J], Soil and Tillage Research,1997,41(3-4):191~201
    Barber R G, Orellana M, Navarro F, et al. Effects of conservation and conventional tillage systems after landclearing on soil properties and crop yield in Santa Cruz, Bolivia [J], Soil and Tillage Research,1996,38(1-2):133~152
    Bastian F, Bouziri L, Nicolardot B, et al. Impact of wheat straw decomposition on successional patterns of soilmicrobial community structure [J], Soil Biology and Biochemistry,2009,41(2):262-275
    Blanco-Canqui H, Lal R, Post WM, et al. Changes in long-term no-till corn growth and yield under different ratesof stover mulch [J], Agronomy Journal,2006,98:1128~1136
    Blevins R L, Thomas G W, Smith M S, et al. Changes in soil properties after10years continuous non-tilled andconventionally tilled corn [J], Soil and Tillage Research,1983,3(2):135~146
    Buschbacher R, Uhl C, Serrao E A S. Abandoned pastures in eastern Amazonia: ii. Nutrient stocks in the soil andvegetation [J], Journal of Ecology,1988,76:682~699
    Chang C, Lindwall C W. Effect of long-term minimum tillage practices on some physical properties of aChernozemic clay loam [J], Canadian Journal of Soil Science,1989,69(3):443~449
    Chen L J, Feng Q. Soil water and salt distribution under furrow irrigation of saline water with plastic mulch onridge [J], Journal of Arid Land,2013,5(1):60~70
    Cook H, Valdes G, LeeH. Mulch effects on rainfall interception, soilphysical characteristics and temperatureunderZea MaysL [J], Soil and tillage research,2006,91(1-2):227~235
    Counter J W, Oebker N F. Comparisons of paper and polyethylene mulching on yield of certain vegetable crops [J],Proc. Amer. Hort. sci,1965,85:526~531
    Danierhan S, Shalamu A, Tumaerbai H, et al. Effects of emitter discharge rates on soil salinity distribution andcotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of NorthwestChina [J], Journal of Arid Land,2013,5(1):51~59
    Dao T H. Tillage and winter wheat residue management effects on water infiltration and storage [J], Soil sciencesociety of America journal,1993,57(6):1586-1595
    Davies J W. Mulching effects on plant climate and yield [M], World Meteorological Organization,1975
    Duley F L, Russel J C. The use of crop residues for soil and moisture conservation [J], Agronomy Journal,1939,31(8):703-709
    Eschenhoff H. Mulch methods for horticulture [J], KTBL-Arbeitspapier,1990,26~27
    Evans D D, Thames J L. Water in desert Ecosystems [M], US/IBP Synthesis Series,1981
    Gale W J, McColl R W, Fang X. Sandy fields traditional farming for water conservation in China [J], Journal ofsoil and water conservation,1993,48(6):474-477
    Ghosh P K, Dayal D, Bandyopadhyay K K, et al. Evaluation of straw and polythene mulch for enhancingproductivity of irrigated summer groundnut [J]. Field crops research,2006,99(2):76~86
    Hallsted A L, Mathews O R. Soil moisture and winter wheat with suggestions on abandonment [M], AgriculturalExperiment Station, Kansas State College of Agriculture and Applied Science,1936
    Halvorson A D, Reule C A, Anderson R L. Evaluation of management practices for converting grassland back tocropland [J], Journal of Soil and Water Conservation,2000,55(1):57~62
    Haraguchi T, Marui A, Mori K. Movement of water collected by vegetables in plastic-mulching field [J], KyushuUniv.2003,48(1,2):237~245
    Haraguchi T, Marui A, Yuge K, et al. Effect of plastic-film mulching on leaching of nitrate nitrogen in an uplandfield converted from paddy [J], Paddy and Water Environment,2004,2(2):67-72
    Haywood J D, Youngquist J A. Mulching effects of plant fiber-polyester mats combined with fertilizer on loblollypine seedlings [J], USDA Forest Serv., Tree Planters’ Notes,1991,42(3):32~35
    Haywood J D. Durability of selected mulches, their ability to control weeds, and influence growth of loblolly pineseedlings [J], New Forests,1999,18(3):263-276
    Hu B, Jia Y, Zhao Z, et al. Soil P availability, inorganic P fractions and yield effect in a calcareous soil withplastic-film-mulched spring wheat [J], Field Crops Research,2012,137:221~229
    Ike I F. Soil and crop responses to different tillage practices in a ferruginous soil in the Nigerian savanna [J], Soiland Tillage Research,1986,6(3):261~272
    Ji S, Unger P W. Soil water accumulation under different precipitation, potential evaporation, and straw mulchconditions [J], Soil Science Society of America Journal,2001,65(2):442-448
    Jia R Y, Zhao X G, Huang Z G. Correlative Analyses between Quantities of Microbial Populations and SoilPhysicochemical Property under Different Accumulation of Soil Plastic Film [J], Advanced MaterialsResearch,2012,610-613:3091~3095
    Jia S N, Paul W. Ungerb. Soil water accumulation under different precipitation, potential evaporation, and strawmulch conditions [J], Soil Science Society of America Journal,2001,65:442~448
    Jing M, Li Q K, Cheng X G. Spring Maize Soil Water Evaporation Variation and its Cumulative Evaporationunder Different Mulching Material at Arid Region [J], Advanced Materials Research,2012,518~523:4649~4652
    Ladha J K, Khind C S, Khera T S, et al. Effects of residue decomposition on productivity and soil fertility inrice-wheat rotation[J], Soil Science Society of America Journal,2004,68:854~864
    Lal R. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbonsequestration [J], Food Security,2010,2(2):169~177
    Lal R. Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria, I. Crop yield andsoil physical properties [J], Soil and tillage Research,1997,42(3):145~160
    Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect [J], ClimaticChange,2001,51(1):35~72
    Li R, Hou X, Jia Z, et al. Effects of rainfall harvesting and mulching technologies on soil water, temperature, andmaize yield in Loess Plateau region of China [J], Soil Research,2012,50(2):105~113
    Li R, Hou X, Jia Z, et al. Effects on soil temperature, moisture, and maize yield of cultivation with ridge andfurrow mulching in the rainfed area of the Loess Plateau, China[J], Agricultural Water Management,2013,116:101~109
    Li S X, Wang Z H, Li S Q, et al. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water lossby evaporation in dryland areas of China [J], Agricultural Water Management,2013,116:39~49
    Liu Y, Gao M, Wu W, et al. The effects of conservation tillage practices on the soil water-holding capacity of anon-irrigated apple orchard in the Loess Plateau, China [J], Soil and Tillage Research,2013,130:7~12
    Ma J Z, Wang X S, Edmunds W M. The characteristics of ground-water resources and their changes under theimpacts of human activity in the arid northwest China-a case study of the Shiyang River Basin [J], Journal ofArid Environments,2005,61(2):277~295
    Mahrer Y, Naot O, Rawitz E, et al. Temperature and moisture regimes in soils mulched with transparentpolyethylene [J], Soil Science Society of America Journal,1984,48(2):362-367
    Mai W, Tian C, Li C. Above-and below-ground growth of cotton in response to drip irrigation under mulch film[J], Australian Journal of Crop Science,2012,6(5):946~951
    Meng L, Ding W, Cai Z. Long-term application of organic manure and nitrogen fertilizer on N2O emissions soilquality and crop production in a sandy loam soil [J], Soil Biology and Biochemistry,2005,37(11):2037~2045
    Mohtisham A, Ahmad R, Ahmad Z, et al. Effect of Different Mulches Techniques on Weed Infestation in AerobicRice (Oryza sativa L.)[J], American-Eurasian J. Agric.&Environ. Sci.,2013,13(2):153~157
    Nael M, Khademi H, Hajabbasi M A. Response of soil quality indicators and their spatial variability to landdegradation in central Iran [J], Applied Soil Ecology,2004,27(3):221~232
    Pamo E T. Community production practices and desertification in the Sahelo-Sudanian region of Cameroon at theturn of the Millennium [J], Environmental Monitoring and Assessment,2004,99(1):197~210
    Patterson D T. Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch [J], Weedtechnology, l998,12(2):275~280
    Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification building a science for dryland development[J], Science,2007,316(5826):847~851
    Riley H C F, Bleken M A, Abrahamsen S, et al. Effects of alternative tillage systems on soil quality and yield ofspring cereals on silty clay loam and sandy loam soils in the cool, wet climate of central Norway [J], Soil andTillage Research,2005,80(1-2):79~93
    Ruiguang S, Chaoyun W, Yongjian Y, et al. Effects of Bast Fiber Mulching Film on Heat Preservation and Growthand Yield of Chinese Cabbage [J], Chinese Agricultural Science Bulletin,2012,16:048~055
    Seneviratne G, Van Holm L H J, Kulasooriya S A. Quality of different mulch materials and their decompositionand N release under low moisture regimes [J], Biology and fertility of soils,1997,26(2):136~140
    Shad R A, De Datta S K. Reduced tillage techniques for wetland rice as affected by herbicides [J], Soil andTillage Research,1986,6(4):291-303
    Sharma K L, Mandal U K, Srinivas K, et al. Long-term soil management effects on crop yields and soil quality in adryland Alfisol [J], Soil and Tillage Research,2005,83(2):246~259
    Shen J Y, Zhao D D, Han H F, et al. Effects of straw mulching on water consumption characteristics and yield ofdifferent types of summer maize plants [J], Plant, Soil and Environment-UZEI,2012,58(4):161~166
    Sheng Z, Yinli L, Xiusheng Z, et al. Effects of soil mulching on cucumber quality, water use efficiency and soilenvironment in greenhouse [J], Transactions of the Chinese Society of Agricultural Engineering,2008,24(3):65~71
    Stasyuk N V, Dobrovol'skii G V, Zalibekov Z G, et al. Assessment of soil cover degradation and desertification innorthern lowland Dagestan [J], Russian Journal of Ecology,2004,35(3):144~149
    Sun H, Shao L, Liu X, et al. Sun Hongyong, Shao Liwei, Liu Xiuwei, et al. Determination of water consumptionand the water-saving potential of three mulching methods in a jujube orchard [J], European Journal ofAgronomy,2012,43:87~95
    Sutherland K L. Economic methods of controlling evaporation of water [J], Research (Science and its applicationto industry),1957,10(5):198~204
    Tebrügge F, Düring R A. Reducing tillage intensity—a review of results from a long-term study in Germany [J],Soil and tillage research,1999,53(1):15~28
    Tolk J A, Howell T A, Evett S R. Effect of mulch, irrigation, and soil type on water use and yield of maize [J], Soiland Tillage Research,1999,50(2):137-147
    Unger P W. Infiltration of simulated rainfall: tillage system and crop residue effects [J], Soil Science Society ofAmerica Journal,1992,56(1):283~289
    Unger P W. Straw mulch effects on soil temperatures and sorghum germination and growth [J], AgronomyJournal,1978,70(5):858~864
    Unger P W. Straw mulch rate effects on soil water storage and sorghum yield [J], Soil Science Society of AmericaJournal,1978,42(3):486~491
    Waggoner P E, Miller P M, DE Roo H. C. Plastic mulching: principles and benefits [J], Bull. Conn. Agric. Exp.Stn.,1960,634
    Wilson G V, Yunsheng L, Essington M E, et al. Tillage and cover crop effects on saturated and unsaturatedtransport of fluometuron [J], Soil Science Society of America Journal,1998,62(1):46~55
    Wu C L, Chau K W, Huang J S. Modelling coupled water and heat transport in a soil–mulch–plant–atmospherecontinuum (SMPAC) system [J], Applied mathematical modelling,2007,31(2):152~169
    XIAO H, ZHENG X. Effects of soil warming on some soil chemical properties [J]. Soil and Environmental Sciences,2000,4:316-321
    Zavalloni C, Alberti G, Biasiol S, et al. Microbial mineralization of biochar and wheat straw mixture in soil:A short-term study [J], Applied Soil Ecology,2011,(50):45-51
    Zeng L S, Zhou Z F, Shi Y X. Environmental Problems and Control Ways of Plastic Film in Agricultural Production [J], Applied Mechanics and Materials,2013,295-298:2187-2190
    Zhang H, Liu Q, Yu X, et al. Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut (Arachis hypogaea) cultivated land in the Yimeng Mountainous Area, China [J], Agriculture, Ecosystems&Environment,2012,158:164-171
    Zhao H, Xiong Y C, Li F M, et al. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem [J], Agricultural Water Management,2011,104:68-78
    Zhou L M, Jin S L, Liu C A, et al. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: Opportunities and challenges in a semiarid agroecosystem [J], Field Crops Research,2012,126:181-188
    安富博,丁峰.甘肃省民勤县土地荒漠化的发展趋势及其防治[J],干旱区资源与环境,2000,14(2):41-47
    卜玉山,李伟,周秋香,等.寒旱区地膜覆盖与施肥对土壤作物的效应分析[J],中国农学通报,2013,29(3):69-75
    蔡焕杰,邵光成,张振华.荒漠气候区膜下滴灌棉花需水量和灌溉制度的试验研究[J],水利学报,2002(11):119-123
    蔡焕杰,邵光成,张振华.棉花膜下滴灌毛管布置方式的试验研究[J],农业工程学报,2002,18(1):45-48
    蔡立群.不同保护性耕作措施对黄土高原旱地农田SPAC系统中水分运移特性的影响研究[D].兰州:甘肃农业大学,2009
    蔡晓布,钱成,张永青,等.秸秆还田对西藏中部退化土壤环境的影响[J].植物营养与肥料学报,2003,9(4):411-415
    蔡正勇,许满生.膜上灌的几种形式[J].农民致富之友,2010,(10):87
    常兆丰,韩福贵,仲生年.民勤荒漠区近50a气温、降水对全球变暖的响应[J],干旱区资源与环境,2009,23(9):95-99
    常兆丰,张剑挥,唐进年,等.河西绿洲边缘积沙带与环境因子的关系[J],生态学杂志,2012,31(6):1548-1555
    常兆丰.民勤人工绿洲的形成、演变及其可持续性探讨[J],干旱区研究,2008,25(1):1-9
    陈芳,魏怀东,周兰萍,等.石羊河流域下游民勤县典型荒漠土壤光谱特征分析[J],中国农学通报,2013,29(5):183~186
    陈荷生.西北干旱区水资源开发引起环境变化的认识[J],中国沙漠,1987,7(2):1-2
    陈丽娟,张新民,王小军,等.不同土壤水分处理对膜上灌春小麦土壤温度的影响[J].农业工程学报,2008,24(4):9-13.
    陈素英,张喜英,刘孟雨.玉米秸秆覆盖麦田下的土壤温度和土壤水分动态规律[J].中国农业气象,2002,23(4):34-37
    陈素英,张喜英,裴冬,等.玉米秸秆覆盖对麦田土壤温度和土壤蒸发的影响[J],农业工程学报,2005,21(10):171~173
    程炳文,买自珍,王勇,等.麦草与地膜二元覆盖对玉米田间生态环境及产量影响[J],陕西农业科学,2005,(3):30-32,84
    程冬玲,林性粹,蔡焕杰.膜下滴灌技术对新疆绿洲农业持续发展的效应[J].干旱地区农业研究,2005,23(2):59-62.
    戴晟懋,邱国玉,赵明.甘肃民勤绿洲荒漠化防治研究[J],干旱区研究,2008,25(3):319-324
    单立山,李毅,任伟,等.河西走廊中部两种荒漠植物根系构型特征[J],应用生态学报,2013,24(1):25-31
    邓纯宝.日本地膜覆盖栽培的现状与动向[J],辽宁农业科学,1982,3:50-52
    邓玉龙,张乃明.设施土壤pH值与有机质演变特征研究[J].生态环境,2006,15(2):367-370.
    邓振镛.铺上了沙砾的农田[J],科学大众,1966(5):6-7
    丁宏伟,王贵玲,黄晓辉.红崖山水库径流量减少与民勤绿洲水资源危机分析[J],中国沙漠,2003,23(1):84-89
    丁昆仑M.J.Hann耕作措施对土壤特性及作物产量的影响[J],农业工程学报,2000,16(3):28-31
    董立国,许浩,张源润,等.宁夏黄土丘陵区冬小麦农田土壤呼吸特征及影响因素分析[J].干旱区资源与环境,2013,27(1):75-80
    杜连风,张维理,武淑霞,等.长江三角洲地区不同种植年限保护菜地土壤质量初探[J].植物营养与肥料学报,2006,12(1):133~137.
    俄有浩,严平,仲生年,等.民勤沙井子地区地下水动态研究[J],中国沙漠,1997,17(1):70-76
    法国新闻科技处.塑料在农业应用的多样性——法国农用塑料应用的特点和实效介绍[J],国外塑料,2004,22(3):49-50
    樊惠芳,张朝晖,罗碧玉,等.地膜小麦膜缝灌节水增产试验研究[J].水土保持研究,2002,9(2):128-129.
    冯国章,李佩成.西北内陆河区水资源天然分布的缺陷及其持续开发利用的对策[J],干旱地区农业研究,1997,15(3):64-71
    冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,(3):137-140
    傅明权,李倩,杨静.表面活性剂在农业节水中的应用[J],同用化学品科学,1999,(4):34-37
    高安.沙地秸杆覆盖蓄水保墒试验研究[J],中国沙漠,1995,15(3):261-265
    高志海.基于RS和GIS的绿洲植被与荒漠化动态研究[D],北京林业大学,2003
    顾烈烽.新疆生产建设兵团棉花膜下滴灌技术的形成与发展[J].节水灌溉,2003,1:27-29.
    韩丙芳,田军仓,杨金忠.玉米膜上灌溉条件下土壤水,热运动规律的研究[J].农业工程学报,2007,23(12):85-89.
    韩泽华.玉米生物覆盖技术[J],农业技术与装备,2012,16:60-61
    韩忠.地膜和秸秆二元覆盖技术的原理和实践[J],山西农业大学学报(自然科学版),1997,(3):245-249
    何雨江,汪丙国,王在敏,等.棉花微咸水膜下滴灌灌溉制度的研究[J],农业工程学报,2010,26(7):14-20
    洪晓强,赵二龙,宋宏伟.秸秆覆盖对农田土壤水分及玉米生长的影响[J],中国农学通报,2006,21(8):177-179
    洪晓强.渭北旱塬不同耕作法蓄水效果研究[J],水土保持通报,1996,16(4):51-53
    侯扶江,常生华,南志标.建立草地农业系统,治理民勤荒漠化[J],草业科学,2009,26(12):68-74
    侯连涛,焦念元,韩宾,等.不同覆盖方式对土壤水分分布的影响[J],灌溉排水学报,2007,26(1):47-48
    胡晓棠,李明思.膜下滴灌对棉花根际土壤环境的影响研究[J],中国生态农业学报,2003,11(3):121-123
    胡晓棠,张旺锋.膜下滴灌条件下棉株温湿度微环境[J],中国农业气象,2005,26(4):259-262
    虎胆·吐马尔白,吴旭春,迪力达.不同位置秸秆覆盖条件下土壤水盐运动实验研究[J],灌溉排水学报,2006,25(1):34-37
    虎胆·吐马尔白.作物在秸秆覆盖条件下土壤水分运动的实验分析与数值模拟[D],乌鲁木齐:新疆农业大学,1996
    黄丽芬,庄恒扬,刘世平,等.长期少免耕对稻麦产量与土壤肥力的影响[J],扬州大学学报(自然科学版),1999,2(1):48-52
    黄子琛,刘家琼,鲁作民,等.民勤地区梭梭林衰亡原因的初步研究[J],林业科学,1983,19(1):82-87
    贾宝全,张红旗,张志强,等.甘肃省民勤沙区土壤结皮理化性质研究[J],生态学报,2003,23(7):1442-1448
    贾大林,司徒淞,王和洲.节水农业持续发展研究[J],中国生态农业学报,1994,2(2):30-36
    江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J],土壤通报,2001,32(5):209-213
    姜妮,高海文,金龙飞,等.地表覆膜对柑橘果实糖积累及蔗糖代谢酶活性的影响[J],中国农业科学,2013,46(2):317-324
    颉耀文,袁春霞,史建尧.近15年甘肃民勤湖区景观格局动态变化分析[J],兰州大学学报(自然科学版),2008,44(1):11~16
    井学辉.民勤绿洲景观格局与动态及荒漠化成因分析[D],河北农业大学,2005
    瞿汶,刘德祥,赵红岩,等.甘肃省近43年降水资源变化对农业的影响[J],干旱区研究,2007,24(1):56-60
    康虎,敖李龙,秦丽珍,等.生物质可降解地膜的田间降解过程及其对玉米生长的影响[J],中国农学通报,2013,29(6):54-58
    康绍忠.作物覆盖条件下田问水热运移的模拟研究[J],水利学报,1993(3):11-17
    李丹,周文昊,吕永清.民勤灌区土壤特性与地表覆被的关系研究[J],人民黄河,2010,32(7):83-85
    李光棣,李锋瑞,施坰林.保护性农业的研究现状、进展与展望[J],中国沙漠,2008,28(6):1086-1094
    李海涛,许学工,肖笃宁.民勤绿洲水资源利用分析[J],干旱区研究,2007,24(3):287-295
    李玲玲,黄高宝,秦舒浩,等.保护性耕作对绿洲灌区冬小麦产量形成的影响[J],作物学报,2011,37(3):514-520
    李玲玲,黄高宝,张仁陟,等.免耕秸秆覆盖对旱作农田土壤水分的影响[J],水土保持学报,2005,19(5):94-96
    李梅婷,田军仓,勒敏生.缓释肥料在膜上灌技术中的应用研究进展[J].晨業科學研究,2006,27(2):58-61.
    李敏,李毅,曹伟,等.不同尺度网格膜下滴灌土壤水盐的空间变异性分析[J],水利学报,2009,40(10):1210-1218
    李明思,康绍忠,杨海梅.地膜覆盖对滴灌土壤湿润区及棉花耗水与生长的影响[J],农业工程学报,2007,23(6):49-54
    李荣,王敏,贾志宽,等.渭北旱塬区不同沟垄覆盖模式对春玉米土壤温度、水分及产量的影响[J],农业工程学报,2012,28(2):106-113
    李生福.陇中半干旱地区少免耕对土壤含水量的影响初报[J],土壤通报,1994,25(3):133-134
    李素玲,李静,张奉营.浅谈低压管道输水与膜上灌相结合的节水灌溉技术[J].排灌机械,2005,23(4):44-45.
    李新举,张志国,刘勋岭,等.秸秆覆盖对土壤水盐运动的影响[J],山东农业大学学报(自然科学版),2000,31(1):38-40
    李新举,张志国.秸秆覆盖对土壤水分蒸发及土壤盐分的影响[J],土壤通报,2009,30(6):257-258
    李毅,邵明安.新疆农田作物覆膜地温极值的时空变化[J],应用生态学报,2004,15(11):2039-2044
    李毅,王文焰,门旗,等.宽地膜覆盖条件下土壤温度场特征[J],农业工程学报,2001,17(3):32-36
    李毅,王文焰,王全九.论膜下滴灌技术在干旱——半干旱地区节水抑盐灌溉中的应用[J].灌溉排水,2001,20(2):42-46.
    李应海,田军仓,马波宁.膜上灌入渗规律及水流运动特性试验研究[J].宁夏工程技术,2005,4(4):351-353.
    李应海,田军仓.膜上灌玉米节水灌溉制度与氮磷配比试验研究[J].节水灌溉,2009,(12):12-13.
    李援农,刘玉洁,李芳红,等.膜上灌水技术的生态环境效应研究[J].农业工程学报,2005,21(11):60-63.
    李月兴,张宝丽,魏永霞.秸秆覆盖的土壤温度效应及其对玉米生长的影响[J],灌溉排水学报,2011,30(2):82-85
    林叶春,卜洪震,胡跃高,等.南方稻田冬季马铃薯覆盖栽培对土壤水热及产量的影响[J],农业现代化研究,2012,33(002):216-220
    刘露,张玉鑫,王锐,等.不同地膜覆盖对土壤温度和胡萝卜营养生长的影响[J],甘肃农业大学学报,2010,45(5):79-82
    刘目兴,刘连友,王静爱,等.农田休闲期不同保护性耕作措施的防风效应研究[J],中国沙漠,2007,27(1):46-51
    刘伟峰,赵满全,田海清,等.农用地膜带来的环境污染和回收技术的分析研究[J],中国农机化,2003,(5):34-36
    刘祥雷,季善贵,付廷贵,等.覆膜农田地膜残留量演变的调查与研究[J],花生科技,2000,(4):11-14
    刘亚传.民勤绿洲生态环境演变的初步研究[J],生态学杂志,1984,(3):1-4
    刘义国,刘永红,刘洪军,等.秸秆还田量对土壤理化性状及小麦产量的影响[J],中国农学通报.2013,29(3):131~135
    刘永忠,张克强,王根全,等.旱地农业覆盖栽培技术研究进展[J],中国农学通报,2005,21(5):202-205
    刘玉平.荒漠化评价的理论框架[J],干旱区资源与环境,1998,12(3):74-82
    卢秉林,车宗贤,包兴国,等.河西绿洲灌区玉米秸秆带膜还田腐解特征研究[J],生态环境学报,2012,21(7):1262-1265
    吕江南,王朝云,易永健,农用薄膜应用现状及可降解农膜研究进展[J],中国麻业科学,2007,29(3):150-156
    马东豪,王全九,来剑斌.膜下滴灌条件下灌水水质和流量对土壤盐分分布影响的田间试验研究[J],农业工程学报,2005,21(3):42-46
    马金辉,韩金华,张艳林.近10a来民勤盆地地下水埋深的空间异质性分析[J].干旱区地理,2013,36(1):1-7
    马金珠,魏红.民勤地下水资源开发引起的生态与环境问题[J],干旱区研究,2003,20(4):261-265
    马金珠,朱中华,于保静.石羊河流域水环境演化与水资源可持续利用[M],兰州:兰州大学出版社,2005
    马立鹏,李晓兵.甘肃省荒漠化宏观监测研究[J],中国沙漠,2002a,22(2):122-128
    马立鹏,徐当会,王辉.河西地区土地荒漠化程度评价[J],甘肃农业大学学报,2002b,37(1):50-56
    马绍休.民勤地区荒漠化研究[D],中国科学院寒区旱区环境与工程研究所,2007
    马耀光,张保军,罗志成,等.旱地农业节水技术[M],北京:化学工业出版社,2003
    买自珍,程炳文,王勇,等.麦草与地膜覆盖对玉米田间生态环境及产量的影响[J],中国生态农业学报,2007,15(2):66-68
    买自珍,蒋儒龄,袁丕成,等.宁夏中部扬黄灌区地膜玉米膜孔灌溉技术研究[J].干旱地区农业研究,2011,29(2):53-58.
    孟毅,蔡焕杰,王健,等.麦秆覆盖对夏玉米的生长及水分利用的影响[J],西北农林科技大学学报:自然科学版,2005,33(6):131~135
    慕彩芸,马富裕,郑旭荣,等.覆膜滴灌棉田蒸散量的模拟研究[J],农业工程学报,2005,21(4):25-29
    潘爱兵,王瑞萍.秸秆覆盖节水灌溉技术的增产机理与效果[J],山西水土保持科技,2005,2(19):19-20
    潘从银.民勤县可持续发展问题研究[D],甘肃农业大学,2008
    庞绪,何文清,严昌荣,等.耕作措施对土壤水热特性和微生物生物量碳的影响[J].生态学报,2013,33(4):1308-1316
    彭鸿嘉,傅伯杰,陈利顶,等.甘肃民勤荒漠区植被演替特征及驱动力研究——以民勤为例[J],中国沙漠,2004,24(5):628-633
    齐鹏,张仁陟,王晓娇,等.基于物元模型的民-绿洲土地生态安全评价[J],中国沙漠,2012,32(5):1494-1500
    秦永果.涌泉灌与膜上灌技术相结合在大田宽行作物中应用的可行性研究[J].山西水利科技,2007,4:030.
    邵爱军.覆盖保墒技术措施的应用及研究现状[J],中国农村水利水电,1996(3):43-44
    施坰林.覆盖免耕储水灌溉生育期灌溉水利用效率[J],中国水利学会2005学术年会论文集——节水型社会建设的理论与实践[C].2005:346-350
    隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟Ⅰ一数学模型[J],地理学报,1992,47(1):10-14
    隋红建,曾德超.地面覆盖应用与研究的现状及发展方向[J],农业工程学报,1990,6(4):26-34
    孙博,解建仓,汪妮,等.不同秸秆覆盖量对盐渍土蒸发水盐变化的影响[J],水土保持学报,2012,26(1):246-250
    孙博,解建仓,汪妮,等.秸秆覆盖对盐渍化土壤水盐动态的影响[J],干旱地区农业研究,2011,29(4):180-184
    孙丹峰.民勤1988-1997年间土地荒漠化社会经济驱动力分析[J],农业工程学报,2005,21(z1):131-135
    塔依尔,吕新,马兰花,等.膜下滴灌棉田潜热和感热通量分配特征分析[J],湖北农业科学,2006,45(2):162-164
    谭军利,康跃虎,焦艳平,等.滴灌条件下种植年限对大田土壤盐分及pH值的影响[J].农业工程学报,2009,25(9):43-50.
    唐立松,张佳宝,程心俊,等.干旱区绿洲荒漠交错带土地退化及生态重建[J],干旱区研究,2002,19(3):43-48
    陶希东,石培基,巨天珍.西北干旱区水资源利用与生态环境重建研究[J],干旱区研究,2001,15(1):18-22
    陶希东,赵鸿婕.河西走廊生态脆弱性评价及其恢复与重建[J],干旱区研究,2002,19(4):7-12
    田军仓,韩丙芳,李应海,等.膜上灌玉米水肥耦合模型及其最佳组合方案研究[J].沈阳农业大学学报,2004,35(5):396-398.
    田军仓,王听华,白树敏.宁夏干旱地区管灌与膜上灌相结合的灌水技术试验研究[J].农田水利与小水电,1994,4(46):9-12.
    汪丙国,靳孟贵,王贵玲.农田秸秆覆盖的土壤水分效应[J],中国农村水利水电,2010,6:76-84
    王宝鉴,张强,张杰.对民勤绿洲生态退化问题的探讨[J],干旱气象,2004,22(4):87-92
    王昌全,魏成明,李廷强,等.不同免耕方式对作物产量和土壤理化性状的影响[J].四川农业大学学报,2001,19(2):152-154
    王春霞,王全九,刘建军,等.滴灌施钾肥土壤水盐分布特征的田间试验[J],农业工程学报,2010,26(3):25-31
    王峰,杨明庆,景明,等.留茬覆盖储水灌溉对豌豆出苗及水分利用效率的影响[J],沈阳农业大学学报,2007,38(1):110-113
    王怀松,张志斌,陈钰辉.意大利蔬菜生产与农用塑料的使用概况[J],农业工程学报,2005,(S2):10-12
    王辉,董元华,李德成,等.不同种植年限大棚蔬菜地土壤养分状况研究[J].土壤,2005,37(4):460-462.
    王建东,龚时宏,马晓鹏,等.地下滴灌条件下水热运移数学模型与验证[J],水利学报,2010,41(3):368-378
    王琪,史基安,张中宁,等.石羊河流域环境现状及其演化趋势分析[J],中国沙漠,2003,23(1):46-52
    王荣堂,王有宁,董秀荣.地膜覆盖棉花、玉米、大豆生育盛期的降温效应[J],生态学报,2003,23(8):1667-1672
    王式功,董光荣,陈惠忠,等.沙尘暴研究的进展[J],中国沙漠,2000,20(4):349-356
    王拴庄.农田秸秆覆盖节水效应及节水机理研究[J],灌溉排水,1991,10(4):19-25
    王维,郑曙峰,路曦结,等.农田秸秆覆盖技术研究进展[J],安徽农业科学,2009,37(18):8343-8346
    王献志,盛祝梅,叶国民,等.农田农地膜残留污染现状及对策[J],安徽农业科学,2003,31(2):330-331
    王小军,邓岚,成自勇,等.膜上灌春小麦调亏效应研究[J].灌溉排水学报,2006,25(6):82-86.
    王小军.河西内陆灌区膜上灌调亏技术与土壤水热高效利用研究[D].甘肃农业大学,2006.
    王艳芳.全覆盖条件下玉米田间水分运移的数值模拟[J],灌溉排水,1997,16(1):10-13
    王耀林.我国塑料地膜栽培技术的引进及发展情况[J],农业工程技术,1982(2):8-9
    王谊,马富裕,樊华,等.播期和晚播秸秆覆盖对加工番茄干物质积累和产量的影响[J],干旱地区研究,2012,30(3):25-30
    王尊亲.中国盐渍土[M],北京:科学出版社,1993:250-311
    魏怀东,高至海,丁峰.甘肃省民勤县土地荒漠化动态监测研究[J],水土保持学报,2004,18(2):32-36
    魏怀东,周兰萍,徐先英,等.2003-2008年甘肃民勤绿洲土地荒漠化动态监测[J],干旱区研究,2011,28(4):572-579
    吴春荣.甘肃民勤沙漠化灾害的成因及防治对策[J],中国科技成果,2008(15):14-17
    吴从林,黄介生,沈荣开.地膜覆盖条件下SPAC系统水热耦合运移模型的研究[J],水利学报,2000(11):89-96
    武际,郭熙盛,鲁剑巍,等.连续秸秆覆盖对土壤无机氮供应特征和作物产量的影响[J],中国农业科学,2012,45(9):1741~1749
    武强,董东林.试论生态水文学主要问题及研究方法[J],水文地质工程地质,2001,28(2):69-72
    肖军,赵景波.农田塑料地膜污染及防治[J],四川环境,2005,24(1):102-105
    谢军飞,李玉娥.土壤温度对北京旱地农田N20排放的影响[J].中国农业气象,2005,26(1):7-10
    谢忠奎,王亚军,祁旭升等.河西绿洲区储水灌溉节水技术研究[J],中国沙漠,2000,12,20(4):451-454
    邢述彦,刘虎,郑秀清,等.秸秆覆盖厚度对冻融期土壤温度的影响[J],太原理工大学学报,2012a,43(6):741-744
    邢述彦,郑秀清,陈军锋.秸秆覆盖对冻融期土壤墒情影响试验[J],农业工程学报,2012b,28(2):90-94
    徐亚中,王云芳.日本地膜覆盖技术座谈会[J],烟草科技,1983,47(2):56-58
    许香春,王朝云.国内外地膜覆盖栽培现状及展望[J],中国麻业,2006,28(1):6-11
    严昌荣,梅旭荣.农用薄膜残留污染的现状与防治[J],农业工程学报,2006,11:277-280
    杨安中,王敏,张从宇.秸秆与地膜二元覆盖对小麦田间生态环境及产量影响[J],水土保持学报,2003,17(3):181~183
    杨安中.水稻秸秆与地膜二元覆盖旱作栽培效应研究[J],水土保持学报,2000,14(2):66-69
    杨邦杰,隋红建.土壤水热运动模型及其应用[M],北京:中国科学技术出版社,1997:73-75
    杨青华,贺德先,刘华山.液体地膜覆盖对棉花产量与土壤环境的影响[J].农业工程学报,2005,21(5):123-126
    杨少俊,张绢.膜上灌的几种形式[J].北京农业:实用技术,2009(2):45-45.
    杨自辉.民勤沙井子地区40a来荒漠植被变迁初探[J],中国沙漠,1999,19(4):395-397
    叶永成,白福臣.我国农膜技术的发展方向[J],塑料工业,2002,30(6):1-3
    袁海燕.“白色革命”与农业的可持续发展[J],宁夏农学院学报,2001,2:73-75
    袁生禄.石羊河流域水资源大规模开发对生态环境的影响[J],干旱区资源与环境,1991,5(3):44-52
    臧英Experimental Study on Soil Wind Erosion with Conservation Tillage Treatment [D],中国农业大学博士学位论文,2003
    翟治芬,赵元忠,景明,等.秸秆和地膜覆盖下春玉米农田腾发特征研究[J],中国生态农业学报,2010,18(1):62-66
    张朝勇,蔡焕杰.膜下滴灌棉花土壤温度的动态变化规律[J],干旱地区农业研究,2005,23(2):11~15
    张光辉,朱立选.渭北旱塬膜上灌小麦研究初报[J].水土保持研究,1999,6(1):64-67.
    张海林,陈阜,秦耀东,等.覆盖免耕夏玉米耗水特性的研究[J],农业工程学报,2002,18(2):36-40
    张海林,高旺盛,陈阜,等.保护性耕作研究现状——发展趋势及对策[J],中国农业大学学报,2005,10(1):16-20
    张海元.甘肃河西走廊绿洲的荒漠化及治理对策[J],甘肃农业,2001(2):27-29
    张会茹.棉花膜上灌水技术的研究与推广应用[J].水利科技与经济,2010,16(5):530-531.
    张金霞,刘成元,施炯林,等.河西灌区免耕秸秆覆盖对春小麦播种及出苗的影响[J],甘肃农业大学学报,2006,41(4):31-34
    张金霞,施坰林,刘成元.绿洲灌区留茬覆盖免耕储水灌溉在休闲期的节水效应[J],甘肃农业大学学报,2007,42(1):114-118
    张金霞.秸秆覆盖免耕储水灌溉对春小麦耗水特征及灌溉水分利用效率的影响[J],中国沙漠,2012,32(5):1501~1506
    张群,成自勇,张芮,等.膜上调亏灌溉对制种玉米产量的影响[J].灌溉排水学报,2012,31(1):141-142.
    张仁陟,黄高宝,蔡立群,等.几种保护性耕作措施在黄土高原旱作农田的实践[J],中国生态农业学报,2013,21(1):61-69
    张软斌.陵川县二元覆盖效果明显[z],山西年鉴,1998
    张赛,王龙昌.秸秆覆盖对中小型土壤动物动态变化的影响[J],农机化研究,2013,35(2):121-125
    张伟,吕新,李鲁华,等.新疆棉田膜下滴灌盐分运移规律[J],农业工程学报,2008,24(8):15-19
    张伟,汪春,梁远,等.残茬覆盖对寒地旱作区土壤温度的影响[J],农业工程学报,2006,22(5):70-73
    张伟霞,贺兴宏.棉花膜上灌经验总结[J].中国科技信息,2008,6:56-57.
    张蔚,蒋志荣,陈锋,等.地面覆盖法调节土壤水热状况的研究进展[J],安徽农业科学,2008,36(19):8184-8186
    张喜英,陈素英,裴冬,等.秸秆覆盖下的夏玉米蒸散,水分利用效率和作物系数的变化[J],地理科学进展,2002,21(6):583-592
    张永玲,成自勇,肖让,等.春小麦膜上灌最佳覆膜宽度和单宽流量试验研究[J].甘肃农业大学学报,2008d,43(4):124-127.
    张永玲,成自勇,肖让.河西内陆灌区春小麦,玉米膜上灌水技术和地膜覆盖效应试验[J].甘肃农业大学学报,2005a,40(1):59-64.
    张永玲,肖让,成自勇.河西内陆灌区膜上灌节水增产技术[J].农机化研究,2008c,(4):218-220.
    张永玲,肖让,成自勇.膜上灌对春小麦苗期增温效应的研究[J].新疆农业科学,2008b,45(2):248-251.
    张永玲,肖让,成自勇.膜上灌对河西绿洲灌区玉米全生育期土壤贮水量的影响[J].安徽农业科学,2010a,(2):1091-1092.
    张永玲,肖让,成自勇.膜上灌对河西绿洲灌区玉米水分利用效率和产量的影响[J].节水灌溉,2010b,5:9-10
    张永玲,肖让,成自勇.膜上灌对玉米苗期土壤温度的影响[J].灌溉排水学报,2008a,27(4):96-98.
    张永玲.膜上灌对河西内陆灌区春小麦,玉米灌水效果及产量的影响[D].甘肃农业大学,2005b.
    张振华,蔡焕杰,柴红敏,等.膜上灌作物需水量和地膜覆盖效应试验研究[J][J].灌溉排水,2002,21(1):11-14.
    张治,田富强,钟瑞森,等.新疆膜下滴灌棉田生育期地温变化规律[J],农业工程学报,2011,27(1):44-51
    张治国,徐琪,R.L.Blevins长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J],土壤学报,1998,35(3):385-389
    赵华,马金珠,朱高峰,等.甘肃省民勤盆地地下水环境变化及原因探讨[J],干旱区研究,2004,21(3):210-214
    智一标.玉米和小麦地覆盖保墒机理初探[A],节水农业应用基础研究进展[M],北京:中国农业出版社,1995,182-190
    周凌云,周刘宗,徐梦雄.农田秸秆覆盖节水效应研究[J],生态农业研究,1996,4(3):49-52
    周凌云.秸秆覆盖对农田土壤物理条件影响的研究[J],农业现代化研究,1997,18(5):311-313
    朱琳,刘春晓,王小华,等.水稻秸秆沟埋还田对麦田土壤环境的影响[J],生态与农村环境学报,2012,28(4):399-403
    朱晓炜,李栋梁,李耀辉.民勤地区年沙尘暴发生频次研究[J],干旱气象,2010,28(4):401-406
    朱政.治理“白色污染”实现农业可持续发展[J],新疆农机化,2004,(5):22-23
    朱自玺,赵国强,邓天宏,等.秸秆覆盖麦田水分动态及水分利用效率研究[J],生态农业研究,2000,8(1):34-37
    庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44
    刘德鸿,柳开楼,王发园,等.保护地土壤水溶性盐分与土壤酶活性的关系研究[J].河南农业科学,2010(010):53-56.
    谭军利,康跃虎,焦艳平,等.不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征[J].农业工程学报,2008,24(6):59-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700