用户名: 密码: 验证码:
浙江省土壤数据库的建立与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是人类生活和生产最基本、最广泛、最重要的自然资源。随着全球性的粮食安全、土壤退化、生态环境恶化等问题日益突出,系统、及时、准确地掌握和管理土壤资源信息的需求越来越迫切。“数字土壤”是土壤学融合现代地学和信息科学的产物。建设“数字土壤”是国情所需,也是教学、科研以及农业、国土、水利、环保等职能部门的迫切要求。从目前我国土壤信息化的发展状况看,土壤数据库建设是我国数字土壤急需优先开展的重要基础性工作。本文以第二次土壤普查成果及相关资料为基础,建立覆盖浙江全省的大、中、小系列比例尺土壤数据库,并对当前土壤数据库建设中普遍面临的问题,包括土壤图的数字化修复与更新、不同土壤分类体系的参比等进行分析与探讨。在此基础上,借助相关理论与方法,应用浙江省土壤数据库,分别对土壤分类多样性及景观格局特征、土壤可蚀性K值及分布特征、城区扩张和土壤资源时空动态变化进行分析与评价。主要研究结果如下:
     (1)浙江省土壤数据库建立浙江省数据库包括空间数据库和属性数据库两大部分。空间数据库包含1:100万、1:50万、1:25万和1:5万四种比例尺。属性数据库中包含全省2677个剖面数据及表耕层数据。浙江省土壤数据库的建成实现了浙江省第二次土壤普查资料的数字化、信息化,在一定程度上奠定浙江省“数字土壤”的基础。
     (2)传统土壤图的数字修复与更新基于浙江省土壤数据库后期完善更新的需要,针对浙江省第二次土壤普查图件中存在的问题,应用遥感与地理信息技术,进行修复和更新传统土壤图的研究。1)传统土壤图修复主要包括三方面内容:数学基础修复解决原有土壤普查图件坐标缺失问题;图斑要素修复是通过判读历史遥感影像解决要素模糊、图件破损、要素编绘不合理等问题:符号注记修复是解决图例符号陈旧和不规范问题。2)土壤图更新从三个方面进行:数学基础更新是将图件地理参考从北京54坐标更新到西安80或国家大地2000坐标系,以匹配测绘、国土等行业空间数据;行政区划更新是将土壤普查图件按现有行政区划进行调整,以满足区域土壤资源管理和使用的需要;图斑要素更新是借助高分辨率遥感影像或土地利用图对土壤普查图件中基础地理信息要素,包括水系、交通、建设用地等要素进行更新。从而,保持土壤图斑的现势性。
     (3)浙江省土壤发生分类与土壤系统分类参比利用浙江省1:5万土壤详查数据库,对土壤发生分类土种与中国土壤系统分类亚类进行参比,编制土壤系统分类亚类分布图。结果表明,发生分类基层分类单元归属较为清楚,但高级单元关系较为复杂。99个土属有62个参比归属唯一,277个土种有252个参比归属唯一。通过土壤分类系统参比,将大比例尺土壤普查成果转换成系统分类体系是可行的,可以满足1:10万的系统分类亚类制图要求。浙江省土壤参比后归属于8个土纲,以雏形土土纲面积最大,占总面积的31.3%;人为土土纲次之,占总面积的21.4%,有机土土纲面积最小,土壤区域分布规律较为明显。这些结果对土壤系统分类研究具有一定的参考价值,也为省域范围的系统分类制图与应用提供了范例。
     (4)浙江省土壤多样性研究以全省1:5万土壤数据库为基础,利用多样性分析理论与方法,对浙江省不同地市范围的土壤多样性、土壤类型景观分布格局特征、普查土种的稀有程度进行了分析与评价。结果表明,1)土壤分类单元级别是影响土壤多样性评价结果的一个非常重要的因素,区域土壤多样性的评价必须明确土壤分类级别;2)在土种层次,浙江省11个市的多样性指数从高到低依次为绍兴、台州、宁波、杭州、金华、湖州、舟山、温州、衢州、丽水、嘉兴;3)在全省的10个土类中,红壤面积最大,占全省土壤总面积的40.1%;水稻土图斑个数最多,占全省图斑总数的51.3%;黄壤平均图斑面积最大,约为2.85km2;各土类形状指数仍属简单;4)根据斑块个数、分布面积及分布多样性指数分别评选出20个代表性土种及稀有土种,相关结果可作为土壤资源保护与利用的依据。
     (5)浙江省土壤可蚀性利用EPIC模型估算了浙江省277个土种的土壤可蚀性K值,编制了全省30m格网分辨率的土壤可蚀性K值分布图。结果表明,1)浙江省277个土种的可蚀性K值变化范围为0.116-0.425;2)红壤可蚀性K值与有机碳含量、砂粒含量呈显著负相关,与粉粒含量呈显著正相关,与黏粒含量的相关性不显著;3)浙江省土壤可蚀性K值以中低侵蚀、中可蚀为主,其土壤面积分别占浙江省土壤总面积的64.2%和26.4%。
     (6)城市扩张对土壤资源的影响基于长时间序列历史遥感影像和1:5万土壤数据库,对浙北平原区1969-2009年间,20个城市的主城区扩张占用土壤资源状况进行了分析与评价。结果表明,1)浙北平原主城区面积由1969年的165km2增加到2009年的1171km2,年均扩张25.8km2;2)不同阶段的扩张速度存在一定差异。其中,1995-1999年是谷点,1999年至2005年扩张最快,此6年期间扩张面积占总扩张面积的42.7%;3)1987-2009年间,城区扩张导致土壤资源面积缩减835.6km2,侵占土壤类型以水稻土和潮土为主,113个土种遭受侵占,乌潮土、乌松土和黄松土三个土种消失,不同阶段和不同城市侵占的土壤类型存在一定差异。
     本研究证明,浙江省土壤数据库在农业、国土、水利等部门具有极为重要的应用价值。然而,限于时间等因素,在土壤数据库的更新,特别是土壤图斑属性的更新,以便保持数据的现时性等方面还有很长的路要走。作为十分重要的基础数据,土壤数据库的应用也是极为广泛的。本论文仅尝试了在土壤多样性、土壤可蚀性和土壤资源动态等三个方面的应用,还有其他众多领域、学科和部门亟需进行相关的应用研究。
Soil is one of the most fundamental natural resources, which supports varied forms of life on the Earth surface. With the increasing challenges from global food shortage, environment degradation, ecology deterioration, etc., there is an ever urgent demand on managing soil resource in a systematical, efficient, and accurate way. Building digital soils is an inevitable task for integrating traditional soil science, modern earth science, and information technology. At current stage, establishing soil database has the highest priority.
     Initiated in1979, China conducted the Second Nation Soil Survey, from which, mega quantity of data and substantial achievements have been obtained. To make better use of the results and also to keep abreast of the development in science and technology, soil database construction emerged as an urgent task. This dissertation reported the establishment of a soil database for Zhejiang Province, which was built on the materials and relative data from the Second National Soil Survey. Then, to improve the quality of database and to extend its applications, this dissertation studied the practice of updating soil map from the Second National Soil Survey and constructing a referencing system between the Genetic Soil Classification of China (GSCC) and Chinese Soil Taxonomy (CST). In the arena of soil database applications, this study evaluated and analyzed the pedo-taxa abundance, soil erodibility and the impact of urbanization on soil resources. Main results are as follows:
     (1) Establishment of soil database, Zhejiang Province The soil database of Zhejiang includes two main parts:spatial database and attribute database. Spatial database is comprised of small scale (1:1000000,1:500000), medium scale (1:250000) and large scale (1:50000) soil geographic databases. Attribute database contains2677soil profiles, including typical profiles, statistical profiles and nutrient data of surface layers. The established soil database of Zhejiang generated a seamless provincial-wide digital soil map well-linked to various soil attributes, which to a certain extent lays a solid foundation for the construction of Zhejiang digital soil.
     (2) Soil map quality Improvement The Second National Soil Survey was conducted in1980's. Since then, three decades has been passed, substantial science and technology development has been made. By applying remote sensing and geographic information techniques, attempts were made to improve the quality of soil map, which consisted of four aspects,1) mathematic base update, which is used essentially for filling the vacancy of geodetic coordinate system. This further updated the geographic reference of soil map from the Beijing54coordinate system to the National Xi'an80coordinate system or Geodetic Coordinate System2000;2) map unit refinement, which is mainly aimed at problems of vagued feature, missing drawing and unreasonable compilation;3) symbol update, which is used to resolve the problem of outdated map symbol;4) administrative divisions update, which is to update the traditional soil maps with the latest administrative divisions to meet the needs of the regional soil resource management.
     (3) Reference system between the Genetic Soil Classification of China and Chinese Soil Taxonomy Based on the soil database of Zhejiang, associations between Soil Species in GSCC and Soil Subgroups in CST were set up, and the distribution of CST Soil Subgroup was compilated. Results showed that at the basic taxon level of GSCC, the reference relationship was relatively clear and certain, but at higher levels, the relationship became complicated. There were a total of99Soil Genus and277Soil Species in GSCC, among which,62Genus and252Species could be uniquely referenced to Soil Subgroup in CST. Therefore, it is feasible to transform the large-scaled soil map of Soil Species under GSCC from the Second National Soil Survey into the Soil Subgroup map of CST at1:100000. With this reference system, the soils of Zhejiang could be sorted into8Soil Orders, of which Cambosols was in dominance, accounting for31.3%, Anthrosols for23.4%, and Histosols had the least percentage in area. At the Order level in CST, soil distribution presented a clear spatial pattern. These findings are of values to soil classification with CST, and they provide examples for CST soil mapping of Zhejiang Province.
     (4) Pedodiversity analysis Using the1:50000soil database of Zhejiang, pedodiversity analytical theory was employed to analyze soil landscape pattern, the rarity and representativeness of Soil Species. At Soil Species level, the diversity values of11cities in Zhejiang follow the sequence as Shaoxing> Taizhou> Ningbo> Hangzhou> Jinhua> Huzhou> Zhoushan> Wenzhou> Quzhou> Lishui> Jiaxing. Among the10Soil Groups, Red soils have the largest area, Paddy soils have the maximum number of map units, and Yellow soils show the maximum average size delineation. According to the area, number of map units, spatial distribution diversity of each Species, the representative and rare Species were identified from the277Species, respectively.
     (5) Assessment of soil erodibility Soil erodibility is an important indicator for assessing the soil susceptibility to erosion and serves as a major parameter for soil erosion prediction and land use planning. With the attributes from the soil database, the soil erodibility (K) values of277Soil Species, Zhejiang Province were computed with the formula of EPIC (Erosion Productivity Impact Calculator), and the map of K value of Zhejiang was generated. Results showed that the K values ranged from0.116to0.425, which correspond to the Salt flate and Fluvio-sand ridge soil, respectively. By using the method of area weighting factor, K value for each Soil Group was estimated from all affiliated Species. The K value of10Soil Groups follows the sequence as: Coastal saline soil> Fluvio-aquic soil> Purple soil> Paddy soil> Limestone soil> Basic rock soil> Mountain meadow soil> Red soil> Yellow soil> Skel soil. Both the soil texture and soil organic carbon had great influence on the Soil erodibility. The K value of Red soil showed significant negative correlation with soil organic carbon and sand content, while a significant positive correlation with silt content. In the whole area of Zhejiang Province, moderate-low erodible soils covered64.2%, and moderate erodible soils were26.4%.
     (6) Urban Sprawl and soil resources dynamic With a case study in the Northern Zhejiang Plain, the impact of urban sprawl on soil resources was evaluated. Using satellite images acquired during1969-2009and the soil database, the urban area of the20cites in the Northern Zhejiang Plain in1969,1987,1995,1999,2005,2007,2009was derived respectively, and soil types occupied by urbanization were identified. Results showed that urban area in the Northern Plain expanded enormously around the initial urban boundary in the past40years, and the urban area of20cities increased1005km2, from165km2in1969to1171km2in2009with an annual increment rate of17%(about25.8km2/year). The increment rate in different periods varied somewhat. From1995to1999, it showed the minimum rate, while from1999to2005it presented the maximum rate, accounting for42.7%of the total expansion area. During the past30+years (1987-2009), urban sprawl occupied835.6km2soil areas, of which Paddy soils accounted for about73.6%and Fluvio-aquic soil19.3%. A total of113Soil Species were utilized by the urbanization process, while Eutric fluvio-aquic soil, Eutric fluvio-marine friable loamy soil, and Yellow-red soil were completely sealed in the region.
     With the completion of Zhejiang soil batabase and some examples of application, it demonstrated the great values and application potentials of the database. However, this database is still imperfect. Constrained by the time, a lot of work needs to be done, such as the update of soil database, especially the update of the contents of map units, so that it could provide up-to-date soil information. This study only showed its applications in soil diversity, soil erodbility, and monitoring of soil resources dynamic. It is expected that this database has vast application potentials in agriculture, land resources management, soil and water conservations, and environment etc.
引文
[1]Beck J M, Shaw J N, Chaney P L, et al. Image rectification for recompiling and digitizing soil survey maps [J].2002,57(2):95-100.
    [2]Bie S W. Soil information systems [J]. Proceedings of the meeting of the ISSS working group on soil information systems, Wageningen, The Netherlands,1975: 87.
    [3]Blum W E H. Soil degradation caused by industrialization and urbanization [M]. Proceedings of the International Conference on Problems of Anthropogenic Soil Formation, Moscow,1997:3-5.
    [4]Brockherhoff M P. An urbanizing world [J]. Population Bulletin,2000,55(3):3-44.
    [5]Brus D J, Bogaert P, Heuvelink G B M. Bayesian Maximum Entropy prediction of soil categories using a traditional soil map as soft information [J]. European Journal of Soil Science,2008,59(2):166-177.
    [6]Daily G C, Ehrlich P R. Population, sustainability, and Earth's carrying capacity [J]. BioScience,1992,42:761-771.
    [7]Duan J L, Zhang X L. Correlative comparison of pedodiversity and land use diversity between case areas from the developed east and less developed central China [J]. Journal of Geographical Sciences,2012,22(6):1101-1116.
    [8]Dumanski J, Kloosterman B, Brandon S E. Concepts, objectives and structure of the Canada Soil Information System [J]. Canadian Journal of Soil Science,1975, 55(2):181-187.
    [9]Ehrlich P R. The limits to substitution:meta-resource depletion and a new economic-ecological paradigm [J]. Ecological Economics,1989,1:9-16.
    [10]Ehrlich P R, Ehrlich A H. The value of biodiversity [J]. Ambio,1992,21(3): 219-226.
    [11]FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized world soil database (version 1.1) [DB/OL]. FAO, Rome, Italy and ⅡASA, Laxenburg, Austria,2008.
    [12]Finke PA. Quality assessment of digital soil map:Producers and users perspectives//Lagacherie P, McBratney AB, Voltz M [J]. Developments in soil science, volume 31.Netherlands:Elsevier,2006:523-542.
    [13]Forbes T, Rossiter D, Wambeke A. Guidelines for evaluating the adequacy of soil resource inventories [M].1987 printing edition of SMSS Technical Monograph 4. New York:Cornell University, Department of Agronomy,1987:12-21.
    [14]Fryrear D W, Krammes C A. Computing the wind erodible fraction of soil [J]. Soil and Water Conservation,1994,49(2):183-188.
    [15]Guo YY, Gong P, Ronald A. Pedodiversity in the United States of America [J]. Geoderma,2003,117(1/2):99-115.
    [16]Hartemink AE, Mcbratney A B, Mendonca-Santos M L. Digital soil mapping with limited data [M]. Springer,2008.
    [17]Hole F D. An approach to landscape analysis with emphasis on soil [J]. Geoderma, 1978,21(1):1-23.
    [18]Hong S Y, Zhang Y S, Kim Y H, et al. Korean soils and information system [J]. East & southeast Asia federation of soil science societies,2009, S2112:153-154.
    [19]Hu X F, Wu H X, Hu X, et al. Impact of urbanization on Shanghai's soil environmental quality [J]. Pedosphere,2004,14(2):151-158.
    [20]Hulshoff R M. Landscape indices describing a Dutch landscape [J]. Landscape Ecology,1995,10(2):101-111.
    [21]Ibanez J J, Jimenez-Ballesta R, Garcia-Alvarez A. Soil landscapes and drainage basins in Mediterranean areas [J]. Catena,1990,17:573-583.
    [22]Ibanez J J. The background of pedodiversity and pedogeomorphic diversity [J]. Pedometron,1995,4:2-4.
    [23]Ibanez J J, Alba S, Lobo A, et al. Pedodiversity and global soil patterns at coarse scales (with discussion) [J]. Geoderma,1998,83:171-214.
    [24]Ibanez J J, De-Ala S. On the concept of pedodiversity and its measurement. [J]. Geoderma,1999,93:339-344.
    [25]Imhoff M L, Lawrence W T, Elvidge C D, et al. Using nighttime DMSP/OLS images of city lights for estimating the impacts of urban land use on soil resources in the United States [J]. Remote Sensing Environment,1997,59:105-117.
    [26]Jamagne M, Daroussin J, Eimberck M, et al.2002. Soil geographical database of Euroasia and Mediterranean countries at 1:1000000 [C]. In:Proceedings of the 17th World Congress of Soil Science. In Bangkok,1757:1-5.
    [27]Jenny H. Factors of soil formation, a system of quantitative pedology [M]. New York:Dover Publications,1941.
    [28]Johnston R M, Barry S J, Bleys E, et al. ASRIS:The database [J]. Australian Journal of Soil Research,2003,41:1021-1036
    [29]Kempen B, Brus D J, Heuvelink G B M, et al. Updating the 1:50000 Dutch soil map using legacy soil data:A multinomial logistic regression approach [J]. Geoderma,2009,151:311-326.
    [30]King D, Daroussin J, Tavernier R. Development of soil geographic database from the Soil Map of the European Communities [J]. Catena,1994,21(1):37-56.
    [31]Korolyuk T V, Ovechkin S V. Approaches to modernization of the state soil map of Russia on the basis of the methods of digital soil mapping [J]. Genesis and Geography,2010,43(5):488-498
    [32]Lagacherie P, Mcbratney AB, Voltz M. Digital soil mapping:an introductory perspective [M]. Amsterdam, Elsevier,2007a.
    [33]Lagacherie P, Mcbratney A B. Spatial soil information systems and spatial soil inference systems:perspectives for digital soil mapping [J]. Developments in Soil Science,2007,31:3-22.
    [34]Lytle D J. United states soil survey database. In:Summer M E. Handbook of soil science [M]. New York:CRC Press,1999:53-67.
    [35]Maderson A, Palmer A. Soil information fro agricultural decision making:a New Zealand perspective [J]. Soil use and management,2006,22(4):393-400.
    [36]McBraney AB. On variation, uncertainty and informatics in environmental soil management [J]. Australian Journal of Soil Research,1992,30:913-935.
    [37]McBraney AB. Pedodiversity [J]. Pedonmetron,1995,3:1-3.
    [38]McBratney A B, Mendonca S M L, Minasny B. On digital soil mapping [J]. Geoderma,2003,117:3-52.
    [39]Minasny B, Mcbratney A B, Hartemink AE. Global pedodiversity, taxonomic distance, and the World Reference Base [J]. Geoderma.2010,155(3/4):132-139.
    [40]Morgan R P C. Soil erosion and conservation [M]. London:Longman, Essex, 1995.
    [41]Nair K M, Srinvias S and Krishnan P. Digital data sets on land and soils of South India [C]. In the proceedings of 17th World Congress of Soil Science in Bangkok, 2002,1372.
    [42]National Soil Survey Center. Soil Survey Geographic (SSURGO) data base:Data use information [R]. USDA NRCS Misc. Publ. no.1527,1995.
    [43]Odeh L O A. In Discussion of Ibanez J J, Alba S, Lobo A, et al. Pedodiversity and global soil patterns at coarse scales [J]. Geoderma,1998,83:203-205.
    [44]O'Neill R V, Krummel J R, Gardner R H, et al. Indices of landscape pattern [J]. Landscape Ecology,1988,3:153-162.
    [45]Obara H, Ohkura T, Takata Y, et al. Soil database and their use in Japan [J]. East & southeast Asia federation of soil science societies,2009, S216:123-124.
    [46]Olson T C, Wischmeier W H. Soil erodibility evaluations for soils on the runoff and erosion stations [J]. Soil Science,1963,27:590-592.
    [47]Phillips J D, Marion D A. Biomechanical effects, lithological variations, and local pedodiversity in some forest soils of Arkansas [J]. Geoderma,2005,124:73-89.
    [48]Phillips J D, Marion D A. Soil geomorphic classification, soil taxonomy, and effects on soil richness assessments [J]. Geoderma,2007,141:89-97.
    [49]Pielou E C. Ecologocal Diversity [M]. New York:John Wiley & Sons,1975.
    [50]Pimentel D, Harvey C, Resosudarmo P, et al. Environmental and economic costs of soil erosion and conservation benefits [J]. Science(Washing D C),1995a,267: 1117-1123.
    [51]Ritters K H, O'Neill R V, Hunsaker C T, et al. A fator analysis of landscape pattern and structure metrics [J]. Landscape Ecology,1995,10:23-39.
    [52]Ronald A, Guo Y, Gong P. Soil diversity and land use in the United States [J]. Ecosystems,2003,5:30.
    [53]Rosenzweg M L. Species diversity in space and time. [M]. Cambridge: Cambridge Univ. Press,1995.
    [54]Saldana A, Ibanez J J. Pedodiversity analysis at large scales:an example of three fluvial terraces of the Henares River (central Spain) [J]. Geomorphology,2004, 62:123-138.
    [55]Shi X Z, Yu D S, Warner E D, et al. Soil database of 1:1000000 digital soil survey and reference system of the Chinese Genetic Soil Classification System [J]. Soil survey horizons,2004,45(4):129-136.
    [56]Shi X Z, Yu D S, Yang G X, et al. Cross-reference benchmarks for translating between the genetic soil classification of China into the Chinese soil taxonomy [J]. Pedoshpere,2006,16(2):147-153.
    [57]Shiriza M A. A unifying quantitative analysis of soil texture [J]. Soil Science Society of America Journal,1984,48:142-47.
    [58]Shoba S A, Stolbovoi V S, Alyabina I O, et al. Soil-Geographic Database of Russia [J]. Genesis and Geography of Soils,2008,41(9):1029-1036.
    [59]Smith B, Wilson J B. A consumer's guide to evenness indices [J]. Oikos,1996,76: 70-82.
    [60]Sohn H G, Kim G H, Yom J H. Mathematical modelling of historical reconnaissance CORONA KH-4B Imagery [J]. The Photogrammetric Record, 2004,19(105):51-66.
    [61]Sorenson A A, Greene R P, Russ K. Farming on the edge [D]. American Farmland Trust, Center for Agricultural Development, Northern Illinois University,1997.
    [62]Stefanescu L, Constantin V, Surd V, et al. Assessment of soil erosion potential by the USLE method in Rosia Montana mining area and associated natech enents [J]. Carpathian Journal of Earth and Environmental Sciences,2011,6:35-42.
    [63]Toomanian N, Jalalian A, Khademi H, et al. Pedodiversity and pedogenesis in Zayandeh-rud Valley, Central Iran [J]. Geomorphology,2006,81(3/4):376-393.
    [64]Vitousek P M, Ehrlich P, Ehrlieh A, et al. Human appropriation of the products of photosynthesis [J]. BioScience,1986,36:368-373.
    [65]Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth's ecosystems [J]. Science,1997,277:494-499.
    [66]Wilding L P, Nordt L C. In Discussion of Ibanez J J, Alba S, Lobo A, et al. Pedodiversity and global soil patterns at coarse scales [J]. Geoderma,1998,83: 196-199.
    [67]Williams J R, Jones C A, Dyke P T. A modeling approach to determine the relationship between erosion and soil productivity [J]. Transactions of the ASAE, 1984,27(1):129-144.
    [68]Williams J R. The Erosion-Productivity Impact Calculator (EPIC) Model:A Case History [J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences.1990,329(1255):421-428.
    [69]Wischmeier W H, Mannering J V. Relation of soil properties to its erodibility [J]. Soil Society of American Proceeding,1969,33 (1):131-137.
    [70]Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses:A Guide to Conservation Planning [M]. USD A, ARS, Agricultural Handbook, Washington D.C,1978.
    [71]Yaalon D H. In Discussion of Ibanez J J, Alba S, Lobo A, et al. Pedodiversity and global soil patterns at coarse scales [J]. Geoderma,1998,83:193-196.
    [72]Young R A, Mutchler C K. Erodibility of some Minnesota soil [J]. Journal of Soil and Water Conservation,1977,32:180-182.
    [73]Zhang X L, Chen J, Zhang G L. Pedodiversity analysis in Hainan Island, China [J]. Journal of Geographical Sciences,2003,13(2):181-186.
    [74]蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展[J].地理科学进展,2003,22(3):242-250.
    [75]岑奕,丁文峰,张平仓.华中地区土壤可蚀性因子研究[J].长江科学院院报,2011,28(10):65-68,74.
    [76]陈健飞.福建省土壤分类参比与土壤系统分类检索[J].地球信息科学,2002(1):67-70.
    [77]陈健飞,陈松林,陈志强.福建SOTER研究进展[C].中国地壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会,2004.
    [78]陈江,张海燕,何小峰,等.湖州市土壤重金属元素分布及潜在生态风险评价[J].土壤,2010,42(4):595-599.
    [79]陈杰,张学雷,龚子同,等.土壤多样性的概念及其争议[J].地球科学进展,2001a,16(2):189-193.
    [80]陈杰,张学雷,赵文君,等.土壤多样性及其测度——以海南岛不同母岩上发育的土壤为例[J].地理科学,2001b,21(2):145-151.
    [81]陈杰,檀满枝,陈晶中,等.严重威胁可持续发展的土壤退化问题[J].地球科学进展,2002,17(5):720-728.
    [82]陈明华,周伏建,黄炎和,等.土壤可蚀性因子的研究[J].水土保持学报,1995,9(1):19-24.
    [83]陈雄,桑广书.地域经济开发与环境响应——古代浙北屁股圆的环境变迁.北京:中国科学技术出版社,2005.
    [84]陈志诚,赵文君,龚子同.海南岛土壤发生分类类型在系统分类中的归属[J].土壤学报,2003,40(2):170-177.
    [85]陈志诚,龚子同,张甘霖,等.不同尺度的中国土壤系统分类参比[J].土壤,2004,36(6):584-595.
    [86]程琳,杨琴科,谢红霞,等.基于GIS和CSLE的陕西省土壤侵蚀定量评价方法研究[J].水土保持学报,2009,23(5):61-66.
    [87]邓劲松,李君,张玲,等.城市化过程中耕地土壤资源质量损失评价与分析[J].农业工程学报,2009,25(6):261-265.
    [88]丁晓冬,许红卫,高玉蓉,等.浙江省低丘红壤去土壤侵蚀评价研究[J].土壤通报,2008,39(5):1045-1048.
    [89]杜国华,张甘霖,龚子同.长江三角洲水稻土主要土种在中国土壤系统分类中的归属[J].土壤,2007,39(5):684-691.
    [90]范兰,吕昌河,陈朝,等EPIC模型及其应用[J].地理科学进展,2012,31(5):584-592.
    [91]龚子同,张学雷,骆国保,等SOTER的建立及其在世界上的传播[J].地理科学,2001,21(3):217-223.
    [92]龚子同,张甘霖,陈志诚,等.以中国土壤系统分类为基础的土壤参比[J]. 土壤通报,2002,33(1):1-5.
    [93]龚子同,陈鸿昭,张甘霖,等.中国土壤资源特点与粮食安全问题[J].生态环境,2005,14(5):783-788.
    [94]龚子同,张甘霖.中国土壤系统分类:我国土壤分类从定性向定量的跨越[J].中国科学基金,2006(5):293-296.
    [95]关欣,李巧云,张凤荣.新疆平原土壤发生分类与系统分类的参比[J].湖南农业大学学报:自然科学版,2011,37(3):312-317.
    [96]国土资源部.县(市)级土地利用规划管理信息系统建设指南(试行)[EB/OL].http://ww.zjdlr.gov.cn/art/2005/4/6/art_91_11971.html,2005.
    [97]国土资源部.第二次全国土地调查数据库建设技术规范[EB/OL].http://www.mlr.gov.cn/xwdt/zytz/200712/t20071217_97110.htm,2007.
    [98]贺红士,侯彦林.1991.区域微机土壤信息系统的建立和应用[J].土壤学报,28(4):345-354.
    [99]胡伟平,吴志峰,何建邦.RS与GIS支持下珠江三角洲城镇近期发展对土壤资源利用的影响分析[J].自然资源学报,2002,17(5):549-555.
    [100]黄昌勇,章明奎.迈向21世纪的土壤科学[M].北京:中国环境科学出版社,1999:11-17.
    [101]姜小三.江苏省土壤数据库与信息系统的构建研究[D].南京农业大学,硕士学位论文,2003.
    [102]姜小三,潘剑君,杨林章,等.土壤可蚀性K值的计算和K值图的制作方法研究——以南京市方便水库小流域为例[J].土壤,2004,36(2):177-180.
    [103]雷秋良,张认连,徐爱国,等.中国数字土壤建设及其发展方向探讨[J].土壤通报,2010,41(5):1246-1251.
    [104]李斌,张金屯.黄土高原土壤景观格局特征分析[J].环境科学与技术,2005,28(3):39-41.
    [105]李桂林,陈杰,孙志英,等.城市化过程对土壤资源影响研究进展[J].中国生态农业学报,2008,16(1):234-240.
    [106]厉仁安.浙江海岛丘陵土壤系统分类研究[J].土壤学报,1994,31(4):396-401.
    [107]梁音,史学正.长江以南东部丘陵山区土壤可蚀性K值研究[J].水土保持研究,1999,6(2):47-52.
    [108]林杰,张金池,彭世揆,等.江西省1:100万土壤信息系统的构建[J].南京林业大学学报(自然科学版),2005,29(5):106-110.
    [109]刘峰,朱阿兴,李宝林,等.利用路面反馈动态模式来识别土壤类型的空间差异[J].土壤通报,2009,40(3):501-508.
    [110]刘国华,傅伯杰,陈利顶,等.中国生态退化的主要类型、特征及分布[J].生态学报,2000,20(1):14-20.
    [111]刘京,常庆瑞,岳庆玲,等.陕西省土壤数据库的设计研究[J].干旱地区农业研究,2008,26(5):105-108.
    [112]刘世梁,傅伯杰.景观生态学原理在土壤学中的应用[J].水土保持学报,2001,15(3):102-106.
    [113]龙怀玉,张维理,黄鸿翔,等.关于我国“数字土壤”建设若干问题的思考[J].土壤通报,2007,38(6):1041-1045.
    [114]陆宏,厉仁安.慈溪市土壤系统分类研究[J].土壤,2006,38(4):499-502.
    [115]罗明云.四川省南充市GIS土壤数据库系统设计的理论研究[J].土壤通报,2006,37(1):61-64.
    [116]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508
    [117]吕成文,陈志诚,陈鸿昭,等.海南岛1:20万SOTER数据库的组织与设计研究[J].水土保持学报,2003,17(6):110-113.
    [118]吕成文,沈德福,陈云丰.大比例尺土壤数据库的组织与设计研究——以安徽宣城样区为例[J].土壤通报,2004,35(2):122-125.
    [119]马友华,胡芹远,转可钦,等.合肥市土壤数据库系统的建立[J].安徽农学通报,2001,7(1):48-49.
    [120]门明新,赵同科,彭正萍,等.基于土壤粒径分布模型的河北省土壤可蚀性研究[J].中国农业科学,2004,37(11):1647-1653.
    [121]门明新.基于空间数据库的土壤侵蚀和碳氮储量研究[D].中国农业大学,博士学位论文,2005.
    [122]潘剑君,蕲婷婷,孙维侠.江西省余江县土壤信息系统建造研究[J].土壤学报1999a,36(4):522-527.
    [123]潘剑君,蕲婷婷,孙维侠.土壤信息系统建造研究——以江苏省大丰市为例[J].南京农业大学学报1999b,22(3):45-48.
    [124]全国土壤普查办公室.中国土壤分类系统.北京:农业出版社,1992a.
    [125]全国土壤普查办公室.中国土壤普查技术.北京:农业出版社,1992b.
    [126]邵景安,李阳兵,孟月玲,等.重庆岩溶区土壤景观多样性[J].生态学报,2007,27(5):2048-2058.
    [127]邵作宇,常庆瑞,陶文芳.基于ArcEngine的陕西省土壤信息系统构建[J].水土保持通报,2009,29(4):125-129.
    [128]申健,常庆瑞,俞方圆,等.秦巴山区土壤信息系统的建设研究[J].水土保持通报,2011,31(1):155-159.
    [129]沈德福.江苏省1:20万土壤数据库的建立及其应用研究[D].安徽师范大学,硕士学位论文,2004.
    [130]石伟,南卓铜,李韧,等.基于支持向量机的典型冻土区土壤制图研究[J].土壤学报,2011,48(3):461-469.
    [131]史德明,韦启藩,梁音,等.中国南方侵蚀土壤退化指标体系的研究[J].水土保持学报,2000,14(13):1-9.
    [132]史学正,杨国祥,于东升.土壤信息学科的未来发展[M]//中国土壤学会.中国土壤科学的现状与展望.南京.:科学出版社,1994.
    [133]史学正,于东升.“数字土壤”——21世纪土壤学面临的机遇与挑战[J].土壤通报,2000,31(3):104-106,121.
    [134]史学正,于东升,高鹏,等.中国土壤信息系统(SISChina)及其应用基础研究 [J].土壤,2007,39(3):329-333.
    [135]史舟,王人潮.不同比例尺红壤资源信息系统集成技术研究[J].浙江大学学报(农业与生命科学版),2001,27(6):601-605.
    [136]宋阳,刘连友,严平,等.土壤可蚀性研究述评[J].干旱区地理,2006,29(1):124-131.
    [137]孙福军,雷秋良,刘颖,等.数字土壤制图技术研究进展与展望[J].土壤通报,2011,42(6):1502-1507.
    [138]孙燕瓷,张学雷,陈杰.城市化对苏州地区土壤多样性的影响[J].应用生态学报,2005,16(11):2060-2065.
    [139]孙燕瓷,张学雷,程训强,等.城市化对南京地区土壤多样性的影响的灰色关联分析[J].地理学报,2006,61(3):311-318.
    [140]孙志英,吴克宁,吕巧灵,等.城市化对郑州市土壤功能演变的影响[J].土壤学报,2007,44(1):21-26.
    [141]檀满枝,陈杰,张学雷,等.南京市近20年城镇用地扩展对土壤资源数量和质量的影响[J].土壤学报,2005,42(6):896-903.
    [142]王安明,章孝灿,黄智才.浙江省水土流失遥感普查有关技术问题的研究[J].中国水土保持,1999,(7):19-22.
    [143]王辉,张学雷,张薇,等.南京市土壤集合组成及其嵌套性分析[J].生态学报,2007,27(1):220-227.
    [144]王良杰.基于GIS的中比例尺数字土壤制图研究[D].南京农业大学,硕士学位论文,2009.
    [145]王秋兵,王晶娟,韩春兰.将土种资料转化为土系的必要性与可行性分析[J].土壤通报,2010,41(1):17-22.
    [146]王深法,王人潮,吴嘉平,等.应用遥感技术进行土壤制图的优点[J].土壤,1991,23(3):123-125.
    [147]王万忠,焦菊英.中国土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1-20.
    [148]王小丹,钟祥浩,王建平.西藏高原土壤可蚀性及其空间分布规律初步研究[J].干旱区地理,2004,27(3):343-346.
    [149]魏孝孚.浙江省水耕人为土鉴别特性及系统分类研究[J].土壤通报,1999,30(1):45-59.
    [150]魏永胜,常庆瑞,刘京,等.土壤信息系统的形成发展和建立[J].西北农林科技大学学报(社会科学版),2002,2(3):32-36.
    [151]吴嘉平,姚伟,吴春发.矢量地图自动数字化的方法[P].中国:CN200610049092.8.2006-07-19.
    [152]吴克宁,杨锋,吕巧灵,等.河南省1:20万土壤数据库的构建及其应用[J].河南农业科学,2007,(05):77-80.
    [153]吴玺,谭宏,夏建国,等.基于GIS.ES的凉山州土壤数据库设计与实现[J].西南农业学报,2002,15(2):95-99.
    [154]武伟,刘洪斌,谢德体,等.重庆市土壤信息系统的建立与应用[J].计算机与现代化,2003,(7):21-22,26.
    [155]徐冠华,孙枢,陈运泰,等.迎接“数字地球”的挑战[J].遥感学报,1999,3(2):2-6.
    [156]杨琳,Fahmy S,JiaoY等.基于土壤-环境关系的更新传统土壤图研究[J].土壤学报,2010,47(6):1039-1049.
    [157]杨胜天,朱启疆,李天杰.RS和GIS支持下的土壤系统分类制图方法研究—以贵州省贵阳市为例[J].土壤学报,2001,38(1):41-48.
    [158]杨志强,潘剑君,黄礼辉,等.面向土壤系统分类的土壤调查制图方法的初步研究[J].土壤,2010,42(5):842-848.
    [159]于东升,史学正,王洪杰,等.发生分类淋溶土与系统分类参比特征研究[J].土壤学报,2004,41(6):845-853.
    [160]于东升,史学正,王洪杰,等.发生分类高山土与系统分类参比特征[J].土壤,2005,37(6):613-619.
    [161]张大勇,姜新华,雷光春.理论生态学研究[M].北京:高等教育出版社, 2000.
    [162]张登荣,赵元洪.土流失强度遥感快速调查方法[J].浙江大学学报(自然科学版),1997,31(6):753-759.
    [163]张甘霖,龚子同,骆国宝,等.国家土壤信息系统的结构、内容与应用[J].地理科学,2001,21(5):401-406.
    [164]张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J].生态学报,2003,23(3):539-546.
    [165]张甘霖.城市土壤的生态服务功能演变与城市生态环境保护[J].科技导报,2005,23(3):16-19.
    [166]张甘霖,史学正,龚子同.中国土壤地理学发展的回顾与展望[J].土壤学报,2008,45(5):792-801.
    [167]张海涛.基于SOTER和COMGIS的区域土壤信息系统的建立及应用[D].华中农业大学,博士学位论文,2004.
    [168]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报,2011,44(1):7-13.
    [169]张明,张洪业,李秀彬,等.利用已有资料建立京津唐1:50万SOTER数据库的实践与问题讨论[J].土壤通报,1999,30:32-41.
    [170]张维理,梁鸣早.农业信息技术在我国的发展前景和机遇[J].土壤肥料,1998,3:3-6.
    [171]张学雷,张甘霖,龚子同SOTER数据库支持下的土壤质量综合评价[J].山地学报,2001a,19(4):377-380.
    [172]张学雷,杨玉建,肖光平.山东省1:100万SOTER数据库的建立与初步应用研究[J].山东农业大学学报:自然科学版,2001b,32(2):136-142.
    [173]张学雷,陈杰,檀满枝,等.土壤多样性理论方法的新近发展与应用[J].地球科学进展,2003,18(3):374-379.
    [174]张学雷,陈杰,龚子同.土壤多样性理论在欧美的实践及在我国土壤景观研究中的应用前景[J].生态学报,2004,24(5):1063-1072.
    [175]张学雷,王辉,张薇,等.土壤系统分类与生物系统分类体系中的多样性特征对比分析[J],土壤学报,2008,45(1):1-8.
    [176]章明奎.浙西北山地土壤特性和系统分类的研究[J].土壤通报,1995,26(4):153-156.
    [177]章明奎,厉仁安.中国土壤系统分类在浙江省平原旱地土壤分类中的应用[J].土壤,1999,31(4):190-199.
    [178]章明奎,魏孝孚,厉仁安.浙江省土系概论[M].北京:中国农业科技出版社,2000:7-38.
    [179]章明奎,夏建强,符娟林.基于土层空间变异性的大比例尺土壤调查制图研究[J].浙江大学学报(农业与生命科学版),2006,32(3):346-349.
    [180]赵明松,程先富,王世航,等.安徽土壤信息系统(AHSIS)的设计与开发[J].中国农学通报,2008,24(2):441-444.
    [181]赵其国.21世纪土壤科学展望[J].地球科学进展,2001,16(5):704-709.
    [182]赵其国,黄国勤,钱海燕,等.生态农业与食品安全[J].土壤学报,2007,44(6):1127-1134.
    [183]赵哲远,马奇,华元春,等.浙江省1996-2005年土地利用变化分析[J].中国土地科学,2009,23(11):54-59.
    [184]浙江省人民政府.浙江省人民政府办公厅关于印发浙江省低丘缓坡重点区块开发规划(2010-2020年)的通知[EB/OL].http://xxgk.zj.gov.cn/art/2010/5/4/art_463_2661.html,2010-05-04.
    [185]浙江省人民政府.浙江省人民政府关于印发浙江省清洁土壤行动方案的通知[EB/OL]. http://www.zj.gov.cn/art/2011/8/29/art_12460_7465.html, 2011-08-29.
    [186]浙江省统计局.浙江统计年鉴2007[M].北京:中国统计出版社,2008.
    [187]浙江省土壤普查办公室.浙江土种志[M].杭州:浙江科学技术出版社,1993.
    [188]支俊俊,荆长伟,林声盼,等.非标准矢量地图的半自动数字化方法[P].中 国:CN201210199269.8.2012-06-13.
    [189]支俊俊,荆长伟,张操,等.利用1:5万土壤数据库估算浙江省土壤有机碳密度及储量[J].应用生态学报,2013,24(3):683-689.
    [190]中国科学院南京土壤研究所土壤分类课题组,中国土壤系统分类课题研究协作组.中国土壤系统分类检索.第3版[M].合肥:中国科技大学出版社,2002.
    [191]中华人民共和国国家标准.地理信息元数据(GB/T 19710-2005)[S].北京:中国标准出版社,2005.
    [192]中华人民共和国国家标准.中国土壤分类与代码(TD/T 1014-2007)[S].北京:中国标准出版社,2009.
    [193]中华人民共和国行业标准.第二次全国土地调查技术规程(GB/T 17296-2009)[S].国土资源部,2007.
    [194]周斌,杨柏林,汪红强,等.贵州省土壤信息系统(GSIS)空间数据库的设计与建立[J].地质地球化学,2000,28(1):68-71.
    [195]周红艺,何毓蓉.成都平原典型土系的分类在大比例尺土壤制图中的应用——以彭州样区为例[J].西南农业学报,2001,14(Suppl):5-8.
    [196]周慧珍.海南岛土壤与土地数字化数据库及其制图[M].北京:科学出版社,1994.
    [197]周勇,张海涛,Birnin R V,等.土壤资源与生态环境数据库的建立及应用——以三峡库区秭归县为例[J].土壤学报,2002,39(5):653-663.
    [198]周祖煜,张孝灿,聂国辉,等.基于多源遥感数据的浙江省水土流失遥感监测[J].中国水土保持科学,2011,9(2):4-10.
    [199]朱阿兴,李宝林,杨琳,等.基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J].土壤学报,2005,42(5):844-851.
    [200]朱立安,李定强,魏秀国,等.广东省土壤可蚀性现状及影响因素分析[J].亚热带水土保持,2007,19(4):4-7,16.
    [201]朱明勇,谭淑端,顾胜,等.湖北丹江口水库库区小流域土壤可蚀性特征 [J].土壤通报,2010,41(2):434-436.
    [202]宗良纲,梁永超,马同生,等.华东地区水稻土资源评价.Ⅰ.华东地区水稻土资源数据库的建立[J].南京农业大学学报,1995,18(4):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700