用户名: 密码: 验证码:
木瓜榕榕小蜂群落中Wolbachia的感染格局
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
榕树(桑科:榕属)和榕小蜂(昆虫纲:膜翅目:小蜂总科)体系成为验证互利共生系统的起源与进化、资源竞争、共生体系稳定机制、性比分配等理论的经典模式之一。庞大而复杂的榕小蜂群落,以及榕小蜂极端的雌雄异型和雄性多型现象,使得榕小蜂分类工作出现种间定名混乱、雌雄不配对等问题。对此,在传统昆虫形态分类研究基础上,我们引入了DNA条形码技术,采用国际通用标准线粒体基因的cox1片段,对榕小蜂个体进行无损伤DNA提取,依据种间差异大于种内差异的原理,快速准确的鉴定榕小蜂种类。Wolbachia是广泛分布在节肢动物和一些线虫体内的内共生菌,在种系间其传播途径是从母代传给子代,可以操纵寄主生殖,如胞质不相容、孤雌生殖、雌性化、杀雄作用,其中胞质不相容作用可以促进寄主的物种分化。对节肢动物Wolbachia感染情况的调研显示,膜翅目昆虫更易被Wolbachia感染,其中榕小蜂Wolbachia感染率更高,并且在不同榕小蜂物种间存在频繁的Wolbachia的水平传播。当Wolbachia与寄主线粒体单体型存在连锁不均衡关系时,寄主的线粒体多态性会发生一定改变,进而影响到线粒体DNA的系统发育研究的准确性。榕小蜂物种资源丰富,种间生态关系复杂,对榕小蜂类群内Wolbachia感染情况的深入调查,有助于我们理解Wolbachia水平传播的途径以及其与榕小蜂物种多样性的关系,进而更深入地理解榕树—榕小蜂—Wolbachia三者的相互作用与协同进化关系。
     本文以功能性雌雄异株的木瓜榕上传粉榕小蜂Ceratosolen emarginatus、造瘿榕小蜂Apocryptophagus sp.和非传粉榕小蜂Philotrypesis sp.1、 Sycoscapter sp.1为研究材料,样品采集地点分布在海南省儋州榕园、鹦哥岭、黎母山、锦塘水库,以及云南省西双版纳植物园5个地点。经过标本采集——标本鉴定——DNA提取——基因扩增、测序——系统发育树构建——基因多样性分析,我们得到以下几个主要结果:
     (1)通过对榕小蜂标本形态观察,我们初步确定了木瓜榕雌株上造瘿榕小蜂与雄株上造瘿榕小蜂在触角、前胸、翅、体色等部位有明显差异。通过分析cox1、ITS2基因,发现两者cox1序列分歧度达到80%,ITS2基因序列分歧度达到74.2%,而Bayes系统发育树分析则确定了雄株上造瘿榕小蜂和雌株上的造瘿榕小蜂为两个不同种,分别命名为Apocryptophagus sp.1和Apocryptophagus sp.2,并且两者既不是姐妹种,也不是隐存种。此外,引入化石榕小蜂Pegoscapus作为进化时间参照,构建cox1基因分子钟树,我们首次明确了两个造瘿榕小蜂都为新种,其中Apocryptophagus sp.2物种形成时间为520万年前,在榕小蜂体系中是一个较为年轻的榕小蜂物种。
     (2)传粉榕小蜂Ceratosolen emarginatus和非传粉榕小蜂Sycoscapter sp.1、Philotrypesis sp.1的ITS2序列二级结构具有4个螺旋臂状结构的基本模型和相似的G+C含量,其中螺旋臂I区和IV区保守性较高,螺旋臂II区变异较大,通过在18S区和28S区自行设计特异引物,得到了这3种榕小蜂的ITS基因(ITS1+5.8S+ITS2)全长,有助于我们分析核基因核苷酸多样性特征。但是造瘿榕小蜂Apocryptophagus sp.2的ITS2转录产物二级结构不具备基本模型特征,螺旋臂状结构不稳定,G+C含量较高,干扰了榕小蜂ITS基因全长的扩增效果。因此,针对不同种类的榕小蜂,其核基因具有明显不同特征,种间差异较大,种内保守型较高,是一个高效的分子标记基因。
     (3)所有研究对象中,苹果榕上非传粉榕小蜂Sycoscapter sp.1的mtDNA中性检测值为差异显著的负值结果,说明其cox1基因偏离了中性选择,群体大小变化分析,呈现多峰分布态势,排除了种群扩张的可能,该种群处于平衡状态,其他榕小蜂符合中性进化。
     (4)木瓜榕和苹果榕上所有榕小蜂类群都感染了Wolbachia,且个体感染率为100%。Wolbachia株系鉴定:通过MLST法获得5个管家基因(gatB,coxA,hcpA,ftsZ和fbpA)以及wsp基因的等位片段值,我们在Profiles数据库得到了对应ST值,确定了榕小蜂感染的3种Wolbachia株系分别为wMel、wHa和A_NY_Calyp150744c。
     (5)榕小蜂感染Wolbachia格局与mtDNA多样性的联系复杂多样:在造瘿榕小蜂Apocryptophagus sp.2种里,感染单一株系wMel个体显示mtDNA序列多样性较高,双重感染wMel和wHa株系个体的mtDNA序列多样性较低。但是,在造瘿榕小蜂Apocryptophagus sp.1种里,感染单一株系wMel个体的mtDNA序列多样性最高,感染另一种单一株系A_NY_Calyp150744c的mtDNA序列多样性最低,当发生这两个株系发生双重感染时,mtDNA序列多样性是居于中间的。不同榕小蜂物种感染株系情况不同,显示出不同mtDNA多样性特征。
     (6) S-PLUS(R软件)分析所有造瘿榕小蜂总体模型,感染株系仅在不同地理位置间存在显著差异,与榕树雌果和雄果差异、榕小蜂性别差异无关。感染wMel株系在鹦哥岭和儋州、鹦哥岭和西双版纳以及鹦哥岭和锦塘两地间存在显著差异,其他株系以及株系多重感染并没有因为地理位置不同而出现相关性改变。
     (7)通过对Wolbachia株系的研究,判断在木瓜榕上榕小蜂,Wolbachia的垂直传播和水平传播并存。株系wMel在榕小蜂种群内发生高效的垂直传播的同时,在种群间发生广泛的水平传播,而在苹果榕上非传粉榕小蜂Sycoscapter sp.1个体内只检测到株系wMel,传粉榕小蜂Ceratosolen emarginatus个体内却感染了wMel、 wHa和A_NY_Calyp150744c3种株系,很显然,虽然两者生态学联系密切,但是株系wHa和A_NY_Calyp150744c3还未在两个种间发生水平传播。
Figs (Moraceae: Ficus) and fig wasps (Insecta: Hymenoptera: Chaleidoidea) has beenknown as a classic example of co-evolution, and become the focus of researches on origin andevolution of mutualism, resource conflicts, the stabilization of mutualism, sex ratiodistribution. In this system, the complex fig wasps community, extreme sexual dimorphismand male polymorphism challenge fig wasps classification.In this thesis, we introduced aDNA barcoding technique. By sequencing the general standard cox1fragement, we can fastand accurate identification of fig wasps species.
     Wolbachia symbionts are widespread intracellular bacteria that are found in arthropodsand nematodes. This maternally inherited endosymbiont could manipulate a lot ofreproductive processes in host, including incompatibility (cytoplasmic incompatibility),parthenogenesis, feminization, and male killing. It was proposed that CI may promote the hostspeciation. Several studies showed that hymenopteran more easy to infect Wolbachia,especially the higher infection rate in fig wasps and frequent horizontal transmission amongdifferent species. When Wolbachia and host mitochondrial haplotype exist linkagedisequilibrium, the host mitochondrial polymorphism should be changed, and then influencethe phylogeny based on mtDNA. The deeper research into the Wolbachia infection will helpus to learn more about Wolbachia transmission and the connection with diversity of species,and then more understanding the complex interaction and co-evolution of fig waspscommunity.
     Here we studied the mtDNA polymorphism and Wolbachia infection of fig wasps onFicus auriculata and Ficus oligodon. Samples were collected from5different locations inDanzhou Campus, Hainan University, Yingge Mountain, Changjiang, Jin Tang and Xishuangbanna arboretum, Yunnan. Combining morphological identification with molecular markers,we found that the galler on the male syconia and the galler on the female syconia actually aredifferent species. And they are not sister species, with mtDNA divergence up to80%andITS2gene divergence up to74.26%. The gallers showed very higher mtDNA polymorphismfrom different locations. We also discussed the impact of geographical distribution on thecurrent programme of fig wasp taxonomy based on DNA barcoding. Additionally, through thecox1gene molecular clock time tree, we estimated that two Apocryptophagus gallers divergedabout5.2million years ago.
     Alignment of ITS2sequences corrected by structural information showed that helixes Iand IV are the most conserved, whereas helix II is the most variable. The nucleotide composition (G+Ccontent) is similar among all species analyzed, except forApocryptophagus sp.2with instability secondary structure and higher G+C content. Furthermore, we also obtain the ITS gene (ITS1+5.8S+ITS2) from pollinating fig wasp Ceratosolenemarginatus and non-pollinating fig wasp Sycoscapter sp.1and Philotrypesis sp.1, showeddifferent gene type among different species, and conserved region in the same species, whichis a high-efficiency molecular marker.
     Tajima’s D test suggest that the mtDNA molecular diversity of Sycoscapter sp.1onFicus oligodon deviating from the neutrality evolution. In addition,the population sizechanges analysis demonstrate multiple peak distribution, ruled out the possibility ofpopulation expansion. Other groups of fig wasps accord with the neutrality evolution.
     Among all species analyzed, the Wolbachia infection is100%. Using MLST and wspgene, we obtained the ST from Profiles database, and confirmed3different strains: wMel、wHa and A_NY_Calyp150744c. The strains infection is also in connection with mtDNApolymorphism. For instance, the group mono-infected strain wMel of Apocryptophagus sp.2showed high mtDNA polymorphism. However, double-infected group showed low mtDNApolymorphism. In Apocryptophagus sp.1, the group mono-infected strain wMel showed thehighest mtDNA diversity, Obviously, the group mono-infected strain A_NY_Calyp150744cshowed the lowest mtDNA diversity. When double-infected, mtDNA polymorphism isintermediate.
     The infection of all gallers species analyzed, even from different locations, had noconnection with the interaction among the gall/seed figs and female/male gallers. Theinfection of wMel strain showed significant divergence, such as YGL and DZ, YGL and BN,and the YGL and JT. However, the other strains and multiple infection did not showsignificant divergence on different geographic locations.
     From the phylogenetic tree of the strains, we conjectured that there two transmissionmodels among fig wasps: strain wMel could high-efficiency vertical transfer and broadlyhorizontal transfer. On the contrary, in Ficus oligodon figs, the population of Sycoscapter sp.1just infected strain wMel; the population of Ceratosolen emarginatus infected all three strains,obviously, though the two fig wasp specis had closely ecological connection with each other,the horizontal transmission of the strains wHa and A_NY_Calyp150744c3had not yetoccurred.
引文
何晓芳,温硕洋.腻澳洲赤眼蜂ITS2二级结构及其推导的地里种群分化.昆虫生态2001,:161-167.
    李正西. rDNA-ITS2应用于赤眼蜂分子鉴定的研究.中国农业大学学报2002,(5):80-84.
    彭艳琼,杨大荣,王秋艳,周芳,罗进荣.木瓜榕上昆虫群落结构及分布特征.昆虫学报2002,45(5):629-635.
    彭艳琼,杨大荣,周芳,张光明,宋启示.木瓜榕传粉生物学.植物生态学报2003,27(1)111-117
    王建波.核rDNA的ITS序列在被子植物系统与进化研究中的应用.植物分类学报1999,37(4):1-15.
    杨培,李宗波,彭艳琼,杨大荣.西双版纳大果榕亚组两种榕树花柱与其传粉榕小蜂产卵器的关系.动物学研究,2009,30(Suppl):146-153.
    Althoff, D. M., Segraves, K. A., Leebens-Mack, J., Pellmyr, O. Patterns of Speciation in theYucca Moths: Parallel Species Radiations within the Tegeticula yuccasella SpeciesComplex. Systematic Biology.2006,55(3):398-410.
    Baldo, L., Ayoub, N. A., Hayashi, C. Y., Russell, J. A., Stahlhut, J. K., Werren, J. H. Insightinto the routes of Wolbachia invasion: high levels of horizontal transfer in the spidergenus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity.Molecular Ecology.2008,17(2):557-569.
    Baldo, L., Desjardins, C., Russell, J., Stahlhut, J., Werren, J. Accelerated microevolution in anouter membrane protein (OMP) of the intracellular bacteria Wolbachia. BMCEvolutionary Biology.2010,10(1):48-66.
    Baldo, L., Dunning Hotopp, J. C., Jolley, K. A., Bordenstein, S. R., Biber, S. A., Choudhury,R. R., Hayashi, C., Maiden, M. C. J., Tettelin, H., Werren, J. H. Multilocus SequenceTyping System for the Endosymbiont Wolbachia pipientis. Applied and EnvironmentalMicrobiology.2006,72(11):7098-7110.
    Baldo, L., Lo, N., Werren, J. H. Mosaic Nature of the Wolbachia Surface Protein. Journal ofBacteriology.2005,187(15):5406-5418.
    Baldo, L., Prendini, L., Corthals, A., Werren, J. Wolbachia Are Present in Southern AfricanScorpions and Cluster with Supergroup F. Current Microbiology.2007,55(5):367-373.
    Baldo, L., Werren, J. Revisiting Wolbachia supergroup typing based on WSP: Spuriouslineages and discordance with MLST. Current Microbiology.2007,55(1):81-87.
    Bazin, E., Glemin, S., Galtier, N. Population Size Does Not Influence Mitochondrial GeneticDiversity in Animals. Science.2006,312(5773):570-572.
    Bazzocchi, C., Comazzi, S., Santoni, R., Bandi, C., Genchi, C., Mortarino, M. Wolbachiasurface protein (WSP) inhibits apoptosis in human neutrophils. Parasite Immunol.2007,29(2):73-9.
    0Berg, C. C. Classification and distribution of Ficus. Experientia.1989,45(7):605-611.
    Berg,C.C. Reproduction and evolution in Ficus (Moraceae): traits connected with theadequate rearing of pollinators. Memoirs of the New York Botanical Garden.1990,55169-185.
    Berthier, K., Chapuis, M.-P., Moosavi, S. M., Tohidi-Esfahani, D., Sword, G. A. Nuclearinsertions and heteroplasmy of mitochondrial DNA as two sources of intra-individualgenomic variation in grasshoppers. Systematic Entomology.2011,36(2):285-299.
    Bordenstein, S., Rosengaus, R. B. Discovery of a novel Wolbachia super group in Isoptera.Current Microbiology.2005,51(6):393-398.
    Bordenstein, S. R., Werren, J. H. Bidirectional incompatibility among divergent Wolbachiaand incompatibility level differences among closely related Wolbachia in Nasonia.Heredity.2007,99(3):278-287.
    Bourtzis, K. Wolbachia-based technologies for insect pest population control. In Transgenesisand the Management of Vector-Borne Disease.2008,104-113.
    Braig, H. R., Zhou, W., Dobson, S. L., O'Neill, S. L. Cloning and characterization of a geneencoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis.Journal of Bacteriology.1998,180:2373-2378.
    Brattig, N. W., Bazzocchi, C., Kirschning, C. J., Reiling, N., Buttner, D. W., Ceciliani, F.,Geisinger, F., Hochrein, H., Ernst, M., Wagner, H. et al. The major surface protein ofWolbachia endosymbionts in filarial nematodes elicits immune responses throughTLR2and TLR4. Journal of Immunology.2004,173(1):437-445.
    Brower, A. V. Rapid morphological radiation and convergence among races of the butterflyHeliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedingsof the National Academy of Sciences of the United States of America.1994,91(14):6491-6495.
    Campbell, B. J. D. S.-C. J. H. W. Phylogeny of the Nasonia species complex (Hymenoptera:Pteromalidae) inferred from an internal transcribed spacer (ITS2),28S rDNAsequences1993,2(4)225-237.
    Casiraghi, M., Bain, O., Guerrero, R., Martin, C., Pocacqua, V., Gardner, S. L., Franceschi, A.,Bandi, C. Mapping the presence of Wolbachia pipientis on the phylogeny of filarialnematodes: evidence for symbiont loss during evolution. International Journal forParasitology.2004,34(2):191-203.
    Charlat, S., Duplouy, A., Hornett, E. A., Dyson, E. A., Davies, N., Roderick, G. K., Wedell, N.,Hurst, G. D. The joint evolutionary histories of Wolbachia and mitochondria inHypolimnas bolina. BMC Evolutionary Biology.2009,9(64):1-9.
    Chen, Y., Xiao, H., Fu, J., Huang, D.-W. A molecular phylogeny of eurytomid wasps inferredfrom DNA sequence data of28S,18S,16S, and COI genes. Molecular Phylogeneticsand Evolution.2004,31(1):300-307.
    Coleman, A. W. ITS2is a double-edged tool for eukaryote evolutionary comparisons. Trendsin Genetics.2003,19(7):370-375.
    Cordaux, R., Michel-Salzat, A., Bouchon, D. Wolbachia infection in crustaceans: novel hostsand potential routes for horizontal transmission. Journal of Evolutionary Biology.2001,14(2):237-243.
    Cruaud, A., Jabbour-Zahab, R., Genson, G., Kjellberg, F., Kobmoo, N., van Noort, S.,Da-Rong, Y., Yan-Qiong, P., Ubaidillah, R., Hanson, P. E. et al. Phylogeny andevolution of life-history strategies in the Sycophaginae non-pollinating fig wasps(Hymenoptera, Chalcidoidea). BMC Evolutionary Biology.2011,11(1):178-193.
    Czarnetzki, A. B., Tebbe, C. C. Detection and phylogenetic analysis of Wolbachia inCollembola. Environ Microbiol.2004,6(1):35-44.
    Dobson, S. L., Bourtzis, K., Braig, H. R., Jones, B. F., Zhou, W., Rousset, F., O'Neill, S. L.Wolbachia infections are distributed throughout insect somatic and germ line tissues.Insect Biochemistry and Molecular Biology.1999,29(2):153-160.
    Doudoumis, V., Tsiamis, G., Wamwiri, F., Brelsfoard, C., Alam, U., Aksoy, E., Dalaperas, S.,Abd-Alla, A., Ouma, J., Takac, P. et al. Detection and characterization of Wolbachiainfections in laboratory and natural populations of different species of tsetse flies(genus Glossina). BMC Microbiol.2012,12Suppl1S3.
    Drummond, A. J., Nicholls, G. K., Rodrigo, A. G., Solomon, W. Estimating mutationparameters, population history and genealogy simultaneously from temporally spacedsequence data. Genetics.2002,161(3):1307-1320.
    Drummond, A. J., Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evolutionary Biology.2007,7(214):1-8.
    Egyed, Z., Sreter, T., Szell, Z., Nyiro, G., Dobos-Kovacs, M., Marialigeti, K., Varga, I.Electron microscopic and molecular identification of Wolbachia endosymbionts fromOnchocerca lupi: implications for therapy. Veterinary Parasitology.2002,106(1):75-82.
    Elder, J. R. Concerted evolution of repetitive DNA sequences in eukaryotes. QuarterlyReview of Biology.1995,70(3):297-319.
    Ferri, E., Bain, O., Barbuto, M., Martin, C., Lo, N., Uni, S., Landmann, F., Baccei, S. G.,Guerrero, R., de Souza Lima, S. et al. New insights into the evolution of Wolbachiainfections in filarial nematodes inferred from a large range of screened species. PLoSOne.2011,6(6):e20843.
    Foster, J., Ganatra, M., Kamal, I., Ware, J., Makarova, K., Ivanova, N., Bhattacharyya, A.,Kapatral, V., Kumar, S., Posfai, J. et al. The Wolbachia Genome of Brugia malayi:Endosymbiont Evolution within a Human Pathogenic Nematode. PLoS Biology.2005,3(4):e121.
    Galtier, N., Nabholz, B., Glémin, S., Hurst, G. D. D. Mitochondrial DNA as a marker ofmolecular diversity: a reappraisal. Molecular Ecology.2009,18(22):4541-4550.
    Gamston, C., Rasgon, J. Maintaining Wolbachia in Cell-free Medium. Journal of VisualizedExperiments.2007,5:223.
    Gorham, C. H., Fang, Q. Q., Durden, L. A. Wolbachia endosymbionts in fleas (Siphonaptera).Journal of Parasitology.2003,89(2):283-289.
    Haegeman, A., Vanholme, B., Jacob, J., Vandekerckhove, T. T. M., Claeys, M., Borgonie, G.,Gheysen, G. An endosymbiotic bacterium in a plant-parasitic nematode: Member of anew Wolbachia supergroup. International Journal for Parasitology.2009,39(9):1045-1054.
    Haine, E., Martin, J., Cook, J. Deep mtDNA divergences indicate cryptic species in afig-pollinating wasp. BMC Evolutionary Biology.2006,6(83):1-11.
    Haine, E. R., Cook, J. M. Convergent incidences of Wolbachia infection in fig waspcommunities from two continents. Proceedings of the Royal Society B: BiologicalSciences.2005,272(1561):421-429.
    Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W., Hebert, P. D. DNA barcodesdistinguish species of tropical Lepidoptera. Proceedings of the National Academy ofSciences of the United States of America.2006,103(4):968-971.
    Harrison, R. D., R nsted, N., Peng, Y.-Q. Fig and fig wasp biology: A perspective from theEast. Symbiosis.2008,45(1-3):1-8.
    Hebert, P. D., Cywinska, A., Ball, S. L., deWaard, J. R. Biological identifications throughDNA barcodes. Proceedings of the Royal Society B-Biological Sciences.2003,270(1512):313-321.
    Hebert, P. D., Ratnasingham, S., deWaard, J. R. Barcoding animal life: cytochrome c oxidasesubunit1divergences among closely related species. Proceedings of the Royal SocietyB-Biological Sciences.2003,270(1):96-99.
    Hebert, P. D. N., Cywinska, A., Ball, S. L., deWaard, J. R. Biological identifications throughDNA barcodes. Proceedings of the Royal Society B-Biological Sciences.2003,270(1512):313-321.
    Hickerson, M. J., Meyer, C. P., Moritz, C. DNA barcoding will often fail to discover newanimal species over broad parameter space. Syst Biol.2006,55(5):729-39.
    Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., Werren, J. H. How manyspecies are infected with Wolbachia?-a statistical analysis of current data. FEMSMicrobiology Letters.2008,281(2):215-220.
    Hillis D.M., Ribosomal DNA: molecular evolution and phylogenetic inference. QuarterlyReview of Biology1991,66(4)411-453.
    Hoy, M., Jeyaprakash, A. Symbionts, including pathogens, of the predatory miteMetaseiulus occidentalis: current and future analysis methods. Experimental andApplied Acarology.2008,46(1):329-347.
    Hribova, E., Cizkova, J., Christelova, P., Taudien, S., de Langhe, E., Dolezel, J. TheITS1-5.8S-ITS2sequence region in the Musaceae: structure, diversity and use inmolecular phylogeny. PLoS ONE.2011,6(3):e17863.
    Hung, Y.-T., Chen, C. A., Wu, W.-J., Lin, C.-C., Shih, C.-J. Phylogenetic utility of theribosomal internal transcribed spacer2in Strumigenys spp.(Hymenoptera:Formicidae). Molecular Phylogenetics and Evolution.2004,32(1):407-415.
    Hurst, G. D., Jiggins, F. M. Problems with mitochondrial DNA as a marker in population,phylogeographic and phylogenetic studies: the effects of inherited symbionts.Proceedings of the Royal Society B: Biological Sciences.2005,272(1572):1525-1534.
    Jeyaprakash, A., Hoy, M. A. Long PCR improves Wolbachia DNA amplification: wspsequences found in76%of sixty-three arthropod species. Insect Molecular Biology.2000,9(4):393-405.
    Ji, Y.-J., Zhang, D.-X., He, L.-J. Evolutionary conservation and versatility of a new set ofprimers for amplifying the ribosomal internal transcribed spacer regions in insects andother invertebrates. Molecular Ecology Notes.2003,3(4):581-585.
    Jiang, Z. F., Huang, D. W., Chen, L. L., Zhen, W. Q., Fu, Y. G., Peng, Z. Q. Rampant hostswitching and multiple female body colour transitions in Philotrypesis (Hymenoptera:Chalcidoidea: Agaonidae). Journal of Evolutionary Biology.2006,19(4):1157-1166.
    Jousselin, E., van Noort, S., Greeff, J. M. Labile male morphology and intraspecific malepolymorphism in the Philotrypesis fig wasps. Molecular Phylogenetics and Evolution.2004,33(3):706-718.
    Keiser, P. B., Coulibaly, Y., Kubofcik, J., Diallo, A. A., Klion, A. D., Traor? Sekou, F.,Nutman, T. B. Molecular identification of Wolbachia from the filarial nematodeMansonella perstans. Molecular and Biochemical Parasitology.2008,160(2):123-128.
    Kerdelhue, C., Rasplus, J.-Y. Non-pollinating Afrotropical fig wasps affect the fig-pollinatormutualism in Ficus within the subgenus Sycomorus. Oikos.1996,75(1):3-14.
    Klasson, L., Walker, T., Sebaihia, M., Sanders, M. J., Quail, M. A., Lord, A., Sanders, S., Earl,J., O'Neill, S. L., Thomson, N. et al. Genome Evolution of Wolbachia Strain wPipfrom the Culex pipiens Group. Molecular Biology and Evolution.2008,25(9):1877-1887.
    Klasson, L., Westberg, J., Sapountzis, P., N slund, K., Lutnaes, Y., Darby, A. C., Veneti, Z.,Chen, L., Braig, H. R., Garrett, R. et al. The mosaic genome structure of theWolbachia wRi strain infecting Drosophila simulans. Proceedings of the NationalAcademy of Sciences.2009,106(14):5725-5730.
    Kobbi, M., Chaieb, M., Edelin, C., Michaloud, G. Relationship between a mutualist and aparasite of the laurel fig, Ficus microcarpa L. Canadian Journal of Zoology.1996,74(10):1831-1833.
    Koetschan, C., Hackl, T., Muller, T., Wolf, M., Forster, F., Schultz, J. ITS2Database IV:Interactive taxon sampling for internal transcribed spacer2based phylogenies.Molecular Phylogenet Evolution.2012,63(3):585-588.
    Kremer, N., Charif, D., Henri, H., Bataille, M., Prevost, G., Kraaijeveld, K., Vavre, F. A newcase of Wolbachia dependence in the genus Asobara: evidence for parthenogenesisinduction in Asobara japonica. Heredity.2009,103(3):248-256.
    Kuperus. Usefulness of internal transcribed spacer regions of ribosomal DNA in Melanopline(Orthoptera: Acrididae)1994,87(6):751-754.
    Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O.,Duthoit, S., Barraclough, T. G., Savolainen, V. DNA barcoding the floras ofbiodiversity hotspots. Proceedings of the National Academy of Sciences of the UnitedStates of America.2008,105(8):2923-2928.
    Li, Y., Zhou, X., Feng, G., Hu, H., Niu, L., Hebert, P. D., Huang, D. COI and ITS2sequencesdelimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila(Hymenoptera, Eurytomidae). Molecular Ecology Resources.2010,10(1):31-40.
    Librado, P., Rozas, J. DnaSP v5: a software for comprehensive analysis of DNApolymorphism data. Bioinformatics.2009,25(11):1451-1452.
    Lo, N., Casiraghi, M., Salati, E., Bazzocchi, C., Bandi, C. How Many Wolbachia SupergroupsExist? Molecular Biology and Evolution.2002,19(3):341-346.
    Lo, N., Evans, T. A. Phylogenetic diversity of the intracellular symbiont Wolbachia in termites.Molecular Phylogenetics and Evolution.2007,44(1):461-466.
    Lopez-Vaamonde, C., Wikstr m, N., Kjer, K. M., Weiblen, G. D., Rasplus, J. Y., Machado, C.A., Cook, J. M. Molecular dating and biogeography of fig-pollinating wasps.Molecular Phylogenetics and Evolution.2009,52(3):715-726.
    Magnacca, K. N., Brown, M. J. Mitochondrial heteroplasmy and DNA barcoding in HawaiianHylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evolutionary Biology.2010,10(174):1-16.
    Marinho, M. A., Junqueira, A. C., Azeredo-Espin, A. M. Evaluation of the internal transcribedspacer2(ITS2) as a molecular marker for phylogenetic inference using sequence andsecondary structure information in blow flies (Diptera: Calliphoridae). Genetica.2011,139(9):1189-207.
    McDonald, J., Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila.Nature.1991,3(51):652-654.
    McMeniman, C. J., Hughes, G. L., O'Neill, S. L. A Wolbachia Symbiont in Aedes aegyptiDisrupts Mosquito Egg Development to a Greater Extent When Mosquitoes Feed onNonhuman Versus Human Blood. Journal of Medical Entomology.2011,48(1):76-84.
    McMeniman, C. J., Lane, A. M., Fong, A. W. C., Voronin, D. A., Iturbe-Ormaetxe, I., Yamada,R., McGraw, E. A., O'Neill, S. L. Host Adaptation of a Wolbachia Strain afterLong-Term Serial Passage in Mosquito Cell Lines. Applied and EnvironmentalMicrobiology.2008,74(22):6963-6969.
    McMeniman, C. J., O'Neill, S. L. A Virulent Wolbachia Infection Decreases the Viability ofthe Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence. PLoSNegl Trop Dis.2010,4(7):e748.
    Merget, B., Koetschan, C., Hackl, T., Forster, F., Dandekar, T., Muller, T., Schultz, J., Wolf, M.The ITS2Database. Journal of visualized experiments.2012,61(10):3791-3806.
    Moe, A. M., Weiblen, G. D. Development and characterization of microsatellite loci indioecious figs (Ficus, Moraceae). American journal of botany.2011,98(2):25-27.
    Morchon, R., Bazzocchi, C., Lopez-Belmonte, J., Martin-Pacho, J. R., Kramer, L. H., Grandi,G., Simon, F. iNOs expression is stimulated by the major surface protein (rWSP) fromWolbachia bacterial endosymbiont of Dirofilaria immitis following subcutaneousinjection in mice. Parasitology International.2007,56(1):71-75.
    Mukha, D., Wiegmann, B. M., Schal, C. Evolution and phylogenetic information content ofthe ribosomal DNA repeat unit in the Blattodea (Insecta). Insect Biochemistry andMolecular Biology.2002,32(9):951-960.
    Muller, M. J., von Muhlen, C., Valiati, V. H., da Silva Valente, V. L. Wolbachia pipientis isassociated with different mitochondrial haplotypes in natural populations ofDrosophila willistoni. Journal of Invertebr Pathol.2012,109(1):152-155.
    Narita, S., Nomura, M., Kato, Y., Fukatsu, T. Genetic structure of sibling butterfly speciesaffected by Wolbachia infection sweep: evolutionary and biogeographical implications.Molecular Ecology.2006,15(4):1095-1108.
    Negri, I., Pellecchia, M., Greve, P., Daffonchio, D., Bandi, C., Alma, A. Sex and stripping:The key to the intimate relationship between Wolbachia and host? Commun IntegrBiology.2010,3(2):110-115.
    O'Neill, S. Genome Sequence of the Intracellular Bacterium Wolbachia. PLoS Biology.2004,2(3):e76.
    O'Neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L., Robertson, H. M.16S rRNAphylogenetic analysis of the bacterial endosymbionts associated with cytoplasmicincompatibility in insects. Proceedings of the National Academy of Sciences.1992,89(7):2699-2702.
    O'Neill, S. L., Karr, T. L. Bidirectional incompatibility between conspecific populations ofDrosophila simulans. Nature.1990,348(6297):178-180.
    Oliverio, M.,Cervelli M, Mariottoni P.ITS2rRNA evolution and its congruence with thephylogeny of muricid neogastropods(Caenogastropoda, Muricoidea).Molecularphylogenetic and evolution.2002,25(1):63-69.
    Panaram, K., Marshall, J. F supergroup Wolbachia in bush crickets: what do patterns ofsequence variation reveal about this supergroup and horizontal transfer betweennematodes and arthropods? Genetica.2007,130(1):53-60.
    Paskewitz S.M., Wesson D.M.,Collins F.H. The internal transcribed spacers of ribosomalDNA in five members of Anopheles gambiae species complex. Insect molecularbiology.1993,2(4):247-257.
    Peng, Y.-Q., Yang, D.-R., Duang, Z.-B. The population dynamics of a non-pollinating figwasp on Ficus auriculata at Xishuangbanna, China. Journal of Tropical Ecology.2005,21(5):581-584.
    Peng, Y. Q., Yang, D. R., Wang, Q. Y. Quantitative tests of interaction between pollinating andnon-pollinating fig wasps on dioecious Ficus hispida. Ecological Entomology.2005,30(1):70-77.
    Porksakorn, C., Nuchprayoon, S., Park, K., Scott, A. L. Proinflammatory cytokine geneexpression by murine macrophages in response to Brugia malayi Wolbachia surfaceprotein. Mediators Inflamm.2007,2007(1):1-7.
    Porter,C.H., Collins F.H. Species-diagnostic differences in a ribosomal DNA internaltranscribed spacer from the sibling species Anopheles freeborni,Anopheles hermsi(Diptera: Culicidae). The American journal of tropical medicine and hygiene.1991,45(2):271-279.
    Prasad, P. K., Tandon, V., Biswal, D. K., Goswami, L. M., Chatterjee, A. Use of sequencemotifs as barcodes and secondary structures of Internal Transcribed spacer2(ITS2,rDNA) for identification of the Indian liver fluke, Fasciola (Trematoda: Fasciolidae).Bioinformation.2009,3(7):314-320.
    R nsted, N., Weiblen, G. D., Cook, J. M., Salamin, N., Machado, C. A., Savolainen, V.60million years of co-divergence in the fig-wasp symbiosis. Proceedings of the RoyalSociety B: Biological Sciences.2005,272(1581):2593-2599
    Rasgon, J. L., Scott, T. W. Phylogenetic characterization of Wolbachia symbionts infectingCimex lectularius L. and Oeciacus vicarius Horvath (Hemiptera: Cimicidae). Journalof Medical Entomology.2004,41(6):1175-1178.
    Raychoudhury, R., Baldo, L., Oliveira, D. C. S. G., Werren, J. H. Modes of acquisition ofWolbachia: horizontal transfer, hybrid introgression, and codivergence in the NasoniaSpecies complex. Evolution.2009,63(1):165-183.
    Raychoudhury, R., Grillenberger, B. K., Gadau, J., Bijlsma, R., van de Zande, L., Werren, J.H., Beukeboom, L. W. Phylogeography of Nasonia vitripennis (Hymenoptera)indicates a mitochondrial-Wolbachia sweep in North America. Heredity.2010,104(3):318-326.
    Riparbelli, M. G., Giordano, R., Ueyama, M., Callaini, G. Wolbachia-mediated male killing isassociated with defective chromatin remodeling. PLoS One.2012,7(1):e30045.
    Ronquist, F., Huelsenbeck, J. P. MrBayes3: Bayesian phylogenetic inference under mixedmodels. Bioinformatics.2003,19(12):1572-1574.
    Ros, V. I. D., Fleming, V. M., Feil, E. J., Breeuwer, J. A. J. How Diverse Is the GenusWolbachia? Multiple-Gene Sequencing Reveals a Putatively New WolbachiaSupergroup Recovered from Spider Mites (Acari: Tetranychidae). Applied andEnvironmental Microbiology.2009,75(4):1036-1043.
    Rowley, S. M., Raven, R. J., McGraw, E. A. Wolbachia pipientis in Australian spiders.Current Microbiology.2004,49(3):208-214.
    Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X., Rozas, R. DnaSP, DNA polymorphismanalyses by the coalescent and other methods. Bioinformatics.2003,19(18):2496-2497.
    Russell, J. E., Stouthamer, R. The genetics and evolution of obligate reproductive parasitismin Trichogramma pretiosum infected with parthenogenesis-inducing Wolbachia.Heredity.2011,106(1):58-67.
    Sacchi, L., Genchi, M., Clementi, E., Negri, I., Alma, A., Ohler, S., Sassera, D., Bourtzis, K.,Bandi, C. Bacteriocyte-like cells harbour Wolbachia in the ovary of Drosophilamelanogaster (Insecta, Diptera) and Zyginidia pullula (Insecta, Hemiptera). Tissue&Cell.2010,42(5):328-33.
    Saridaki, A., Bourtzis, K. Wolbachia: more than just a bug in insects genitals. Current Opinionin Microbiology.2010,13(1):67-72.
    Schlotterer,C. Temperature-gradient gel electrophoresis as a screening tool for polymorphismsin multigene families. Electrophoresis.1995,16(5):722-728.
    Shoemaker, D. D., Machado, C. A., Molbo, D., Werren, J. H., Windsor, D. M., Herre, E. A.The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecologyand population structure. Proceedings of the Royal Society B: Biological Sciences.2002,269(1506):2257-2267.
    Silvieus, S. I., Clement, W. L., Weiblen, G. D. Cophylogeny of figs, pollinators, gallers andparasitoids. In Specialization, Speciation, and Radiation: The Evolutionary Biology ofHerbivorous Insects. Berkeley, California: University of California Press.2007,17:225-239.
    Sim Es, P. M., Mialdea, G., Reiss, D., Sagot, M. F., Charlat, S. Wolbachia detection: anassessment of standard PCR Protocols. Molecular Ecology Resources.2011,11(3):567-572.
    Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P. Evolution, weighting, andphylogenetic utility of mitochondrial gene sequences and a compilation of conservedpolymerase chain reaction primers. Annals of the Entomological Society of America.1994,87(6):651-701.
    Song, Y. Triple infection of Wolbachia in Trichogramma ostriniae (Hymenoptera:Trichogrammatidae). Acta Entomologica Sinica.2009,52(4):445—452.
    Stahlhut, J. K., Desjardins, C. A., Clark, M. E., Baldo, L., Russell, J. A., Werren, J. H., Jaenike,J. The mushroom habitat as an ecological arena for global exchange of Wolbachia.Molecular Ecology.2010,19(9):1940-1952.
    Sun, X. J., Xiao, J. H., Cook, J. M., Feng, G., Huang, D. W. Comparisons of hostmitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig waspspecies and the effects of Wolbachia on host mtDNA evolution and diversity. BMCEvolutionary Biology.2011,11(86):1-8.
    Tajima, F. Evolutionary Relationship of DNA Sequences in Finite Populations. Genetics.1983,105(2):437-460.
    Tamura, K., Dudley, J., Nei, M., Kumar, S. MEGA4: molecular evolutionary genetics analysis(mega) software version4.0. Molecular Biology and Evolution.2007,24(8):1596-1599.
    Tautz, D., Hancock, J.M.,Webb, D.A., Tautz, C., Dover, G. A. Complete sequences of therRNA genes of Drosophila melanogaster. Molecular biology and evolution1988,5(4):366-376.
    Telschow, A., Yamamura, N., Werren, J. H. Bidirectional cytoplasmic incompatibility and thestable coexistence of two Wolbachia strains in parapatric host populations. Journal ofTheoretical Biology.2005,235(2):265-274.
    Thompson, J. D., Higgins, D. G., Gibson, T. J. CLUSTAL W: improving the sensitivity ofprogressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Research.1994,22(22):4673-4680.
    Toju, H., Fukatsu, T. Diversity and infection prevalence of endosymbionts in naturalpopulations of the chestnut weevil: relevance of local climate and host plants.Molecular Ecology.2011,20(4):853-868.
    Unckless, R. L., Jaenike, J. Maintenance of a male-killing Wolbachia in Drosophila innubilaby male-killing dependent and male-killing independent mechanisms. Evolution.2012,66(3):678-689.
    Vandekerckhove, T. T. M., Watteyne, S., Willems, A., Swings, J. G., Mertens, J., Gillis, M.Phylogenetic analysis of the16S rDNA of the cytoplasmic bacterium Wolbachia fromthe novel host Folsomia candida (Hexapoda, Collembola) and its implications forwolbachial taxonomy. FEMS Microbiology Letters.1999,180(2):279-286.
    Vollmer, N., Viricel, A., Wilcox, L., Katherine Moore, M., Rosel, P. The occurrence ofmtDNA heteroplasmy in multiple cetacean species. Current Genetics.2011,57(2):115-131.
    Watanabe, M., Miura, K., Hunter, M. S., Wajnberg, E. Superinfection of cytoplasmicincompatibility-inducing Wolbachia is not additive in Orius strigicollis (Hemiptera:Anthocoridae). Heredity.2011,106(4):642-648.
    Weiblen, G. D. Phylogenetic relationships of fig wasps pollinating functionally dioeciousFicus based on mitochondrial DNA sequences and morphology. Systems Biology.2001,50(2):243-267.
    Weiblen, G. D. Phylogenetic relationships of functionally dioecious Ficus (Moraceae) basedon ribosomal DNA sequences and morphology. American Journal of Botany.2000,87(9):1342-1357.
    Weiblen, G. D., Bush, G. L. Speciation in fig pollinators and parasites. Molecular Ecology.2002,11(8):1573-1578.
    Werren, J. H., Baldo, L., Clark, M. E. Wolbachia: master manipulators of invertebrate biology.Nature Reviews Microbiology.2008,6(10):741-751.
    Werren, J. H., O'Neill, S. L. The evolution of heritable symbionts. In InfluentialPassengers.1997,3-41. Oxford: Oxford University Press.
    Werren, J. H., Zhang, W., Guo, L. R. Evolution and phylogeny of Wolbachia: reproductiveparasites of arthropods. Proceedings of the Royal Society B: Biological Sciences.1995,261(1360):55-63.
    Wesson, D. C. H. P. F. H. Collins Sequence,secondary structure comparisons of ITS rDNA inmosquitoes (Diptera: Culicidae)1992,1(4):253-269.
    Woolfit, M., Iturbe-Ormaetxe, I., McGraw, E. A., O'Neill, S. L. An Ancient Horizontal GeneTransfer between Mosquito and the Endosymbiotic Bacterium Wolbachia pipientis.Molecular Biology and Evolution.2009,26(2):367-374.
    Wright, J. D., Barr, A. R. The ultrastructure and symbiotic relationships of Wolbachia ofmosquitoes of the Aedes scutellaris group. Journal of Ultrastructure Research.1980,72(1):52-64.
    Wu, M., Sun, L. V., Vamathevan, J., Riegler, M., Deboy, R., Brownlie, J. C., McGraw, E. A.,Martin, W., Esser, C., Ahmadinejad, N. et al. Phylogenomics of the ReproductiveParasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by MobileGenetic Elements. PLoS Biology.2004,2(3):e69.
    Xiao, J. H., Wang, N. X., Li, Y. W., Murphy, R. W., Wan, D. G., Niu, L. M., Hu, H. Y., Fu, Y.G., Huang, D. W. Molecular Approaches to Identify Cryptic Species and PolymorphicSpecies within a Complex Community of Fig Wasps. PLoS One.2010,5(11):e15067.
    Xiao, L.-Q., M ller, M., Zhu, H. High nrDNA ITS polymorphism in the ancient extant seedplant Cycas: Incomplete concerted evolution and the origin of pseudogenes. MolecularPhylogenetics and Evolution.2010,55(1):168-177.
    Yamada, R., Iturbe-Ormaetxe, I., Brownlie, J. C., O'Neill, S. L. Functional test of theinfluence of Wolbachia genes on cytoplasmic incompatibility expression inDrosophila melanogaster. Insect Molecular Biology.2011,20(1):75-85.
    Yang, D.-R., Peng, Y.-Q., Yang, P., Guan, J.-M. The community structure of insects associatedwith figs at Xishuangbanna, China. Symbiosis.2008,45(13):153-157.
    Yeap, H. L., Mee, P., Walker, T., Weeks, A. R., O'Neill, S. L., Johnson, P., Ritchie, S. A.,Richardson, K. M., Doig, C., Endersby, N. M. et al. Dynamics of the "Popcorn"Wolbachia Infection in Outbred Aedes aegypti Informs Prospects for Mosquito VectorControl. Genetics.2011,187(2):583-595.
    Yu, M. Z., Zhang, K. J., Xue, X. F., Hong, X. Y. Effects of Wolbachia on mtDNA variationand evolution in natural populations of Tetranychus urticae Koch. Insect MolecularBiology.2011,20(3):311-321.
    Yun, Y., Lei, C., Peng, Y., Liu, F., Chen, J., Chen, L. Wolbachia strains typing in differentgeographic population spider, Hylyphantes graminicola (Linyphiidae). CurrentMicrobiology.2011,62(1):139-145.
    Zabalou, S., Apostolaki, A., Pattas, S., Veneti, Z., Paraskevopoulos, C., Livadaras, I.,Markakis, G., Brissac, T., Mercot, H., Bourtzis, K. Multiple Rescue Factors Within aWolbachia Strain. Genetics.2008,178(4):2145-2160.
    Zhang, X., Norris, D. E., Rasgon, J. L. Distribution and molecular characterization ofWolbachia endosymbionts and filarial nematodes in Maryland populations of the lonestar tick (Amblyomma americanum). FEMS Microbiology Ecology.2011,77(1):50-56.
    Zheng, X., Cai, D., Yao, L., Teng, Y. Non-concerted ITS evolution, early origin andphylogenetic utility of ITS pseudogenes in Pyrus. Molecular Phylogenetics andEvolution.2008,48(3):892-903.
    Zhou, W., Rousset, F., Neill, S. O. Phylogeny and PCR-based classification of Wolbachiastrains using wsp gene sequences. Proceedings of the Royal Society B: BiologicalSciences.1998,265(1395):509-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700