用户名: 密码: 验证码:
玉米秸秆生物炼制丁二酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁二酸(琥珀酸)是一种重要的C4平台化合物,它作为有机化工的基本原材料广泛应用于食品医药表面活性剂清洁剂绿色溶剂生物可降解塑料等领域生物基丁二酸做为一种化工原材料的替代品,在石油基大宗化学品市场中日益受到重视,被美国能源部评估为前12种应该优先考虑的化学品之一秸秆是一种重要的木质纤维素类可再生资源,在我国资源非常丰富,每年产量约达7亿多吨,除少量被草食动物间接消化利用外,大部分以焚烧或微生物无用分解方式进入自然生态循环系统开展秸秆生物炼制丁二酸的研究,有利于减少传统化学合成中对化石原料的依赖,缓解大气的温室效应,促进碳氢化合物经济向碳水化合物经济转型;有利于促进秸秆的高值化利用,有利于解决―三农‖问题,增加农民收入本文围绕秸秆生物炼制丁二酸中的微生物菌株改造酶转化发酵策略和纤维素酶回用三个方面的关键问题,进行以下研究:
     (1)对丁二酸产生菌琥珀酸放线杆菌A. succinogenes CGMCC1593的pH温度和产酸三个表型进行改进首先,建立了基于―先选相对优势组群再选优势菌株‖策略的96孔板高效筛选法,通过选择性平板生长96孔培养板发酵HPLC浓缩检测和摇瓶复筛,实现了从大样本中高效筛选目标菌株其次,采用基因组改组方法,选育得到耐酸菌株F3-20和高产菌F3-3-f;采用温度驯化的方法,得到耐温菌株2-b F3-20在培养基pH5.6的条件下生长,菌体OD值提高了6倍,摇瓶产酸提高了32%;F3-3-f补料分批发酵,产丁二酸可达到94g/L,产率84%,生产强度1.96g/L/h;菌株2-b在40℃下分批发酵,产丁二酸可达到40.2g/L,产率89%,糖利用率92%,生产强度1.11g/L/h A. succinogenes的耐酸表型与丁二酸产量表型具有一定的相容性,但其温度耐受表型与产量表型的相容性相对较差再次,测定葡萄糖代谢关键酶活性发现:改组菌F3-3-f的EMP途径和C4途径中的部分酶(PEP羧化激酶己糖激酶1,6-二磷酸果糖醛缩酶和延胡羧酸酶)的活性增加,而C3途径中的部分酶(乙酸激酶丙酮酸激酶)的活性减少扩增片段长度多态性分析表明改组菌与出发菌在基因组上存有明显差异
     (2)探讨A. succinogenes发酵木糖与秸秆水解糖的特性以木糖混合糖和秸秆水解糖为碳源,摇瓶和发酵罐实验结果表明:A. succinogenes对木糖利用率高,但副产物乙酸浓度高,丁二酸产率低;混合糖或秸秆水解糖发酵时,其中的木糖和葡萄糖同时被利用,乙酸浓度高的程度得到一定缓解;以秸秆水解糖为底物,5L发酵罐中补料分批发酵48h产丁二酸77.6g/L乙酸9.4g/L糖利用率96%丁二酸产率84%生产强度1.62g/L/h比较单纯木糖和单纯葡萄糖发酵20h的菌体生长底物消耗和产物形成速率,认为木糖代谢过程乙酸浓度偏高可能与ATP需求有关,而丁二酸产率偏低可能与代谢过程还原力减少有关
     (3)系统研究A. succinogenes秸秆同步糖化(共)发酵(SSF)策略首先,考察β-葡萄糖苷酶(βG)和木聚糖酶对纤维素酶降解秸秆的协同作用,在纤维素酶中,按每克预处理秸秆(PCS)补充10CBU的βG或50-100U的木聚糖酶,秸秆水解率提高30%左右;摇瓶SSF产丁二酸浓度可提高2.5倍,得出:对于不同来源的工业纤维素酶可采用适当补充βG和木聚糖酶的方式进行秸秆水解或SSF其次,底物(PCS)浓度实验表明:合适的底物浓度为65-80g PCS/L,SSF最适底物浓度比秸秆水解的最适底物浓度略高再次,对SSF参数进行了系统表征SSF过程中,糖浓度维持在较低水平;纤维素酶活性与秸秆颗粒质量呈现相同的减少趋势,两者在发酵前期(12h内)快速衰减至一半左右,然后基本维持不变;而βG和木聚糖酶的活性基本维持不变;丁二酸与乙酸的质量比较低(4.5左右)进一步,通过采用预水解SSF工艺,有效提高了发酵过程菌体浓度,丁二酸浓度从45.4g/L提高到47.9g/L,产率从0.567g/g PCS提高到0.598g/g PCS,结合40℃发酵,丁二酸浓度达到52.4g/L,对秸秆产率为0.655g/g PCS,丁二酸/乙酸提高到5.6然后,比较分步水解发酵(SHF)和SSF的发酵参数及酶耗,得出两种发酵工艺路线各有利弊,总体差距不明显,采用自制T. reesei发酵液以及预水解同步糖化发酵工艺相对略好,但是酶的用量与价格是决定秸秆生物炼制丁二酸的主导因素
     (4)针对纤维素酶的回收利用,初步研究磁性固定化β-葡萄糖苷酶pH值敏感型可逆可溶性聚合物Eudragit L-100固定化纤维素酶的方法,以及固定化酶在水解秸秆中的应用首先,通过条件优化,制得磁性固定化βG,固定化酶活力和固定化酶收率分别达到6.67CBU/g与91.0%红外光谱和扫描电镜图证实壳聚糖Fe3O4和酶有机地结合在一起;Fe3O4除了提供磁性外,还促进了壳聚糖微球对酶的吸附与游离酶相比,固定化βG的最适pH向低pH偏移了0.3,表观米氏常数略有降低,说明固定化酶对底物的亲和性没有下降在协同纤维素酶秸秆水解体系中,固定化βG稳定性良好,反复使用8次(288h),平均秸秆水解率为76.9%其次,优化Eudragit L-100固定化纤维素酶条件,制得固定化酶的酶活力为5FPU/g,固定化酶收率16.2%;固定化酶的溶解pH范围比载体的溶解pH范围略向碱性偏移,酶反应最适pH也比游离酶的最适pH略向碱性偏移在秸秆水解体系中,其水解率仅比游离酶低3%,反复利用10次(400h),平均水解率为80.4%,没有明显下降的趋势当两种固定化酶同时用于秸秆水解体系时,水解时间略有延长,重复使用7次(420h),水解率仍有75%,展现了良好的操作稳定性和应用的前景
Succinic acid (amber acid) is an important platform chemical for C4compounds whichwidely used in many fields including food, pharmaceutical, surfactants, detergents, greensolvents and biodegradable plastics. Bio-based succinic acid, as a substitute of chemicalmaterial, has been paid attention increasingly in the oil-based bulk and specialty chemicalsmarket. It identified by DOE as one of the priorities among the top12chemicals of greatestinterest. Corn straw is an important lignocellulosic renewable biomass and it is very abundantin China. The annual production amount of corn straw reaches7hundreds million tons, inwhich the majority is burn out or remains unused besides a small quantity for animal feedingand bedding indirectly. Therefore, biorefinery of corn straw for producing succinic acid isvery significance. Because it can not only alleviate the chemical industry on oil dependenceand the greenhouse effect, but also promote economy transition from hydrocarbons tocarbohydrate, increase high value-add of corn straw and income of peasants. Based on threemain aspects in bio-succinic acid production from corn straw, the key issues such asmicrobial strain improvement, strategy of enzymatic conversion and fermentation, andcellulase recycling, were studied in this work.
     (1) In order to improve acid-tolerance, thermo-tolerance and succinic acid production ofA. succinogenes CGMCC1593, a screening model named―selective plates-96-well platesfermentation-condensed HPLC assay-anaerobic bottles fermentation‘was developed andapplied in screening of the objected strain from a large-scale samples. Using genomeshuffling, an acid resistant strain F3-20and a high succinic acid-producing strain F3-3-f wereobtained. And a thermotolerance strain2-b was selected by domestication of increasingtemperature. As results, the growth OD of F3-20was six times higher than that of originalstrain CGMCC1593with succinic acid concentration improved32%over its original strainin anaerobic bottles fermentation. Under fet-batch fermentation of F3-3-f, the succinic acidconcentration, the productivity and yield were reached94g/L,1.96g/L/h and84%,respectively. And under batch fermentation of2-b at40℃, the succinic acid concentration,the glucose uptake rate, the yield and the productivity were40.2g/L,92%,89%and1.11g/L/h, respectively. Results suggested two phenotypes between acid resistant and high yieldwere compatibility at a certain extent, but two phenotypes between hot stress and high yieldhad less compatibility. Furthermore, comparing the fermentative parameters and the keyenzymatic activities of glucose metabolism among shuffled strains and its original, it werefound that the biomass of F3-3-f during fermentation was highest, as well as the activities ofsome enzymes in pathways of EMP and C4, such as PEPCK, Hexokinase, Fructose1,6-diphosphate aldolase, Fm were increased and in C3pathway, such as AK, PK were reduced. The amplified fragment length polymorphism (AFLP) analysis proved there wereexisted some genetic diversity among the shuffled strains F3-20, F3-3-f and their original.
     (2) Exploring fermentation characteristics of A. succinogenes on straw hydrolysate andxylose medium were performed. Different carbon sources including glucose, xylose, mixturesugar (of glucose and xylose) and straw hydrolysate were investigated under anaerobicbottles fermentation and fet-batch fermentation. Results showed the higher sugar utilizationrate, lower yield and higher concentration of by-products acetic acid in xylose fermentedliquid when compared with glucose fermented of F3-3-f. However, to a certain extent themixture sugar and straw hydrolysate fermented could alleviate the degrees of both yielddecline and acetic acid concentration increase. When straw hydrolysate as carbon resourceunder fed-batch fermentation in a5-L fermentor, F3-3-f produced77.6g/L succinic acid,9.4g/L acetic acid, and the sugar utilization rate, yield and productivity were96%,84%and1.62g/L/h, respectively. Comparing specific rates of cell growth, substrate consumption andproduce formation between glucose and xylose fermentation at20h, it might speculate thatthe higher acetate concentration and lower yield were correlated with ATP demand and thereducing power decrease in xylose metabolization.
     (3) SSF strategy of biorefinery succinic acid from corn straw was studied. Firstly thesynergistic role of β-glucosidase and xylanase in straw degradation by cellulase wereexamined. Results showed the enzymic conversion rate could be increased by30%when βGof10CBU/g PCS or xylanase of50-100U/g PCS was supplemented to the straw hydrolysisreaction, and succinic acid concentration of SSF under anaerobic bottles could be increased2.5times than the one that both βG and xylanase not added. A view of using cocktailcombination‘of βG and xylanase with various commercial cellulase was put forward inhydrolysis of straw or SSF. Secondly, by different substrate concentration tests, the optimalsubstrate concentration in SSF was found between65-80g/L, which was little higher than theconcentration of straw hydrolysis. Following the track of SSF, it was seen that the reducingsugar concentration maintained at low level. The cellulase activity as well as the weight ofPCS almost declined by half in early fermentation, and then maintained unchanged, whileboth activities of βG and xylanase were fairly constant. The ratio of succinic acid to aceticacid was4.3at fermentation end. An improved technics of pre-hydrolysis SSF was used, thesuccinic acid concentration was increased from45.4g/L to47.9g/L, and the yield increasedto0.598g/g PCS from0.567g/g PCS due to biomass enhanced during fermentation.Pre-hydrolysis SSF was performed at40℃by thermotolerance strain2-b,52.4g/L succinicacid concentration with a yield of0.655g/g PCS was achieved, and the ratio of succinic acidto acetic acid was increased to5.6. Finally, comparison fermentative parameters of SHF andSSF, it was showed that each of two fermentation process has advantages and disadvantages,although overall both difference is not obvious, the pre-hydrolysis SSF using T. reesei fermention broth as source of cellulase was slightly better relatively. However, we found thatenzyme dosages and price were the leading factors that biorefinery succinic acid of cornstraw depends upon.
     (4) For recycled usage of cellulase in hydrolysis of corn straw, immobilization ofβ-glucosidase on magnetic chitosan microsphere, immobilization of cellulase withsoluble-insolubl polymer Endragit L-100and their application in hydrolysis of straw weretaken initial attempts. Under optimized preparation condition, the immobilized enzymeactivity and yield of the obtained magnetic immobilized βG were6.7CBU/g and91.0%,respectively. The FTIR spectra and SEM of immobilized βG proved β-glucosidase wassuccessfully immobilized on magnetic chitosan microspheres which chitosan combined withFe3O4, Fe3O4also improved the adsorption capacity of chitosan microspheres expectproviding magnetic. The optimum pH of immobilized βG shifted to acid0.3and the apparentKm decreased comparing with native enzyme, which showed no change in the substrateaffinity between the immobilized and free βG. When the immobilized βG was applied inenzymatic hydrolysis of corn straw, the conversion rate was maintained above76%afterrecycling in8batches (total288h). The Immobilized cellulase activity and yield were5FPU/g and16.2%under the optimal condition by single factor experiments. The pH changerange of IC solubility slightly shifted to alkaline than the carried Eudragit L-100, and also theoptimum pH of IC was little higher than the free enzyme. In enzymatic hydrolysis of cornstraw, the conversion rate of IC was less3%than that of free enzyme, and there was75%after recycled7batches (420h) that showed good operational stability. Results exhibited theapplication potential of these two immobilized enzyme.
引文
1. Bungay R H. Biomass refining[J]. Science,1982(218):643-646
    2.波吉特卡姆,帕特里克R格鲁勃,迈克卡姆.生物炼制——工业过程与产品:上册[M].马延和主译.北京:化学工业出版社,2007.9-13
    3.王庆昭,郑宗宝,刘子鹤,等.生物炼制工业过程及产品[J].化学进展,2007,19(7/8):1198-1205
    4.封颖.我国生物炼制产业发展路线图[J].中国科技成果,2008,(2):37-39
    5.陈燕蓉,尚飞,谭天伟.生物炼制技术及其产业发展[J].生物产业技术,2011,(1):33-40
    6.张延平,李寅,马延和.细胞工厂与生物炼制[J].化学进展,2007,19(7/8):1076-1083
    7. Francesco C. The biorefinery concept: Using biomass instead of oil for producing energy andchemicals[J]. Energy Convers Manag,2010,51:1412-1421
    8. Ragauskas A J. The path forward for biofuels and biomaterials[J]. Science,2006,311:484-489
    9. Kamm B,Kamm M. Principles of biorefineries[J]. Appl Microbiol Biotechnol,2004,64:137-145
    10. Werpy T,Petersn G. Top value added chemical from biomass[C]. U.S. Deparatment of energy,office of scientific and technical information,2004,NO: DOE/GO:102004-1992
    11.孙保国.日用化工辞典[M].北京:化学工业出版,2002.236
    12. Cukalovic A, Stevens C V. Feasibility of production methods for succinic acid derivatives: amarriage of renewable resources and chemical technology [J]. Biofuels Bioprod Bioref,2008,2(6):505-529
    13. Bechthold I,Bretz K,Kabasci S,et al. Succinic Acid: A New Platform Chemical for BiobasedPolymers from Renewable Resources[J]. Chem Eng Technol,2008,31(5):647-654
    14. Zeikus J G. Chemical and fuel production by anaerobic bacteria[J]. Annu Rev Microbiol,1980,34:423-464
    15. Zeikus J G,Elankovan P,Grethlein A. Utilizing fermentation as a processing alternative:succinic acid from renewable resources[J]. Chem Proc,1995:71-73
    16. Zeikus J,Jain M,Elankovan P. Biotechnology of succinic acid production and markets forderived industrial products[J]. Applied Microbiology and Biotechnology,1999,51(5):545-552
    17. Song H,Lee S. Production of succinic acid by bacterial fermentation[J]. Enzyme MicrobTechnol,2006,39(3):352-361
    18. McKinlay J,Vieille C,Zeikus J. Prospects for a bio-based succinate industry[J]. Appl MicrobiolBiotechol,2007,76(4):727-740
    19. Beauprez J,Mey M D,Soetaert W. Microbial succinic acid production: natural versus metabolicengineered producers[J]. Process Biochem,2010,45(7):1103-1114
    20. Sauer M,Porro D,Mattanovich D,et al. Microbial production of organic acids: expanding themarkets[J]. Trends Biotechnol,2008,26(2):101-108
    21. Davis C P,Cleven D,Brown J,et al. Anaerobiospirillum, a new species of spiral-hapedbacteria[J]. Int J Syst Bacteriol,1976,26:498-504
    22. Samuelov N,Lamed R,Lowe S,et al. Influence of CO2-HCO3-levels and pH on growth,succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens[J]. ApplEnviron Microbiol,1991,57(10):3013-3019
    23. Nghiem N,Davison B,Thompson J,et al. The effect of biotin on the production of succinic acidby Anaerobiospirillum succiniciproducens[J]. Appl Biochem Biotechnol,1996,57(1):633-638.
    24. Lee P,Lee W,Lee S,et al. Effects of medium components on the growth of Anaerobiospirillumsucciniciproducens and succinic acid production[J]. Process Biochem,1999,35(1-2):49-55
    25. Meynial-Salles,Dorotyn S,Soucaille P. A new process for the continuous production of succinicacid from glucose at high yield, titer, and productivity[J]. Biotechnol Bioeng,2008,99(1):129-135
    26. Werf V M J D,Guettler M V,Jain M K,et al. Environmental and physiological factors affectingthe succinate product ratio during carbohydrate fermentation by Actinobacillus sp.130Z[J]. ArchMicrobiol,1997,167:332-342
    27. Park D H,Laivenieks M,Guettler M V,et al. Microbial utilization of electrically reduced neutralred as the sole electron donor for growth and metabolite production[J]. Appl Environ Microbiol,1999,65:2912-2917
    28. McKinlay J B,Zeikus J G,Vieille C. Insights into Actinobacillus succinogenes fermentativemetabolism in a chemically defined growth medium[J]. Appl Environ Microbiol,2005,71:6651-6656
    29. McKinlay J B,Shachar-Hill Y,Zeikus J G,et al. Determining Actinobacillus succinogenesmetabolic pathways and fluxes by NMR and GC-MS analyses of13C-labeled metabolic productisotopomers[J]. Metab Eng,2007,9:177-192
    30. McKinlay J B, Vieille C.13C-metabolic flux analysis of Actinobacillus succinogenesfermentative metabolism at different NaHCO3and H2concentrations[J]. Metab Eng,2008,10(1):55-68
    31. McKinlay J B,Laivenieks M,Schindler B D,et al. A genomic perspective on the potential ofActinobacillus succinogenes for industrial succinate production[J]. BMC Genomics,2010,11:680-695
    32. Kim P,Laivenieks M,McKinlay J,et al. Construction of a shuttle vector for the overexpressionof recombinant proteins in Actinobacillus succinogenes[J]. Plasmid,2004,51:108-115
    33. Kim P,Laivenieks M,Vieille C,et al. Effect of overexpression of Actinobacillus succinogenesphosphoenolpyruvate carboxykinase on succinate production in Escherichia coli[J]. ApplEnviron Microbiol,2004,70:1238-1241
    34. Lin S K C,Du C,Koutinas A,et al. Substrate and product inhibition kinetics in succinic acidproduction by Actinobacillus succinogenes[J]. Biochem Eng J,2008,41:128-135
    35. Corona-Gonzalez R I,Bories A,Gonzalez-Alvarez V,et al. Kinetic study of succinic acidproduction by Actinobacillus succinogenes ZT-130[J]. Process Biotech,2008,43:1047-1053
    36.朱蕾蕾,刘宇鹏,郑璞,等.一株琥珀酸产生菌的筛选及鉴定[J].微生物学通报,2007,34(1):80-84
    37.姜岷,蔡婷,陈可泉,等.一株丁二酸高产菌株的筛选和鉴定[J].工业微生物,2008,38(3):38-42
    38.姜绍通,李兴江,潘丽军,等.一株丁二酸产生菌的选育及代谢分析[J].微生物学通报,2008,48(8):1048-1055
    39. Li X J,Zheng Z,Wei Z J,et al. Screening, breeding and metabolic modulating of a strainproducing succinic acid with corn straw hydrolyte[J]. World J Microbiol Biotechnol,2009,25:667-677
    40.刘宇鹏,朱蕾蕾,郑璞,等.琥珀酸发酵高产菌株的选育[J].工业微生物,2007,37(2):1-6
    41.刘宇鹏,郑璞,倪晔,等. Actinobacillus succinogenes抗氟乙酸突变株的选育及其代谢流量分析[J].生物工程学报,2008,24(3):460-467
    42.刘璇,郑璞,倪晔,等.基因组改组技术选育耐酸性琥珀酸放线杆菌[J].微生物学通报,2009,36(11):1676-1681
    43.姜岷,陈可泉,蔡婷,等.超高静压在琥珀酸生产菌株选育中的应用[J].微生物学通报,2008,35(4):561-564
    44.叶贵子,姜岷,陈可泉,等.耐铵型产琥珀酸放线杆菌的选育及铵离子对其生长代谢的影响[J].生物工程学报,2010,26(2):183-188
    45.潘丽军,李兴江,姜绍通,等.基于代谢通量分析的琥珀酸放线杆菌高产选育研究[J].生物工程学报,2008,25(9):1595-1603
    46.郑璞,朱蕾蕾,刘宇鹏,等.琥珀酸放线杆菌发酵培养基的优化[J].工业微生物,2007,37(3):1-5
    47. Liu Y P,Zheng P,Sun Z H,et al. Strategies of pH control and glucose fed batch fermentation forproduction of succinic acid by Actinobacillus succinogenes CGMCC1593[J]. J Chem TechnolBiotechnol,2008,87:722-729
    48.张坤坤,郑璞,董晋军,等.高产琥珀酸菌株的通量筛选[J].工业微生物,2012,42(1):11-16
    49.姜岷,苏溧,陈可泉,等. Actinobacillus succinogenes NJll3厌氧发酵产丁二酸培养条件的优化[J].食品与发酵工业,2007,33(6):1-5
    50. Lee P,Lee S,Hong S,et al. Isolation and characterization of a new succinic acid-producingbacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen[J]. Appl MicrobiolBiotechnol,2002,58(5):663-668
    51. Song H,Lee J W,Choi S,et al. Effects of dissolved CO2levels on the growth of Mannheimiasucciniciproducens and succinic acid production[J]. Biotechnol Bioeng,2007,98(6):1296-1304
    52. Lee Y S,Kim J M,Song H,et al. From genome sequence to integrated bioprocess for succinicacid production by Mannheimia succiniciproducens[J]. Appl Microbiol Biotechnol,2008,79(1):11-22
    53. Hong S H,Kim J S,Lee S Y,et al. The genome sequence of the capnophilic rumen bacteriumMannheimia succiniciproducens [J]. Nat Biotechnol,2004,22(10):1275-1281
    54. Lee J W,Lee S Y,Song H,et al. The proteome of Mannheimia succiniciproducens, a capnophilicrumen bacterium[J]. Proteomics,2006,6(12):3550-3566
    55. Jang Y S,Jung Y R,Lee S Y,et al. Construction and characterization of shuttle vectors forsuccinic acid producing rumen bacteria[J]. Appl Environ Microbiol,2007,73(17):5411-5420
    56. Kim J M,Lee K H,Lee S Y,et al. Development of a markerless gene knock-out system forMannheimia succiniciproducens using a temperature-sensitive plasmid[J]. FEMS MicrobiolLett,2008,278(1):78-85
    57. Lee S J, Song H, Lee S Y. Genome-basedmetabolic engineering of Mannheimiasucciniciproducens for succinic acid production[J]. Appl Environ Microbiol,2006,72(3):1939-1948
    58. Kim J K,Kim C H,Jeong H,et al. Genome-scale analysis of Mannheimia succiniciproducensmetabolism[J]. Biotechnol Bioeng,2007,97(4):657-671
    59. Scholten E,Da¨gele D. Succinic acid production by a newly isolated bacterium[J]. BiotechnolLett,2008,30:2143-2146
    60. Kuhnert P,Scholten E,Haefner S,et al. succiniciproducens gen. nov., sp. nov. a new member ofthe family Pasteurellaceae isolated from bovine rumen[J]. Int J Syst Evol Microbiol,2009,60(1):44-50
    61. Scholten E,Renz T,Thomas J. Continuous cultivation approach for fermentative succinic acidproduction from crude glycerol by Basfia succiniciproducens DD1[J]. Biotechnol Lett,2009,31:1947-1951
    62. Millard C S,Chao Y P,Liao J C,et al. Enhanced production of succinic acid by overexpressionof phosphoenolpyruvate carboxylase in Escherichia coli[j]. Appl Environ Microbiol,1996,62:1808-1810
    63. Stols L, Donnelly M I. Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant[J]. Appl Environ Microbiol,1997,63(7):2695
    64. Chatterjee R,Millard C S,Champion D P,et al. Mutation of the ptsG gene results in increasedproduction of succinate in fermentation of glucose by Escherichia coli[J]. Appl EnvironMicrobiol,2001,67(1):148
    65. Gokarn R R,Eiteman M A,Altman E. Metabolic analysis of Escherichia coli in the presence andabsence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvatecarboxylase[J]. Appl Environ Microbiol,2000,66(5):1844
    66. Vemuri G N,Eiteman M A,Altman E. Effects of growth mode and pyruvate carboxylase onsuccinic acid production by metabolically engineered strains of Escherichia coli[J]. ApplEnviron Microbiol,2002,68(4):1715
    67. Vemuri G N,Eiteman M A,Altman E. Succinate production in dual-phase Escherichia colifermentations depends on the time of transition from aerobic to anaerobic conditions[J]. J IndMicrobiol Biotechnol,2002,28(6):325-332
    68. Lin H,Bennett G N,San K Y. Genetic reconstruction of the aerobic central metabolism inEscherichia coli for the absolute aerobic production of succinate[J]. Biotechnol Bioeng,2004,89(2):148-156
    69. Lin H,Bennett G N,San K Y. Metabolic engineering of aerobic succinate production systems inEscherichia coli to improve process productivity and achieve the maximum theoretical succinateyield[J]. Metab Eng,2005,7(2):116-127
    70. Lin H,Bennett G N,San K Y. Fed-batch culture of a metabolically engineered Escherichia colistrain designed for high-level succinate production and yield under aerobic conditions[J].Biotechnol Bioeng,2005,90(6):775-779
    71. Sánchez A M,Bennett G N,San K Y. Efficient succinic acid production from glucose throughoverexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactatedehydrogenase mutant[J]. Biotechnol Prog,2005,21(2):358-365
    72. Sánchez A M,Bennett G N,San KY. Novel pathway engineering design of the anaerobic centralmetabolic pathway in Escherichia coli to increase succinate yield and productivity[J]. MetabEng,2005,7(3):229-239
    73. Cox S J,Levanon S S,Sanchez A,et al. Development of a metabolic network design andoptimization framework incorporating implementation constraints: a succinate production casestudy[J]. Metab Eng,2006,8(1):46-57
    74. Jantama K,Haupt M J,Svoronos S A,et al. Combining metabolic engineering and metabolicevolution to develop nonrecombinant strains of Escherichia coli C that produce succinate andmalate[J]. Biotechnol Bioeng,2008,99(5):1140-1153
    75. Jantama K,Zhang X,Moore J C,et al. Eliminating side products and increasing succinate yieldsin engineered strains of Escherichia coli C[J]. Biotechnol Bioeng,2008,101(5):881-893
    76. Zhang X,Jantama K,Moorea J C,et al. Metabolic evolution of energy-conserving pathways forsuccinate production in Escherichia coli[J]. PNAS,2009,106:20180-5
    77. Wu H,Li Z M,Xie J L,et al. Enhanced anaerobic succinic acid production by Escherichia coliNZN111aerobically grown on gluconeogenic carbon sources[J]. Enzyme Microb Technol,2009,44:165-169
    78. Jiang M,Liu S W,Ma J F,et al. Effect of growth phase feeding strategies on succinateproduction by metabolically engineered Escherichia coli[J]. Appl Environ Microbiol,2010,(2):1298-1300
    79. Wang D,Li Q,Mao Y,et al. High-level succinic acid production and yield by lactose-inducedexpression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli[J]. ApplEnviron Microbiol,2010,87:2025-2035
    80. Inui M,Murakami S,Okino S,et al. Metabolic analysis of Corynebacterium glutamicum duringlactate and succinate productions under oxygen deprivation conditions[J]. J Mol MicrobiolBiotechnol,2004,7:182-196
    81. Okino S,Noburyu R,Suda M,et al. An efficient succinic acid production process in ametabolically engineered Corynebacterium glutamicum strain[J]. Appl Environ Microbiol,2008,81(3):459-464
    82. Litsanov B,Kabus A,Bott M,et al. Efficient aerobic succinate production from glucose inminimal medium with Corynebacterium glutamicum[J]. Microb Biotechnol,2012,5(1):116-12
    83. Litsanov B,Brocker M,Bott M. Toward homosuccinate fermentation metabolic engineering ofCorynebacterium glutamicum for anaerobic production of succinate from glucose and formate[J].Appl Environ Microbiol,2012,78(9):3325-3337.
    84. Samuelov NS, Datta R, Jain M K, et al. Whey fermentation by Anerobiospirillumsucciniciproducens for production of a succinate-based animal feed additive[J]. Appl EnvironMicrobiol,1999,65(5):2260-2263
    85. Lee P C,Lee W G,Kwon S,et al. Batch and continuous cultivation of Anaerobiospirillumsucciniciproducens for the production of succinic acid from whey[J]. Appl MicrobiolBiotechnol,2000,54(1):23-27
    86. Lee P C,Lee S Y,Hong S H,et al. Batch and continuous cultures of Mannheimiasucciniciproducens MBEL55E for the production of succinic acid from whey and corn steepliquor[J]. Bioprocess Biosyst Eng,2003,26(1):63-67
    87. Agarwal L,Isar J,Meghwanshi G K,et al. A cost effective fermentative production of succinicacid from cane molasses and corn steep liquor by Escherichia coli[J]. J Appl Microbiol,2006,100(6):1348-1354
    88. Liu Y P,Zheng P,Sun Z H, et al. Economical succinic acid production from cane molasses byActinobacillus succinogenes[J]. Bioresource Technol,2008,99(6):1736-1742
    89.任玮,董晋军,郑璞,等.酶水解菊芋糖浆发酵生产琥珀酸的初步研究[J].工业微生物,2008,38(3):1-5
    90.董晋军,郑璞,倪晔,等.菊芋原料同步糖化发酵生产丁二酸[J].食品与生物技术学报,2008,27(5):78-82
    91. Du C Y,Lin S K C,Koutinas A,et al. Succinic acid production from wheat using a biorefiningstrategy[J]. Appl Microbiol Biotechnol,2007,76(6):1263-1270
    92. Du C Y,Lin S K C,Koutinas A,et al. A wheat biorefining strategy based on solid-statefermentation for fermentative production of succinic acid[J]. Bioresour Technol,2008,99(17):8310-8315
    93. Chen K Q,Zhang H,Miao YL,et al. Succinic acid production from enzymatic hydrolysate ofsake lees using Actinobacillus succinogenes130Z[J]. Enzyme Microb Technol,2010,47(5):236-240
    94. Zhou X,Zheng P. Spirit-based distillers' grain as a promising raw material for succinic acidproduction [J]. Biotechnol Lett,2013,35:679-684
    95. Lee P C,Lee S Y,Hong S H, et al. Biological conversion of wood hydrolysate to succinic acidby Anaerobiospirillum succiniciproducens[J]. Biotechnol Lett,2003,25(2):111-114
    96. Kim D Y,Yim S C,Lee P C,et al. Batch and continuous fermentation of succinic acid fromwood hydrolysate by Mannheimia succiniciproducens MBEL55E[J]. Enzyme Microb Technol,2004,35:648-653
    97. Donnelly M I,Sanville-Millard C Y,Nghiem N P. Method to produce succinic acid from rawhydrolyzates[P].美国专利,6743610B2.2004-06-01
    98. Hodge D B,Andersson C,Berglund K A,et al. Detoxification requirements for bioconversionof softwood dilute acid hydrolyzates to succinic acid[J]. Enzyme Microb Technol,2009,44(5):309-316
    99. Borges E R,Pereira N. Succinic acid production from sugarcane bagasse hemicellulosehydrolysate by Actinobacillus succinogenes [J]. J Ind Microbiol Biotechnol,2011,38:1001-1011
    100.姜岷,姚嘉雯,吴昊,等.稀酸水解玉米皮制备丁二酸发酵糖液的研究[J].食品与发酵工业,2007,33(10):6-9
    101.吴昊,姚嘉旻,刘宗敏,等.玉米籽皮稀酸水解液脱毒发酵制备丁二酸的可行性[J].农业工程学报,2009,25(2):267-272
    102. Chen K,Jiang M,Wei P,et al. Succinic acid production from acid hydrolysate of corn fiber byActinobacillus succinogenes[J]. App Biochem Biotechnol,2010,160(2):477-485
    103. Chen K Q,Li J,Ma J F,et al. Succinic acid production by Actinobacillus succinogenes usinghydrolysates of spent yeast cells and corn fiber[J]. Bioresource Technol,2011,102:1704-1708
    104. Chen K Q,Zhang H,Miao Y L,et al. Simultaneous saccharification and fermentation ofacid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes[J].Enzyme Microb Technol,2011,48:339-344
    105.李兴江,罗水忠,姜绍通,等.农作物秸秆发酵制备丁二酸的代谢工艺优化[J].农业工程学报,2008,24(12):161-167
    106. Li Q,Yang M. Efficient conversion of crop stalk wastes into succinic acid production byActinobacillus succinogenes [J]. Bioresour Technol,2010,101:3292-3294
    107. Yu J,Li Z M,Ye Q,et al. Development of succinic acid production from corncob hydrolysate byActinobacillus succinogenes [J]. J Ind Microbiol Biotechnol,2010,37:1033-1040
    108. Wang D,Li Q,Yang M H,et al. Efficient production of succinic acid from corn stalkhydrolysates by a recombinant Escherichia coli with ptsG mutation[J]. Process Biochem,2011,46:365-371
    109.杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001.5-21
    110. Ragauskas A J,Williams C K,Davison B H,et al. The path forward for biofuels andbiomaterials[J]. Science,2006,311:484-489
    111. Hsu T A. Preatment of biomass[J]. Fuel Energy Abstr,1997,38(2):103-103
    112. Ren N Q,Wang A J,Cao G L,et al. Bioconversion of lignocellulosic biomass to hydrogen:Potential and challenges[J]. Biotechnol Adv,2009,27:1051-1060
    113. Rivas B,Moldes A B,Domingnez J M,et a1. Lactic acid production from corn cobs bysimultaneous saccharification and fermentation: a mathematical interpretation[J]. EnzymeMicrob Technol,2004,34:627-634
    114. Rojan P,John G S,Anisha K,et al. Direct lactic acid fermentation: Focus on simultaneoussaccharification and lactic acid production[J]. Biotechnol Adv,2009,27:145-152
    115.董晋军.琥珀酸发酵工艺研究[D]:[硕士学位论文].无锡:江南大学,2008
    116.方林.玉米秸秆原料发酵生产丁二酸工艺研究[D]:[硕士学位论文].无锡:江南大学,2009
    117. Lynd L R,Weimer P J,van Zyl W H,et al. Microbial Cellulose Utilization: Fundamentals andBiotechnology[J]. Microbiol Mol Biol Rev,2002,66(3):506-677
    118. Wu Z W,Lee Y Y. Nonisothermal simultaneous saccharification and fermentation for directconversion of lignocellulosic biomass to ethnal[J]. Appl Biochem and Biotechnol,1998,70-72:479-492
    119. Kádár Z,Szengyel Z,Réczey K. Simultaneous saccharification and fermentation (SSF) ofindustrial weates for the production of ethanol[J]. Ind Crops Prod,2004,20(1):103-110
    120.陈洪章.秸秆资源生态高值化理论于应用[M].北京:化学工业出版,2006.145-174
    121.张宁,蒋剑春,程荷芳,等.木质纤维生物质同步糖化发酵(SSF)生产乙醇的研究进展[J].化工进展,2010,29(2):238-243
    122. J rgensen H,Kristensen J B,Felby C. Enzymatic conversion of lignocellulose into fermentablesugars: challenges and opportunities[J]. Biofuels Bioprod Bioref,2007,1:119-134
    123. Zhang Y X,Perry K,Vinci V A,et al. Genome shuffling leads to rapid phenotypic improvementin bacteria[J]. Nature,2002,415:644-646
    124. Gong J X,Zheng H J,Wu Z J,et al. Genome shuffling: progress and applications for phenotypeimprovement[J]. Biotechnol Adv,2009,27:996-1005
    125. Patnaik R,Louie S,Gavrilovic V,et al. Genome shuffling of Lactobacillus for improved acidtolerance[J]. Nat Biotechnol,2002,20:707-712
    126. Stephanopoulos G. Metabolic Engineering by Genome shuffling Two reports on whole-genomeshuffling demonstrate the application of combinatiorial methords for phenotypic improvement inbacteria[J]. Nat biotechnol,2002,20:666-668
    127.徐敏.应用基因组改组选育Actinobacillus succinogenes [D]:[硕士学位论文].无锡:江南大学,2008
    128.刘璇.基因组改组选育耐酸性琥珀酸放线杆菌[D]:[硕士学位论文].无锡:江南大学,2009
    129.张坤坤.基因组改组技术选育高产琥珀酸的琥珀酸放线杆菌[D]:[硕士学位论文].无锡:江南大学,2011
    130.王修胜,于占春,张小希,等.工业纤维素酶水解效率的影响因素分析[J].生物质化学工程,2010,44(5):1-7
    131. Breuil C,Chan M,Gilbert M,et al. Influence of β-glucosidase on the filter paper activity andhydrolysis of lignocellulosic substrates[J]. Bioresour Technol,1992,39:139-142
    132. Ramos L P,Fontana J D. Enzymatic Saccharification of Cellulosic Materials[J].EnvironMicrobiol,2004,16:219-233
    133. Bansal P,Hall M,Realff M J, et al. Modeling cellulase kinetics on lignocellulosic substrates[J].Biotechnol Adv,2009,27:833-848,370-381
    134.王景林.纤维素酶固定化的研究进展[J].生命科学,1997,9(3):116-118
    135. Woodward J. Immobilized cellulases for cellulose utilization[J]. J Biotechnol,1989,11:299-312
    136.张宇,许敬亮,袁振宏,等.纤维素酶固定化载体的研究进展[J].生物质化学工程,2009,43(1):32-35
    137.潘丽军,陈实公,赵妍嫣.多孔淀粉接枝聚合物载体固定化纤维素酶的研究[J].食品科学,2006,27(4):115-119
    138.林松柏,陈伟兵,蒋妮娜,等. SiO2/海藻酸钠复合水凝胶作为固定化纤维素酶载体[J].复合材料学报,2008,25(6):22-28
    139. Takimotoa A,Shiomi T,Ino K,et al. Encapsulation of cellulase with mesoporous silica (SBA-15)Microporous and Mesoporous [J]. Materials,2008,116:601-606
    140.刘志良,杨敏丽.氨基化硅胶载体固定化纤维素酶的研究[J].生物技术通报,2010,3:196-197
    141.袁丽.纳米技术固定化纤维素酶的研究[D]:[硕士学位论文].长沙:湖南大学,2009
    142. Li C Z,Yoshimoto M K,Fukunaga K,et al. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose[J]. Bioresour Technol,2007,98:1366-1372
    143. Wu LL,Yuan X Y,Sheng J. Immobilization of cellulase in nanofibrous PVA membranes byelectrospinning[J]. J Memb Sci,2005,250:167-173
    144. Hung T C,Fu C C,Su C H,et al. Immobilization of cellulase onto electrospun polyacrylonitrile(PAN) nanofibrous membranes and its application to the reducing sugar production frommicroalgae[J]. Enzyme Microb Technol,2011,49:30-37
    145.邱广量,李咏兰,磁性琼脂糖复合微球固定化纤维素酶的研究[J].精细化工,2000,17(2):115-117
    146.陈盛,黄智达,刘艳如.壳聚糖固定化纤维素酶的研究[J].生物化学与生物物理进展,1996,23(3):250-254
    147. Din er A,Telefoncu A. Improving the stability of cellulase by immobilization on modifiedpolyvinyl alcohol coated chitosan beads[J]. J Mol Catal B: Enzym,2007,45:10-14
    148.郭锐.固定化纤维素酶的制备及其性质研究[D]:[硕士学位论文].天津:天津大学,2009
    149. El-Ghaffar M A,Hashem M S. Chitosan and its amino acids condensation adducts as reactivenatural polymersupports for cellulase immobilization[J]. Carbohydr Polym,2010,81:507-516
    150.张孟麒,林增祥,张红漫,等.壳聚糖固定化纤维素酶的条件优化[J].中国酿造,2010,214(1):17-21
    151.胡龄,张红漫,林增祥,等.固定化纤维素酶水解玉米秸秆的研究[J].现代化工,2009,29(8):44-47
    152.寇灵梅,李冰,郭祀远,等.磁性固定化纤维素酶的制备及其磁响应性[J].食品科学,2006,27(12):335-340
    153.李冰,邵海员,黎锡流,等.磁性固定化纤维素酶的交联法制备及其磁致酶学性质[J].河南工业大学学报(自然科学版),2006,27(6):10-14
    154. Khoshnevisan K,Bordbar A K,Zare D,et al. Meisam Tabatabaei Immobilization of cellulaseenzyme on superparamagnetic nanoparticles and determination of its activity and stability[J].Chem Eng J,2011,171:669-673
    155. Jordan J,Kumar C S S R,Theegala C. Preparation and characterization of cellulase-boundmagnetite nanoparticles[J]. J Mol Catal B: Enzym,2011,68:139-146
    156. Taniguchi M,Kobayashi M,Fujii M. Properties of a reversible soluble-insoluble cellulose and itsapplication to repreated hydrolysis of crystalline cellulose[J]. Biotechnol Bioeng,1989,34:1092-1097
    157.柴梅,袁振宏,颜涌捷.肠溶衣聚合物固定化纤维素酶性质的研究[J].微生物学通报,2007,34(3):410-413
    158. Zhang Y,Xu J L,Yuan Z H,et al. Artificial neural network-genetic algorithm based optimizationfor the immobilization of cellulase on the smart polymer Eudragit L-100[J]. Bioresour Technol,2010,101:3153-3158
    159.徐子栋,缪冶炼,陈介余,等.可逆可溶载体上纤维素酶和木聚糖酶的共固定化[J].生物产业技术,2009,增刊:162-167
    160.金涌.生物炼制与生物催化[J].化学工业,2007,25(8):1-8
    161.张燕.中国秸秆资源―5F‖利用方式的效益对比探析[J].中国农学通报,2009,25(23):45-51
    162.董宇,马晶,张涛,等.秸秆利用途径的分析比较[J].中国农学通报,2010,26(19):327-332
    163.微生物诱变育种编写组.微生物诱变育种[M].北京:科学出版社,1973.23-64
    164.张坤坤,郑璞,董晋军,等.高产琥珀酸菌株的通量筛选[J].工业微生物,2012,42(1):11-16
    165.杜巧燕.应用基因组改组技术选育广域pH耐受的谷氨酸高产菌株[D]:[硕士学位论文].无锡:江南大学,2010
    166.刘宇鹏.琥珀酸放线杆菌厌氧发酵代谢调控研究[D]:[博士学位论文].无锡:江南大学,2007
    167. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254
    168.简-路易斯雷蒙.酶活检测——高通量筛选,遗传选择以及指纹分析[M]:林章凛,蔡真译.北京:化学工业出版社,2008.2
    169. Zabeau M,Vos P. Selective restriction fragment amplification: a general method for DNAfingerprinting[P].欧洲专利,92402629.7.1993-03-31
    170.姜绍通,潘丽军,李兴江,等.农作物秸秆生物转化置备制备琥珀酸工艺[P].中国专利,200810019401.6.2008-07-09
    171.李荣杰,欧阳平凯,薛培俭,等.一种利用玉米芯生产丁二酸的方法[P].中国专利,200910089501.0.2009-12-23
    172.李荣杰,欧阳平凯,薛培俭,等.一种利用纤维素类原料发酵生产乙醇和丁二酸的方法[P].中国专利,200910090184.4.2009-12-30
    173.李荣杰,欧阳平凯,薛培俭,等.一种乙醇和丁二酸联合发酵方法[p].中国专利,200910090185.9.2009-12-30
    174. Liu Y P,Zheng P,Sun Z H,et al. Strategies of pH control and glucose-fed batch fermentation forproduction of succinic acid by Actinobacillus succinogenes CGMCC1593[J]. J Chem TechnolBiotechnol,2008,83:722-729
    175.方林,郑璞,董晋军,等.用玉米秸秆水解糖和玉米浆发酵生产丁二酸[J].工业微生物,2010,40(1):6-10
    176. Andersson C,Hodge D,Berglund K A,et al. Effect of different carbon sources on the productionof succinic acid using metabolically engineered Escherichia coli[J]. Biotechnol. Prog,2007,23:381-388
    177.李兴江.秸秆五六碳糖共发酵产琥珀酸的菌株分离选育及代谢研究[D]:[博士学位论文].合肥:合肥工业大学,2009
    178. Meile L,Rohr L M,Geissmann T A,et al. Characterization of the D-Xylulose5-Phosphate/D-Fructose6-Phosphate Phosphoketolase Gene (xfp) from Bifidobacterium lactis[J]. J Bacteriol,2001,183(9):2929-2936
    179. Liu L,Zhang L,Tang W,et al. Phasphoketolase pathway for xylose catabolism in Clostridicumacetobutylicum revealedty13C metabolic flux analysis [J]. J Bacterol,2012,194(19):5413-5422
    180. Takagi M,Abe S,Suzuki S,et al. Amethod for production of alcoholdirectly from celluloseusing cellulase and yeast[C]. In:T.K. Ghose ed. Proceedings of Bioconversion of CellulosicSubstances into Energy: Chemicals and Microbial Protein. I.I.T:Delhi,1977.551-571
    181. Bothast R J,Schlicher M A. Biotechnological processes for conversion of corn into ethanol[J].Appl Microbiol Biotech,2005,67(1):19-25
    182. Wingren A,Galbe M,Zacchi G. Techno-economic evaluation of producing ethanol fromsoftwood-a comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog,2003,19:1109-1117
    183.孔德城.秸秆原料发酵产丁二酸研究[D]:[硕士学位论文].无锡:江南大学,2012
    184. Breuil C,Chan M,Gilbert M,et al. Influence of β-glucosidase on the filter paper activity andhydrolysis of lignocellulosic substrates[J]. Bioresour Technol,1992,39:139-142
    185.周春生,尹军. TTC—脱氢酶活性检测方法的研究[J].环境科学学报,1996,16(4):400-404
    186.牛志卿,刘建荣,吴国庆. TTC—脱氢酶活性测定法的改进[J].微生物学通报,1994,21(1):59-61
    187. Van Soest P J,Rovertson J B,Lewis B A. Methods for dietary fiber, neutral detergent fiber, andnonstarch polysaccharides in relation to animal nutrition[J]. J Dairy Sci,1991,74(10):3583-359
    188. Ghose T K. Measurement of cellulose activities[J]. Pure Appl Chem,1987,59(2):257-268
    189. Bailey M J,Biely P,Poutanen K. Interlaboratory testing of methods for assay of xylanaseactivity[J]. J Biotechnol,1992,23(3):257-270
    190. Miller G L. Use of dinit rosalicylic acid regent for determination of reducingsugar[J]. AnalChem,1959,31:426-428
    191. Lachke A. Biofuel from D-xylose-the second most abundansugar[J]. Resonance,2002,5:50-58
    192.梁华正,杨水平,丁志刚,等.弱碱性大孔树脂固定化硫磺菌β-葡萄糖苷酶的实验研究[J].食品科技,2008,33(2):8-11
    193.潘利华,罗建平,王贵娟,等.磁性纳米氮化铝颗粒固定化β-葡萄糖苷酶的性质[J].催化学报,2008,29(10):1021-2026
    194. Yan J L,Pan G X,Li L Q,et al. Adsorption, immobilization, and activity of β-glucosidase ondifferent soil colloids[J]. J Colloid Interface Sci,2010,348:565-570
    195. Venardos D,Klei H E,Sundstrom D W. Conversion of cellobiose to glucose using immobilizedβ-glucosidase reactors[J]. Enzyme Microb Technol,1980,2:112-116
    196. Bissett F,Sternberg D. Immobilization of Aspergillus Beta-Glucosidase on Chitosan[J]. ApplEnviron Microb,1978,35:750-755
    197. Martino A,Pifferi R G,Spagna G. Immobilization of β-glucosidase from a commercialPreparation. Part2. Optimization of the immobilization process on chitosan[J]. ProcessBiochem,1996,31:287-293
    198. Chang M Y,Kao H C,Juang R S. Thermal inactivation and reactivity of β-glucosidaseimmobilized on chitosan-clay composite Original[J]. Int J Biol Macromol,2008,43:48-53
    199. Ortega N, Busto M D, Perez M M. Optimisation of β-glucosidase entrapment in alginate andpolyacrylamide gels[J]. Bioresour Technol,1998,64:105-111
    200.周亚军,王淑杰,苏丹,等. β-葡萄糖苷酶ACA微胶囊固定化实验研究[J].现代化工,2009,29(10):51-54
    201. Spagna G,Barbagallo R N,Pifferi P G,et al. Stabilization of a β-glucosidase from Aspergillusniger by binding to an amine agarose gel[J]. J Mol Cata B: Enzym,2000,11:63-69
    202. Vieira M F,Vieira A M S,Zanin G M,et al. β-Glucosidase immobilized and stabilized onagarose matrix functionalized with distinct reactive groups[J]. J Mol Cata B: Enzym,2011,69:47-53
    203. Lee S M,Jin L H,Kim J H,et al. β-Glucosidase coating on polymer nanofibers for improvedcellulosic ethanol production[J]. Bioprocess Biosyst Eng,2010,33:141-147
    204. Tu M,Zhang X,Kurabi A,et al. Immobilization of beta-glucosidase on Eupergit C forlignocellulose hydrolysis[J]. Biotechnol Lett,2006,28:151-156
    205.柴梅,袁振宏,颜涌捷.肠溶衣聚合物固定化纤维素酶性质的研究[J].微生物学通报,2007,34(3):410-413
    206. Nonaka H,Kobayashi A,Funaoka M. Behavior of lignin-binding cellulase in the presence offresh cellulosic substrate[J]. Bioresour Technol,2013,135:53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700