用户名: 密码: 验证码:
中国广义蓼属植物及其近缘类群的分子系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广义蓼属(Polygonum L. s. lat.)是1753年由瑞典分类学家林奈建立的,是一个存在持续争论与挑战的、松散的、但并不完全成功的属级分类单位。许多学者试图将该属分成更多的如亚属、组或属等不同等级的自然单元,而这些等级单元是否应该被应用,还有许多争论,一直没有获得令人信服的结论。
     《中国植物志》25卷第1分册及《Flora of China》第5卷记载我国蓼科植物有13属,235(/238)种37变种,主要依据形态特征将蓼科分为两个亚科:即蓼亚科Subfam. Polygonoideae和酸模亚科Subfam. Rumicoideae,将蓼亚科分为2个族:蓼族Trib. Polygoneae和木蓼族Trib. Atrophaxideae。其中蓼族分为7属:即冰岛蓼属(Koenigia L.)、蓼属(Polygonum L.)、何首乌属(Fallopia Adans.)、虎杖属(Reynoutria Houtt.)、金线草属(Antenoron Rafin.)、荞麦属(Fagopyrum Mill.)和翼蓼属(Pteroxygonum Damm. et Diels)(该论文涉及的研究范围主要是上述的蓼族各个属)。然而,其分类系统中存在许多争议性的问题有待解决。
     植物分子系统学,是采用分子生物学的各种实验手段,以获取各类分子性状,从而,探讨植物分类、类群之间的系统发育关系及其进化过程和机制。它仅仅用了20多年,就对过去花费200多年依据植物形态性状而建立起来的系统分类关系作出了令人信服的评价。
     论文选取了被广泛用于植物分子系统学研究的nrDNA ITS和叶绿体基因组的trnL-trnF及atpB-rbcL3个基因间区的DNA片段序列,从广义蓼属每个组,及蓼族(《中国植物志》定义的蓼族范畴)的各个属共选77个代表种,以酸模亚科的山蓼属、酸模属和大黄属中共选7个代表种作外类群,总计84种(含变种),分别进行了3个片段的DNA提取、扩增、序列测定,测序数据用PAUP及MrBayes分析软件,分别对单个基因和2个叶绿体基因以及3个基因的联合数据矩阵进行了MP、NJ和B1分子系统树构建。再以文献报道的蓼属及酸模属的最早的地层花粉年代为标尺,用BEAST软件包中的系列程序,计算3个片段联合数据分子树的各个节点的分歧时间。从而探讨了广义蓼属在系统分类上长期存在的争论性问题。
     另外,为了进一步讨论广义冰岛蓼属的系统地位,及其属内的种间关系问题,将已计算出的分子树上与广义冰岛蓼属亲缘关系较近的属:金线草属(Antenoron)、刺蓼属(Truellum)、春蓼属(Persicaria)、头状蓼属(Cephalophilon)、神血宁属(Aconogonon)、拳参属(Bistorta)每个属选定种类同前计算广义蓼属的分子系统树的选样种类,且广义冰岛蓼属(Koenigia s. lat.)每种选1-8个居群样品(共计82个样)。同样进行单基因和多基因的MP、NJ和B1分子树的构建,以及各关键结点的歧化时间估算。
     得出了以下主要结论:
     原广义蓼属并非单系群,且其内的分组应分别成立为属级单位,部分种类在各属中的位置应当适当调整。具体建议如下:
     (1)西伯利亚蓼应该从神血宁属(分叉蓼组)独立出来,支持将西伯利亚蓼升为西伯利亚蓼属Knorringia Tzvel.,西伯利亚蓼也应更名为Knorringia sibirica Tzvel.。
     (2)虎杖属与首乌属亲缘关系较近,推测二者来自于同一祖先,而其在进化中较早的一支向直立的虎杖属方向演化;另一支向蔓生或缠绕藤本的方向演化进而分化出了首乌属。支持将二者分别独立为属的处理,即虎杖属Reynoutria Houtt.和首乌属Fallopia Adans.。
     (3)支持翼蓼属的属级地位的处理,即红药子属Pteroxygonum Damm. et Diels,但红药子属(翼蓼属)并非单种属的概念,至少应包含翼蓼和酱头(齿叶蓼)两个种,建议将酱头从首乌属移到红药子属,更名为齿叶翼蓼Pteroxygonum denticulata。
     (4)支持将翅果蓼从原木蓼族移出,撤销其属级地位,并入荞麦属(Fagopyrum Mill.),为一木本荞麦类型,更名为翅果荞麦Fagopyrum tibeticum。
     (5)原蓼属神血宁组升为神血宁属Aconogonon Reichb.,且原位于该属的西伯利亚蓼应独立成西伯利亚蓼属;铜钱叶蓼和大铜钱叶蓼应移出,并入到广义冰岛蓼属;得到了周忠泽教授按花粉神血宁属暂且划分成3个组:多穗蓼组Aconogonon Sect. Polystachyum、分叉蓼组Aconogonon Sect. Aconogonon和钟华蓼组Aconogonon Sect. Campanulatum的支持。
     (6)原位于头状蓼组(属)的小叶蓼Polygonum delicatula,从分子树上看,显然既远离头状蓼属,也与广义冰岛蓼属明显间隔开来,似乎与神血宁属更近;但小叶蓼、神血宁属与冰岛蓼属始终位于同一个大支上,可以推测为三者来自同一祖先,首先进化为小叶蓼,再分化出神血宁属,进而其中某一类又进而分化出了冰岛蓼属,而小叶蓼始终保持了冰岛蓼属的一些最重要特征,如刺状花粉等,分布区也与冰岛蓼属一致。因此,支持将其归入广义冰岛蓼属,为细冰岛蓼Koenigia delicatula (Meisn.)Hara.。
     (7)支持春蓼组和刺蓼组独立为属,即春蓼属Persicaria Mill和剌蓼属Truellum Houtt.;但原位于刺蓼组的柳叶刺蓼Polygonum bungeanum应从刺蓼属移出,并入春蓼属,采用名:Persicaria bungeana (Turcz.) Nakai。
     (8)金线草属与春蓼属、刺蓼属亲缘关系紧密,但与刺蓼属、春蓼属为平行的属级关系。因此,金线草属不应放在春蓼属,而应为独立的属级地位,即金线草属Antenoron Rafin.。
     (9)除将原属于头状蓼组的小叶蓼移入广义冰岛蓼属外,将细茎蓼、柔毛蓼、腺点柔毛蓼(陕甘蓼)、蓝药蓼和青藏蓼移入广义冰岛蓼属,头状蓼组其余种类构成头状蓼属Cephlophilon Spach。
     (10)拳参组为单系群,支持将拳参组升级为拳参属Bistorta Adans.。
     (11)广义冰岛蓼属(Koenigia L. emend Hedberg)除小叶蓼(Koenigia delicatula)外所有选定种,包括拟发表的两个新种,全部聚为一支。表明广义冰岛蓼属(除小叶蓼外)为一单系群,因此,承认广义冰岛蓼属(Koenigia s.lat.)的概念,该属是在青藏高原隆升后由于高原特殊环境(生境内陆岛屿化)而由神血宁属的某些祖先特化而来,并逐渐分化出属内各个种的较年轻的属;广义冰岛蓼属应包含约8-10种。其属下暂可划分为3个组:细冰岛蓼组Koenigia sect. Delicatula、大连线茎冰岛蓼组Koenigia sect. Forrestii和冰岛蓼组Koenigia sect. Koenigia o
     (12)最后,以分子系统树的计算结果为依据,对中国产蓼科植物的分类系统作出了重新划定。
The genus of Polygonum L. s. lat. was established by Linnaeus, a swedish taxonomist, in1753. However, this is a controversial and not fully successful taxonomy system and it has remained challengging and problematic for taxonomists in the field to use this classification method. As such, many researchers have tried to subdivide the genus into more natural units at generic and subgeneric levels. It is still debating and inconclusive whetehr or not to use those new classification units due to lack of sufficient and cruical evidence.
     There are235(or238) species belong to13genera in the family of Polygonaceae recorded in《Flora of China. Those plants are subdivided into two subfamilies (i.e., Polygonoideae and Rumicoideae) based on their morphological characteristics. The tribes of Polygoneae and Atrophaxideae belong to the subfamily of Polygonoideae. The tribe of Polygoneae is subdivided into seven genera, including Koenigia L., Polygonum L., Fallopia Adans., Reynoutria Houtt., Antenoron Rafin., Fagopyrum Mill., and Pteroxygonum Damm. et Diels. However, there are many controversial problems in this classification system. This thesis focuses on the tribe of Polygoneae, attempting to establish a new classification method for those genera.
     Many researchers have tried to study the classification system of Polygonum genus in China using methods of morphology, pollen morphology, micro-morphology, anatomy, cytology and molecular biology. By doing so they have reached some important conclusions. Plant Molecular systematics applies various experimental methods of molecular biology to obtain all kinds of molecular information and based upon those information to further explore the phylogenetic relationships between different plant taxa and their evolutionary processes and mechanisms involved. This new classification method moves the studies of plant system development and evolution to molecular level. Although plant molecular systematics has been established for only20years, it has led to the most dramatic and important changes in higher-level angiosperm taxonomy that had been established using traditional methods in the past200years and it has provided unparalleled insights into relationships at all levels of plant phylogeny.
     The sequences of nrDNA ITS and two spacer regions of cpDNA trnL-trnF and atpB-rbcL are widely used in plant molecular systematics studies. Those genetic markers are selected for the studies in this thesis. The experimental samples consist of84species:5-10species from every section of Polygonum s.lat. and the genera in tribe Polygoneae (e.g., Fallopia Adans., Fagopyrum Mill. and Koenigia L. emend Hedberg),1-2species from the satellite genera (e.g.,Reynoutria Houtt., Antenoron Rafin.) and Pteroxygonum Damm. et Diels, as well as1-2species from the genera in the tribe of Atrophaxideae (e.g., Atrophaxsis L., Calligonum L. and Parapteropyrum Damm. et Diels). The out-group (do you mean unrelated group? or control group?) consists of6-7species which are selected from genus Rumex L., Rheum L. and Oxyria Hill in the tribe of Rumiceae Damm. The chromosome DNAs were first extracted from those plants, and then the aforementioned three DNA segments were PCR amplified, and finally sequenced. The three single gene data, two chloroplast segments combination datasets, and three segments combination datasets were calculated to obtain their Maximum Parsimony (MP) trees, Neighbor-joining (NJ) trees with the software PAUP*v.4.0b10. At the same time, the Bayesian inference (BI) trees were calculated with the software MrBayes*v.3.1.2by the plugin imported into the software platform of Geneious4.8.3for above five data matrixes. Then a series of procedures was operated to calculate the divergence time of the important nodes in the software package of BEAST v1.6.2using the method of earliest pollen age scales of genus Polygonum and Rumex as described in the papers listed in the stratum reference.
     The systematical status of genus Koenigia s.lat. and the relationship between the species within the genus were further studied by calculating the MP, NJ, BI trees and the divergence time of the important nodes as above. Calculations for the MP, NJ, BI trees and divergence times were conducted from a total of82taxa from the close relatives taxa, such as genera of Antenoron, Echinocaulon, Persicaria, Cephalophilon, Aconogonon and Bistorta. By comparing with data from each1-8population samples from the genus of Koenigia s.lat, the main results are acquired as below.
     The genus Polygonum s.lat. is not a monophyletic group instead of a polyphyletic group; and the sections in this group should be set up as genus units. Some species positions in the genera should be adjusted according to the below suggestions:
     (1) Polygonum sibiricum should be removed from the genus of Aconogonon and be promoted to the genus of Knorringia Tzvel.
     (2) Reynoutria and Fallopia have a close genetic relationship, suggesting that they probably came from a same ancestor. It is likely that in the evolution process, one branch is evolved towards the genus of Reynoutria that has an erect stems while the other branch is evolved towards the genus of Fallopia that has either sprawling or twining stems. The results support that they both are a separated genus, i.e., either Reynoutria Houtt. or Fallopia Adans.
     (3) The results support that Pteroxygonum Damm. et Diels is a status of genus but it is not a single species genus and it should include at least two species: Pteroxygonum giraldii and Fallopia denticulata. As such, Fallopia denticulata should be emended as Pteroxygonum denticulata.
     (4) The results show that Parapteropyrum tibeticum should be removed from the genus of Parapteropyrum and moved to the genus of Fagopyrum and the annul status of Parapteropyrum. It should be emended as Fagopyrum tibeticum.
     (5) Polygonum Sect. Aconogonon should be promoted to a status of Aconogonon Reichb.; and Polygonum sibiricum should be removed from the genus of Aconogonon and be moved to the genus of Knorringia. The results also support the classification proposed by Professor Zhou that the genus of Aconogonon should be subdivided into three sections:Aconogonon sect. Polystachyum, Aconogonon sect. Aconogonon and Aconogonon sect. Campanulatum.
     (6) Polygonum delicatula is a species of Polygonum section Cephalophilon. However, the molecular trees show that it is obviously apart from the Polygonum section Cephalophilon and it should not belong to the genus of Koenigia. Polygonum delicatula appears to be a close relative of the genus of Aconogonon. Interestingly, Polygonum delicatula is always in the same big branch as Aconogonon and Koenigia genus. So it is likely that they came from the same ancestor, and then first evolved into Polygonum delicatula, and further into the genus of Aconogonon. Moreover, some species of Aconogonon might be differentiated into the genus of Koenigia. However, Polygonum delicatula keeps some of the most important characteristics of
     Koenigia genus, such as spiny pollen. Also, it has the same distribution area with the species of genus Koenigia. Thus, it should be admitted as a species of Koenigia and it should be emended as Koenigia delicatula (Meisn.) Hara.
     (7) The results show that Polygonum sect. Persicaria and Polygonum sect. Echinocaulon are a status of genus, i.e., the genus of Persicaria Mill. and the genus of Truellum Houtt. At the same time, Polygonum bungeanum, which is a species of Polygonum section Echinocaulon, should be moved into the genus of Persicaria and it should be emended as Persicaria bungeana (Turcz.) Nakai.
     (8) The genus of Antenoron is a close relative to the genus of Persicaria Mill. and it has a parallel relationship with the genus of Truellum Houtt. Therefore, Antenoron should not be in the genus of Persicaria. Instead, it should be an independent status, i.e., the genus of Antenoron Rafin.
     (9) Polygonum delicatula is moved into the genus of Koenigia that was a species of Polygonum section Cephalophilon previously. In addition, Polygonum nepalensis, Polygonum sparsipilosum, Polygonum sparsipilosum var. hubertii, Polygonum cyanandra and Polygonum fertile should also be moved to the genus of Koenigia which were species of Polygonum section Cephalophilon previously. The remaining species constitute the genus of Cephlophilon Spach.
     (10) Polygonum Sect. Bistorta is undisputedly as a single group, and it should be promoted to the genus of Bistorta Adans.
     (11) Except for Koenigia delicatula, all the selected species from the genus of Koenigia L. emend Hedberg and two new species (in press) form a monophyletic group. This result indicates that the genus of Koenigia L. emend Hedberg is a natural taxa and that it is a young genus which is derived from some of the ancestors of Aconogonon due to the uplift of the Qinghai-Tibet Plateau and the change of special environment (interior islands of habitats), and then gradually evolved into various species of the genus of Koenigia. The genus of Koenigia L. emend Hedberg contains about8-10species. This genus should be subdivided into three sections:Koenigia sect. Delicatula, Koenigia sect. Forrestii and Koenigia sect. Koenigia.
     (12) Finally, a new classification system of family Polygonaceae plants from China is established based on the results of molecular phylogenetic tree analyses.
引文
[1]Ronse Decraene L.-P., Akeroyd JR. Gineric limits in Polygonum and related genera (Polygonaceae) on the basis of floral characters[J]. Botanical Journal of the Linnean Society,1988,98:321-371.
    [2]Meisner CF. Monographiae generis polygoni prodromus. Geneva sumtibus auctoris[M]: Switzerland,1826:1-102.
    [3]Meisner CF. Polygonaceae:Prodromus systematis naturalis regni vegetabilis[M]:Switzerland, 1857,14:1-186.
    [4]Bentham G, Hooker J. Polygonaceae [J]. Genera plantarum,1880,3(1):88-105.
    [5]Gross M. Remarques sur les Polygonees de 1'Asie Orientale[J]. Bulletin de Geographie Botanique,1913,23:7-32.
    [6]Gross H. Beitrage zur Kenntnis der Polygonaceen [J]. Botanische Jahrbucher fur Systematik, 1913,49:234-339.
    |7] Jaretzky R. Beitrage zur Systematik der Polygonaceae unter Berucksichtigung des Oxymethylanthrachinon-Vorkommens [J]. Repertorium novarum specierum regni vegetabilis,1925,22(4-12):49-83.
    [8]Danser BH. Die Polygonaceen Niederlaendisch Ostindiens[J]. Bulletin du Jardin botanique Buitcnzorg,1927,3(8):119-261.
    [9]Steward AN. The Polygoneae of eastern Asia [J]. Contributions from the Gray Herbarium of Harvard University,1930,5(88):1-129.
    [10]Hedberg O. Pollen Morphology in the Genus Polygonum L.s.Iat. and its Taxonomical Signifecance [J]. Svensk Botanisk Tidskrift,1946,40:371-404.
    [11]Roberty G,Vautier S. Les genres de Polygonacees [J]. Boissiera,1964,10:7-128.
    [12]Haraldson K. Anatomy and Taxonomy in Polygonaceae Subfam. Polygonoideae Meisn. Emend. Jaretzky [J]. Symbolae Botanicae Upsalienses,1978,22(2):1-95.
    [13]Tzvelev N. Notulae de Polygonaceis in Flora Orientis Extremi [J]. Novit. Syst. Plant. Vase, 1987:72-79.
    [14]Hooker JD. The Flora of British India [M]. L. Reeve & Company,1890.
    [15]Hedberg O. The genus Koenigia L. emend Hedberg (Polygonaceae) [J]. Botanical Journal of the Linnean Society,1997,124(4):295-330.
    [16]Hedberg O. Koenigia delicatula (Meisn.) Hara subsp. relicta O. Hedb. subsp. (Polygonaceae): a new taxon linking the genera Koenigia L. and Persicaria Mill [J]. J. Jap. Bot,1988, 63(3):71-77.
    [17]Houttuyn F. Natuurlyke Historie [J]. Amsterdam,1777,2(8):640.
    [18]Reichenbach H. Handbuch des naturlichen Pflanzen systems [J]. Dresten and Leipzig,1837: 236.
    [19]Li AJ, Kao TC, Mao ZM, et al. Polygonaceae in:Flora of China [J]. Beijing:Science Press, 1998,25(1):1-209.
    [20]Li A, Bao B, Grabovskaya-Borodina AE, et al. Polygonaceae[J]. Flora of China,2003,5: 277-350.
    [21]Wu ZY, Lu A, Tang Y, et al. The Families and Genera of Angiosperms in China a Comprehensive Analysis[M]. Beijing:Science Press China,2003.
    [22]Hong SP. A revision of Aconogonon (=Polygonum sect. Aconogonon, Polygonaceae) in North America[J]. Rhodora,1991,93:322-46.
    [23]张小平,周忠泽.中国蓼科花粉的系统演化[M]-合肥:中国科技大学出版社,1998:112-118.
    [24]侯元同.中国蓼族植物系统学研究[D].济南:山东师范大学,2006.
    [25]钱啸虎,蒙仁宪.蓼科:安徽植物志[Ml.北京:中国展望出版社,1986:137-182.
    [26]傅沛云.东北植物检索表[Ml.北京:科学出版社,1995:120-136.
    [27]《贵州植物志》编委会.蓼科:贵州植物志[M].贵阳:贵州人民出版社,1982:184-208.
    [28]廉永善,孙坤,安黎哲,等.蓼科:甘肃植物志(第二卷)[M].兰州:甘肃科学技术出版社,2005.
    [29]傅书遐.蓼科:湖北植物志(第一卷)[Ml.武汉:湖北人民出版社,1976:229-230.
    [30]吴征镒.云南植物志.,北京:科学出版社,2000:301-370.
    [31]李书心.蓼科:辽宁植物志(上)[M].沈阳:辽宁科学技术出版社,1988:315-354.
    [32]赵大鹏.中国广义蓼属(Polygonum s.lat.)及其近缘类群的系统发育和地理分布[D].山东曲阜:曲阜师范大学,2011.
    [33]Hong SP. Taxonomy of the genus Aconogonon (Polygonaceae) in Himalaya and adjacent regions[J]. Symbolae Botanicae Upsalienses,1992,30:1-118.
    [34]蒙仁宪.安徽蓼属(Polygonum L.)植物的研究[J].安徽大学学报(自然科学版),1987,(3):61-68.
    [35]汪劲武,杨继.河北蓼属的分类研究[J].北京大学学报(自然科学版),1991,26(6):718-723.
    [36]包伯坚,李安仁.中国木蓼属的研究兼论木蓼族的系统[J[.植物分类学报,1993,31(2):127-139.
    [37]刘利霞,侯元同,李法曾.中国拳参属(蓼科)植物叶脉序式样的研究[J[.西北植物学报,2006,26(08):1554-1561.
    [38]Sun W, Zhou ZZ, Liu MZ, et al. Reappraisal of the generic status of Pteroxygonum (Polygonaceae) on the basis of morphology, anatomy and nrDNA ITS sequence analysis [J]. Journal of Systematics and Evolution,2008,46(1):73-79.
    [39]孙延霞,张明理.干旱半干旱地区蓼科4属植物的系统发育关系研究[J].干旱区研究,2011,28(05):849-853.
    [40]陈延松,周忠泽.中国广义冰岛蓼属果实形态特征[J].植物研究,2012,32(01):17-21.
    [41]刘鸯,徐海燕,阎平.中国帕米尔高原蓼科植物分类学研究[J].石河子大学学报(自然科学版),2009,27(02):169-173.
    [42]邱爱军,谢惠芹,李志军.天山南坡蓼科植物分类学研究[J].塔里木大学学报,2007,19(04):25-29.
    [43]Wodehouse R. Pollen grains in the identification and classification of plants(Ⅵ) Polygonaceae [J]. American Journal of Botany,1931,18(9):749-764.
    [44]Leeuwen PV, Paun W, Hoen PP, et al. The Northwest European Pollen Flora-43. Polygonaceae.1988,57:81-151.
    [45]Hong S-P, Hedberg O. Parallel evolution of aperture numbers and arrangement in the genera Koenigia, Persicaria and Aconogonon (Polygonaceae)[J]. Grana,1990,29(3): 177-184.
    [46]王建新,冯志坚.中国蓼属植物花粉形态的研究[J].植物分类学报,1994,32(3):219-231.
    [47]Zhang XP, Zhou ZZ. A Study on Pollen Morphology and Its Phylogeny of Polygonaceae in China [M]. Hefei:Press of University of Science and Technology of China,1998.
    [48]周忠泽,江鲁.中国蓼科孢粉地理学研究[J].中国科学技术大学学报,1999,29(04):464-470.
    [49]周忠泽,鲁润龙.安徽蓼科植物花粉形态的研究[J].植物研究,1999,19(01):17-33.
    [50]Zhou ZZ, Lu RL,Zheng YY. Parallel Evolution of Aperture Numbers and Arrangement of Polygonaceae in China [J]. Journal of University of Science and Technology of China., 1999,29(05):569-577.
    [51]周忠泽,陶汉林,班勤,等.中国蓼属叉分蓼组植物花粉形态的研究[J].植物分类学报,2002,40(02):110-124.
    [52]周忠泽,李玉成,张小平,等.中国蓼科花粉类型的地理分布格局及其与生态因子的关系[J].地理科学,2003,23(02):169-174.
    [53]Zhou ZZ, Zhang XP, Xu RX. Pollen morphology of Koenigia from China [J]. Acta Phytotaxonomica Sinica,2004,42(6):513-523.
    [54]葛学军,刘国钧.中国木蓼属花粉形态的研究[Jl.干旱区研究,1994,11(04):8-13.
    ]55]林中清,周忠泽,许仁鑫,等.合肥地区蓼属植物花粉形态的研究[J].安徽大学学报(自然科学版),1997,21(04):94-98.
    [56]庄永龙林.蓼属蔓蓼组花粉外壁超微结构的研究[J].安徽大学学报(自然科学版),2001,25(01):91-95.
    [57]侯元同,曲畅游,鲁法军,等.中国蓼科萹蓄属植物花粉形态及其分类意义[J].武汉植物学研究,2007,25(02):127-135.
    [58]Hong S-P, Ronse Decraene L-P, Smets E. Systematic significance of tapal surface morphology in tribes Persicarieae and Polygoneae (Polygonaceae) [J]. Botanical Journal of the Linnean Society,1998,127:91-116.
    [59]Hong S, Ham S, Choi Y, et al. Tepal surface micromorphology in the genus Fagopyrum Mill. (Polygonaceae) and its systematic implication [J]. Current advances in buckwheat research,2001:264-270.
    [60]Hong S, Oh IC. The taxonomic study of leaf epidermal microstructure in the genera Polygonum L. s. str. and Polygonella Michx. (Polygoneae-Polygonaceae) [J]. Korean J. PI. Taxon,1999,29:75-90.
    [61]蒙仁宪,周忠泽.安徽蓼属植物叶表皮特征的研究[J].安徽大学学报(自然科学版),1997,21(4):81-93.
    [62 ]林中清,蒙仁宪,周忠泽,等.扫描电镜下几种蓼属(Polygonum)植物叶表皮的微形态学特征[J].安徽大学学报(自然科学版),1997,21(01):103-105.
    [63]Ronse Decraene LP, Hong S-P, Smets E. Systematic significance of fruit morphology and anatomy in tribes Persicarieae and Polygoneae (Polygonaceae)[Jj. Botanical Journal of the Linnean Society,2000,134(1-2):301-337.
    [64]侯元同,许崇梅,曲畅游,等.中国蓼属篇蓄组植物果实形态的研究[J].植物分类学报,2007,45(04):523-537.
    [65]李安仁,包伯坚.中国蓼属植物二新种[J].植物研究,2012,32(04):385-388.
    [66]周忠泽.安徽蓼属一新种——舒城蓼[J].植物分类学报,2001,39(01):81-83.
    [67]周忠泽,孙庆业,徐文彬,等.中国安徽蓼科蓼属一新变种——圆基愉悦蓼[J].植物分类学报,2007,45(05):713-718.李波,陈少风,张文根.江西蓼属一新变种及其表皮形态特征[J].武汉植物学研究,2008,26(01):38-40.
    [69]李晓江,唐宇,夏明忠,等.中国四川荞麦属(蓼科)一新变种——翅果密毛野荞麦[J].西北植物学报,2012,32(04):815-818.
    [70]刘建林,唐宇,夏明忠,等.中国四川蓼科荞麦属一新种——皱叶野荞麦[J].植物分类学报,2008,46(06):929-932.
    [71]刘建林,唐宇,夏明忠,等.中国荞麦属(蓼科)一新种——密毛野荞麦[J].植物研究,2008,28(05):530-533.
    [72]侯元同,鲁法军,曲畅游,等.中国蓼属(蓼科)三新种[J].植物分类学报,2006,44(02):165-177.
    [73]刘艳玲,吴建明,徐立铭,等.蓼属一新变种——铺地火炭母[J].武汉植物学研究,2007,25(06):561-562.
    [74]夏明忠,王安虎,蔡光泽,等.中国四川荞麦属(蓼科)一新种——花叶野荞麦[J].西昌学院学报(自然科学版),2007,21(02):11-12.
    [75]李明,王小明.分子系统学及其应用[J].大自然探索,1997,16(01):48-51.
    [76]陈之端.分类学中的新生长点——植物分子系统学[J].植物杂志,2001(05):33-34.
    [77]陈之端,冯旻.植物系统学进展[M].北京:科学出版社,1998.
    [78]汪小全,洪德元.植物分子系统学近五年的研究进展概况[J].植物分类学报,1997,35(05):465-480.
    [79]徐宏发,王静波.分子系统学研究进展[J].生态学杂志,2001,20(03):41-46.
    [80]唐伯平,周开亚,宋大祥.分子系统学的发展及其现状[J].生物学通报,1999,34(05):10-12.
    [81]邹喻苹,葛颂,王晓东.植物系统与进化植物学中的分子标记[M].北京:科学出版社,2001.
    [82]王建波.ISSR分子标记及其在植物遗传学研究中的应用[J].遗传,2002,24(5):613-616.
    [83]Achille F, Motley TJ, Lowry PP, et al. Polyphyly in Guettarda L. (Rubiaceae, Guettardeae) based on nrDNA ITS sequence data[J]. Annals of the Missouri Botanical Garden,2006, 93(1):103-121.
    [84]Cecchi L, Gabbrielli R, Arnetoli M, et al. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae):evidence from nrDNA sequence data[J]. Annals of Botany,2010,106(5):751-767.
    [85]Dressier RL, Whitten WM, Williams NH. Phylogenetic relationships of Scaphyglottis and related genera (Laeliinae:Orchidaceae) based on nrDNA ITS sequence data[J]. Brittonia, 2004,56(1):58-66.
    [86]Ford BA, Iranpour M, Naczi RFC, et al. Phylogeny of Carex subg. Vignea (Cyperaceae) based on non-coding nrDNA sequence data[J]. Systematic Botany,2006,31(1):70-82.
    [87]Ghada B, Olfa S, Khaled C, et al. Sequence analysis of the internal transcribed spacers (ITS) region of the nuclear ribosomal DNA (nrDNA) in fig cultivars (Ficuscarica L.)[J]. Scientia Horticulturae,2009,120(1):34-40.
    [88]Kurzyna-Mlynik R, Oskolski AA, Downie SR, et al. Phylogenetic position of the genus Ferula (Apiaceae) and its placement in tribe Scandiceae as inferred from nrDNA ITS sequence variation[J]. Plant Systematics and Evolution,2008,274(1-2):47-66.
    [89]Martinez J, Vargas P, Luceno M, et al. Evolution of Iris subgenus Xiphium based on chromosome numbers, FISH of nrDNA (5S,45S) and trnL-trnF sequence analysis[J]. Plant Systematics and Evolution,2010,289(3-4):223-235.
    [90]Fan J, Qin HN, Li DZ, et al. Molecular phylogeny and biogeography of Holcoglossum (Orchidaccac:Aeridinac) based on nuclear ITS, and chloroplast trnL-F and matK[J]. Taxon,2009,58(3):849-861.
    [91]Peterson A, Lcvichev IG, Peterson J. Systematics of Gagen and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data[J]. Molecular phylogenetics and evolution,2008,46(2):446-465.
    [92]Peng D, Wang X-Q. Reticulate evolution in Thuja inferred from multiple gene sequences: Implications for the study of biogeographical disjunction between eastern Asia and North America[J]. Molecular phylogenetics and evolution,2008,47(3):1190-1202.
    [93]张峰.用于植物分子系统学研究的基因片断[J].山东科学,2004,17(01):55-58.
    [94]张韵洁,李德铢.叶绿体系统发育基因组学的研究进展[J].植物分类与资源学报,2011,33(4):365-375.
    [95]Bouille M, Senneville S, Bousquet J. Discordant mtDNA and cpDNA phylogcnies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea [J]. Tree genetics & genomes,2011,7(3):469-484.
    [96]Bayly MJ, Holmes GD, Forster PI, et al. Major Clades of Australasian Rutoideae (Rutaccae) Based on rbcL and atpB Sequences[J]. PloS one,2013,8(8):c72493.
    [97]Behnke H, Hummel E, Hillmer S, et al. A revision of African Velloziaceae based on leaf anatomy characters and rbcL nucleotide sequences[J]. Botanical Journal of the Linnean Society,2013,172(1):22-94.
    [98]Moudi M, Yong CSY, Saleh MN, et al. Phylogenetic Analysis Among Four Sections of Genus Dendrobium SW.(Orchidaceae) in Peninsular Malaysia Using rbcL Sequence Data[J]. International Journal of Bioassays,2013,2(6):932-937.
    [99]Gao X, Zhu YP, Wu BC, et al. Phylogeny of Dioscorea sect. Stenophora based on chloroplast matK, rbcL and trnL-F sequences[J]. Journal of Systematics and Evolution,2008,46(3): 315-321.
    [100]Dvorakova H, Fer T, Marhold K. Phylogeographic pattern of the European forest grass species Hordelymus europaeus:cpDNA evidence[J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2010,205(6):418-423.
    [101]Ren BQ, Xiang XG, Chen ZD. Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers[J]. Molecular Ecology Resources,2010,10(4):594-605.
    [102]Penjor T, Yamamoto M, Uehara M, et al. Phylogenetic relationships of Citrus and its relatives based on matK gene sequences[J]. PloS one,2013,8(4):e62574.
    [103]Ullah Z, Ahmad M, Alam N, et al. Phylogenetic Relationship of Pakistani Species of Carex L. Based on matK Gene Sequence Variation[J]. Pakistan Journal of Botany,2013,45: 185-190.
    [104]Bloch C, Weiss-Schneeweiss H, Schneeweiss GM, et al. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae)[J]. Molecular Phylogenetics and Evolution,2009,53(1):220-233.
    [105]Ohsako T, Ohnishi O. Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA[J]. Am. J. Botany,2000,87(4):573-582.
    [106]Himmelreich S, Kallersjo M, Eldenas P, et al. Phylogeny of southern hemisphere Compositae-Anthemideae based on nrDNA ITS and cpDNA ndhF sequence information [J]. Plant Systematics and Evolution,2008,272(1-4):131-153.
    [107]Edwards RD, Craven LA, Crisp MD, et al. Melaleuca revisited:cpDNA and morphological data confirm that Melaleuca L.(Myrtaceae) is not monophyletic [J]. Taxon,2010,59(3): 744-754.
    [108]Toro-Nunez O, Mort ME, Ruiz-Ponce E, et al. Phylogenetic relationships of Mathewsia and Schizopetalon (Brassicaceae) inferred from nrDNA and cpDNA regions:Taxonomic and evolutionary insights from an Atacama Desert endemic lineage[J]. Taxon,2013,62(2): 343-356.
    [109]Funk VA, Chan R. Phylogeny of the Spiny African Daisies (Compositae, tribe Arctotideae, subtribe Gorteriinae) based on trnL-F, ndhF, and ITS sequence data[J]. Molecular phylogenetics and evolution,2008,48(1):47-60.
    [110]Kim JS, Hong JK, Chase MW, et al. Familial relationships of the monocot order Liliales based on a molecular phylogenetic analysis using four plastid loci:matK, rbcL, atpB and atpF-H[J]. Botanical Journal of the Linnean Society,2013,172(1):5-21.
    [111]Christenhusz MJM, Tuomisto H, Metzgar JS, et al. Evolutionary relationships within the Neotropical, eusporangiate fern genus Danaea (Marattiaceae)[J]. Molecular phylogenetics and evolution,2008,46(1):34-48.
    [112]Acevedo-Rosas R, Cameron K, Sosa V, et al. A molecular phylogenetic study of Graptopetalum (Crassulaceae) based on ETS, ITS, rp116, and trnl-F nucleotide sequences [J]. American Journal of Botany,2004,91(7):1099-1104.
    [113]Albach DC, Li H-Q, Zhao N, et al. Molecular systematics and phytochemistry of Rehmannia (Scrophulariaceae)[J]. Biochemical Systematics and Ecology,2007,35(5):293-300.
    [114]Carrillo-Reyes P, Sosa V, Mort ME. Molecular phylogeny of the Acre clade (Crassulaceae): Dealing with the lack of definitions for Echeveria and Sedum[J]. Molecular phylogenetics and evolution,2009,53(1):267-276.
    [115]Vaio M, Speranza P, Valls JF, et al. Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae) [J]. Annals of Botany,2005,96(2):191-200.
    [116]Ortiz S, Carbajal R, Serrano M, et al. Phylogeny of the African Mutisieae s.l. (Asteraceae) based on ndhF and trnL-Fsequences (cpDNA)[J]. Taxon,2013,62(3):525-536.
    [117]Bonatelli I, Zappi D, Taylor N, et al. Usefulness of cpDNA markers for phylogenetic and phylogeographic analyses of closely-related cactus species[J]. Genetics and Molecular Research,2013, 12(AOP).
    [118]Adams RP, Schwarzbach AE. Phylogeny of Juniperus using nrDNA and four cpDNA regions[J]. Phytologia,2013,95:179-187.
    [119]Baraket G, Olfa S, Khaled C, et al. Chloroplast DNA analysis in Tunisian fig cultivars (Ficus carica L.):Sequence variations of the trnL-trnF intergenic spacer [J]. Biochemical Systematics and Ecology,2008,36(11):828-835.
    [120]Bouchenak-Khelladi Y, Salamin N, Savolainen V, et al. Large multi-gene phylogenetic trees of the grasses (Poaceae):Progress towards complete tribal and generic level sampling[J]. Molecular phylogenetics and evolution,2008,47(2):488-505.
    [121| Brauchler C, Meimberg H, Heubl G. Molecular phylogeny of the genera Digitalis L. and Isoplexis (Lindley) Loudon (Veronicaceae) based on ITS and trnL-F sequences[J]. Plant Systematics and Evolution,2004,248(1-4):111-128.
    [122]Catalan P, Torrecilla P, Rodriguez JAL, et al. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences[J]. Molecular phylogenetics and evolution,2004,31(2):517-541.
    [123]Cialdella AM, Giussani LM, Aagesen L, et al. A Phylogeny of Piptochaetium (Poaceae: Pooideae:Stipeae) and related genera based on a combined analysis including trnL-F, rp116, and morphology[J]. Systematic Botany,2007,32(3):545-559.
    [124]Del-Pino IS, Borsch T, Motley TJ. TrnL-F and rp116 Sequence Data and Dense Taxon Sampling Reveal Monophyly of Unilocular Anthered Gomphrenoideac (Amaranthaceae) and an Improved Picture of Their Internal Relationships[J]. Systematic Botany,2009, 34(1):57-67.
    [125]Falchi A, Paolini J, Desjobert JM, et al. Phylogeography of Cistus creticus L. on Corsica and Sardinia inferred by the trnL-F and rp132-trnL sequences of cpDNA [J]. Molecular Phylogenetics and Evolution,2009,52(2):538-543.
    [127]Kim ST, Donoghue MJ. Molecular phylogeny of Persicaria (Persicarieae, Polygonaceae)[J]. Systematic Botany,2008,33(1):77-86.
    [128]Min YJ, Zhou ZZ, Zhao XX, et al. Phylogenetic Position of Polygonum bungeanum in Polygonum L. s.lat.(Polygonaceae) as Evidenced from nrDNA ITS, cpDNA atpB-rbcL and trnL-F Sequences[J]. Life Science Journal,2013,10(2):2664-2670.
    [129]You Y, Han Y, Diao Y, et al. Analyses of genetic relationships in Nelumbo nucifera using atpB-rbcL chloroplast spacer and AFLP markers[J]. Indian Journal of Horticulture, 2013,70(2):266-273.
    [130]魏磊,庞磊,杨旭,等.基于叶绿体DNA atpB-rbcL区序列探讨石蒜属种间系统发育关系[J].热带亚热带植物学报,2013,21(2):109-115.
    [131]Chen JM, Liu F, Wang QF, et al. Phylogeography of a marsh herb Sagittaria trifolia (Alismataceae) in China inferred from cpDNA atpB-rbcL intergenic spacers [J]. Molecular Phylogenetics and Evolution,2008,48(1):168-175. Chung JD, Lin TP, Chen YL, et al. Phylogeographic study reveals the origin and evolutionary history of a Rhododendron species complex in Taiwan[J]. Molecular Phylogenetics and Evolution,2007,42(1):14-24.
    [133]Feldberg K, J Vana, Long DG, et al. A phylogeny of Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography[J]. Molecular Phylogenetics and Evolution,2010,55(1):293-304.
    [134]Morton CM. Phylogenetic relationships of the Aurantioideae (Rutaceae) based on the nuclear ribosomal DNA ITS region and three noncoding chloroplast DNA regions, atpB-rbcL spacer, rps16, and trnL-trnF[J]. Organisms Diversity & Evolution,2009,9(1): 52-68.
    [135]李国良,张建霞,曾宋君,等.基于ITS, Nad2 和 psbA—trnH序列探讨霍山石斛的分类位置[J].广东农业科学,2013,40(13):145-147.
    [136]熊勇,陈名红,熊华斌.百合psbA-trnH基因序列变异及遗传多样性分析[J].生物技术,2013,2:15-18.
    [137]Huang W, Zhao X, Zhao X, et al. Genetic diversity in Artemisia halodendron (Asteraceae) based on chloroplast DNA psbA-trnH region from different hydrothermal conditions in Horqin sandy land, northern China [J]. Plant Systematics and Evolution,2013,299(1): 107-113.
    [138]Degtjareva GV, Kljuykov EV, Samigullin TH, et al. ITS phylogeny of Middle Asian geophilic Umbelliferae-Apioideae genera with comments on their morphology and utility of psbA-trnH sequences [J]. Plant Systematics and Evolution,2013:1-26.
    [139]Yang JB, Yang HQ, Li DZ, et al. Phylogeny of Bambusa and its allies (Poaceae: Bambusoideae) inferred from nuclear GBSSI gene and plastid psbA-trnH, rpl32-trnL and rps16 intron DNA sequences [Jj. Taxon,2010,59(4):1102-1110.
    [140]Weigend M, Gottschling M, Selvi F, et al. Marbleseeds are gromwells-Systematics and evolution of Lithospermum and allies (Boraginaceae tribe Lithospermeae) based on molecular and morphological data [J]. Molecular Pphylogenetics and Evolution,2009, 52(3):755-768.
    [141]Fehrer J, Gemeinholzer B, Chrtek Jr J, et al. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae)[J]. Molecular phylogenetics and evolution,2007,42(2):347-361.
    [142]Wang XQ, Zou YP, Zhang DM, et al. Problems in the use of RAPD to the study of genetic diversity and systematics[J]. Acta Botanica Sinica,1996,38(12):954-962.
    [143]尹佟明,黄敏仁.AFLP分子标记及其在植物育种上的应用[J].生物工程进展,1997,17(1):6-12.
    [144]田孟良.中国糯玉米的分子系统学研究[D].四川雅安:四川农业大学,2005.
    [145]赵卫国.桑种质资源的遗传多样性及分子系统学研究[D].北京:中国农业科学院,2005.
    [146]李林,董敦义,丁雨龙,等.赤竹亚族Sasinae Keng f.分子系统学研究[J].竹子研究汇刊,2008,27(04):20-25.
    [147]权俊萍,何树兰,彭峰,等.部分百里香属植物分子系统学研究[J].西北植物学报,2008,28(08):1566-1572.
    [148]华丽,张道远,潘伯荣.中国柽柳属和水柏枝属的分子系统学研究[J].云南植物研究,2004,26(3):283-289.
    [149]赵志礼,徐珞珊,董辉,等.核糖体DNA ITS区序列在植物分子系统学研究中的价值[J].植物资源与环境学报,2000,9(02):50-54.
    [150]毛康珊,姚醒蕾,黄朝晖.狭义五福花科的分子系统学和物种分化[J].云南植物研究,2005,27(06):620-628.
    [151]马长乐,周浙昆.ITS假基因对栎属系统学研究的影响及其对分子系统学研究的启示[J].云南植物研究,2006,28(02):127-132.
    [152]高静,卢萍,王金妞,等.基于5.8S rDNA/ITS序列的几种内蒙古棘豆属植物分子系统学研究[J].华北农学报,2009,24(06):168-173.
    [153]龚琴,周劲松,张永夏,等.国产堇菜属的分子系统学研究[J].热带亚热带植物学报,2010,18(06):633-642.
    [154]卢海英.中国北方8种鸢尾属植物ITE序列分析及其分子系统学意义的研究[D].长春:东北师范大学,2006.
    [155]孙稚颖,李法曾.中国独行菜族(十字花科)部分属种的分子系统学研究[J].西北植物学报,2007,27(08):1674-1678.
    [156]汪伟,王兴科,朱昱苹,等.基于trnL内含子序列的桑属植物分子系统学初探[J].蚕业科学,2008,34(02):298-301.
    [157]韩燕燕.基于核糖体ITS和叶绿体trnL-F基因片段的蒺藜科植物分子系统学研究[D].乌鲁木齐:新疆大学,2007.
    [158]陈永燕,李德铢,王红.基于三个DNA片段讨论菖蒲科的分子系统学[J].云南植物研究,2002,24(06):699-706.
    [159]Zhao HE, Wang XQ, Chen QY, et al. The Origin of Garden Chrysanthemums and Molecular Phylogeny of Dendranthema in China based on Nucleotide Sequences of nrDNA ITS, trnT-trnL and trnL-trnF Intergenic Spacer Regions in cpDNA[J]. Molecular Pant Breeding,2003,1(5/6):597-604.王玉金,李小娟,郝刚,等.点地梅属的分子系统学、生物地理学和垫状形态的趋同进化[J].植物分类学报,2004,42(06):481-499.
    [101]杨俊波,李洪涛,杨世雄,等.四个DNA片段在山茶属分子系统学研究中的应用[J].云南植物研究,2006,28(02):108-114.林,董敦义,丁雨龙.竹类分子系统学中的DNA标记[J].林业科技开发,2009,23(01):10-15.
    [163]李云霞,兰芙蓉,常朝阳,等.基于ITS和trnL-F序列的青藏高原棘豆属植物分子系统学研究[J].西北农林科技大学学报(自然科学版),2011,39(11):187-193.李姝婧,贾渝,王庆华.基部藓类分子系统学研究[J].植物学报,2012,47(04):379-394.
    [165]郭亚龙.稻族的分子系统学研究[D].北京:中国科学院植物研究所,2005.
    [166]李红宁,廖雯,孙爱群,等.蓼属9种植物的过氧化物酶同工酶分析[J].贵州农业科学,2011,39(08):60-64.
    [167]Nieto-Rodriguez JE, Hernandez-Delgado S, Mayek-Perez N. Morphological and Genetic Analysis of Triplaris guayaquilensis Wedd (Polygonaceae):One Native Tree of Ecuador [J]. Ciencia Florestal,2013,23(2):415-426.
    [168]Talavera M, Balao F, Casimiro-Soriguer R, et al. Molecular phylogeny and systematics of the highly polymorphic Rumex bucephalophorus complex (Polygonaceae) [J]. Molecular Phylogenetics and Evolution,2011,61(3):659-670.
    [169]Talavera M, Navarro-Sampedro L, Ortiz PL, et al. Phylogeography and seed dispersal in islands:the case of Rumex bucephalophorus subsp canariensis (Polygonaceae)[J]. Annals of Botany,2013,111(2):249-260.
    [170]Wang XM, Yang R, Feng SF, et al. Genetic Variation in Rheum palmatum and Rheum tanguticum (Polygonaceae), Two Medicinally and Endemic Species in China Using ISSR Markers [J]. PloS one,2012,7(12):01-12.
    [171]Vik U, Carlsen T, Eidesen PB, et al. Microsatellite Markers for Bistorta vivipara (Polygonaceae) [J]. American Journal of Botany,2012,99(6):E226-229.
    [172]Choudhary RK, Park SH, Lee J. Phylogeny and systematics of Indian Polygonum sensu lato in the subfamily Polygonoideae based on ITS sequences of nuclear ribosomal DNA[J]. Genetics and Molecular Research,2012,11(4):4370-4382.
    [173]Galasso G, Banfi E, Mattia F, et al. Molecular Phylogeny of Polygonum L. s.l. (Polygonoideae, Polygonaceae), Focusing on European Taxa:Preliminary Results and Systematic Considerations Based on rbcL Plastidial Sequence Data[M]. Roman Italian: Societa italiana di scienze naturali,2009.
    [174]Sun Y, Zhang M. Molecular phylogeny of tribe Atraphaxideae(Polygonaceae) evidenced from five cpDNA genes [J]. Journal of Arid Land,2012,4(2):180-190.
    [175]Fan DM, Chen JH, Meng Y, et al. Molecular phylogeny of Koenigia L. (Polygonaceae: Persicarieae):Implications for classification, character evolution and biogeography[J]. Molecular Phylogenetics and Evolution,2013,69(3):1093-1100.
    [176]Kempton EA. Systematics of Eriogonoideae s. s. (Polygonaceae) [J]. Systematic Botany, 2012,37(3):723-737.
    [177]Marr KL, Allen GA, Hebda RJ, et al. Phylogeographical patterns in the widespread arctic-alpine plant Bistorta vivipara (Polygonaceae) with emphasis on western North America [J]. Journal of Biogeography,2013,40(5):847-856.
    [178]Kim ST, Donoghue MJ. Molecular phylogeny of Persicaria (Persicarieae, Polygonaceae) [J]. Systematic Botany,2008,33(1):77-86.
    [179]刘明珍,周忠泽,邱英雄,等.分子证据支持蓝药蓼和大铜钱叶蓼归入冰岛蓼属[J].植物分类学报,2007,45(2):227-233.
    [180]孙伟.蓼属及相关属的分子系统学和果实解剖学研究[D].合肥:安徽大学,2007.
    [181]曲畅游.中国蓼族植物果实形态、果皮微形态研究及其于trnK基因5’端内含子序列分析探讨虎杖的系统学位置[Dl.济南:山东师范大学,2005.
    [182]许崇梅,曲畅游,于文光,等.基于trnL-F序列推测冰岛蓼属的系统发育[J].西北植物学报,2009,29(04):691-694.
    [183]向红,孙爱群,翁贵英,等.蓼属头状蓼组rDNA ITS的序列扩增及分析[J].西北植物学报,2010,30(05):918-924.
    [184]赵大鹏,王康满,侯元同.基于叶绿体trnL-F, rbcL序列和核核糖体ITS序列探讨蓼属(蓼科)头状蓼组的系统发育[J].植物研究,2012,32(01):77-83.
    [185]张小平,周忠泽.中国蓼科花粉的系统演化.合肥:中国科学技术大学出版社,1998:1-121.
    [186]Schuster TM, Setaro SD, Kron KA. Age Estimates for the Buckwheat Family Polygonaceae Based on Sequence Data Calibrated by Fossils and with a Focus on the Amphi-Pacific Muehlenbeckia [J]. PloS one,2013,8(4):1-20.
    [187]陈士超,杨红,李珊,等.贝叶斯推论及其在百合目分子系统学中的应用[J].云南植物研究,2007,29(02):161-166.
    [188]Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue [J]. Phytochemical Bulletin,1987,19(1):11-15.
    [189]童大跃,伍新尧,陆惠玲,等.DNA提取方法的比较及改良[J].中山大学学报(医学科学版),2003,24(4):411-412.
    [190]何雪娇,郑涛,苏金强,等.改良CTAB法提取野牡丹科7种植物DNA[J].广东农业科学,2011,38(18):120-122.
    [191]魏胜华,孟娜.改良CTAB法提取大戟属药用植物叶片总DNA试验[J].湖北农业科学,2011,50(16):3418-3420.
    [193]Sun W, Zhou ZZ, Liu MZ, et al. Reappraisal of the generic status of Pteroxygonum (Polygonaceae) on the basis of morphology, anatomy and nrDNA ITS sequence analysis [J]. Acta Phytotaxonomica Sinica,2008,46(1):73-79.
    [194| Liu T, Yan H, Guo X. Discrimination of the medicinal plant Fallopia multiflora and its adulterants by diagnostic polymerase chain reaction (PCR)[J]. J Med Plant Res,2011, 5(15):3461-3465.
    [195]Chiang TY, Schaal BA, Peng CI. Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA[J]. Botanical Bulletin of Academia Sinica,1998,39:245-250.
    [196]Richardson JE, Fay MF, Cronk QC, et al. A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences[J]. American Journal of Botany,2000,87(9): 1309-1324.
    [197]Taberlet P, Gielly L, Pautou G, et al. Universal primers for amplification of three non-coding regions of chloroplast DNA[J]. Plant molecular biology,1991,17(5): 1105-1109.
    [198]Eriksson T, Hibbs MS, Yoder AD, et al. The phylogeny of Rosoideac (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of chloroplast DNA[J]. International Journal of Plant Sciences,2003, 164(2):197-211.
    [199]Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res,1997,25:4876-4882.
    [2001 Swofford DL. PAUP*:Phylogenetic analysis using parsimony and other methods.2003, Sinauer:Sunderland.
    [201]Huelsenbeck J, Ronquist F. MrBayes:Bayesian inference of phylogeny, version 3.1.2[J]. Bioinformatics,2001,17:754-755.
    1202]王爱兰,刘建全.大黄属的系统发育与生物地理学研究[D].兰州:兰州大学,2009.
    [203]田新民.青藏高原特有属翅果蓼属的生物地理学研究[D].兰州:兰州大学,2011.
    [204]Wang L, Qi XP, Xiang QP, et al. Phylogeny of the paleotropical fern genus Lepisorus (Polypodiaceae, Polypodiopsida) inferred from four chloroplast DNA regions[J]. Molecular Phylogenetics and Evolution,2010,54(1):211-225.
    [205]Burke JM, Sanchez A, Kron K, et al. Placing the woody tropical genera of Polygonaceae:A hypothesis of character evolution and phylogeny[J]. American Journal of Botany,2010, 97(8):1377-1390.
    [206]Zhang M, Fritsch PW, Cruz BC. Phylogeny of Caragana (Fabaceae) based on DNA sequence data from rbcL, trnS-trnG, and ITS [J]. Molecular Phylogenetics and Evolution,2009,50(3):547-559.
    [207]Xie L, Wagner WL, Ree RH, et al. Molecular phylogeny, divergence time estimates, and historical biogeography of Circaea (Onagraceae) in the Northern Hemisphere[J]. Molecular Phylogenetics and Evolution,2009,53(3):995-1009.
    [208]Terry RG. Re-evaluation of morphological and chloroplast DNA variation in Juniperus osteosperma Hook and Juniperus occidentalis Torr. Little (Cupressaceae) and their putative hybrids [J]. Biochemical Systematics and Ecology,2010,38(3):349-360.
    [209]Ghada B, Ahmed BA, Khaled C, et al. Molecular evolution of chloroplast DNA in fig (Ficus carica L.):Footprints of sweep selection and recent expansion[J]. Biochemical Systematics and Ecology,2010,38(4):563-575.
    [210]Baraket G, Abdelkrim AB, Saddoud O, et al. Molecular polymorphism of cytoplasmic DNA in Ficus carica L.:Insights from non-coding regions of chloroplast DNA [J]. Scientia Horticulture,2010,125(3):512-517.
    [211]Zietsman J, Dreyer LL, Van Vuuren BJ. Genetic differentiation in Oxalis (Oxalidaceae):A tale of rarity and abundance in the Cape Floristic Region[J]. South African Journal of Botany,2009,75(1):27-33.
    [212]Liu Zw, Wang Zh, Zhou J, et al. Phylogeny of Pyroleae (Ericaceae):implications for character evolution[J]. Journal Plant Research,2010,1-13.
    [213]Baird KE, Funk VA, Wen J, et al. Molecular phylogenetic analysis of Leibnitzia Cass. (Asteraceae:Mutisieae:Gerbera-complex), an Asian-North American disjunct genus [J]. Journal of Systematics and Evolution,2010,48(3):161-174.
    [214]于文光,樊守金,许崇梅,等.基于叶绿体trnL-F序列以及matK序列探讨虎杖属与西伯利亚蓼的系统学位置[J].植物分类学报,2008,46(5):676-681.
    [215]Yu W, Fan S, Xu C, et al. Systematic position of Reynoutria and Polygonum sibiricum inferred from sequences of chloroplast trnL-V and matK[J]. Journal of Systematics and Evolution,2008,46(5):676-681.
    [216]鲁法军.中国蓼族植物叶表皮微形态研究及基于matK基因序列分析探讨西伯利亚蓼的系统学位置[D].济南:山东师范大学,2005.
    [217]Steward AN. The Polygonaceae of Eastern Asia|J]. Contributions from the Gray Herbarium of Harvard University,1930,5:1-129.
    [218]吴征镒,路安民,汤彦承.中国被子植物科属综论[M].科学出版社,2003.
    [219]Tian XM, Liu RR, Tian B, Liu JQ. Karyological studies of Parapteropyrum and Atraphaxis (Polygonaceae) [J]. Caryologia,2009,62(4):261-266.
    [220]Sanchez A, Schuster TM, Burke JM, et al. Taxonomy of Polygonoideae (Polygonaceae):a new tribal classification [J]. Taxon,2011,60(1):151-160.
    [221]Chen YS, Zhou ZZ. Morphological Characteristics of Fruits of Koenigia (Polygonaceae) from China [J]. Bulletin of Botanical Research,2012,32(1):17-21.
    [222]Galasso G, Banfi E, Mattia F, et al. Molecular Phylogeny of Polygonum L.s.l. (Polygonoideae, Polygonaceae), Focusing on European Taxa:Preliminary Results and Systematic Considerations Based on rbcL Plastidial Sequence Data[M]. Societa italiana di scienze naturali,2009.
    [223]唐先华,赖旭龙,钟扬,等.分子钟假说与化石记录[J].地学前缘,2002,9(2):465-474.
    [224]罗静,张亚平.分子钟及其存在的问题[J].人类学学报,2000,19(2):151-159.
    [225]龙承星,张波,马绍宾.分子钟的研究进展[J].农业科学与技术,2012,13(12):2496-2498.
    [226]胡涛波,龙孟平,袁德健,等.遗传等距离现象:分子钟和中性理论的误读及其近半世纪后的重新解谜[J].中国科学:生命科学,2013,43(4):275-282.
    [227]陈军,李琪,孔令锋.分子系统学研究进展[J].生命科学,2013,25(5):518-523.
    [228]邹新慧,葛颂.基因树冲突与系统发育基因组学研究[J].植物分类学报,2008,46(6):795-807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700