用户名: 密码: 验证码:
可变剪切因子hnRNPL及组蛋白伴侣FACT复合物亚基SSRP1的结构生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:
     前体RNA (pre-mRNA)的剪切在基因表达过程中是一个关键的调节步骤,细胞可以在不同水平上对它进行组织特异性或者发育阶段特异性的调节。几乎所有的RNAPⅡ转录出的pre-mRNA都能进行可变剪切。可变剪切可以增加从基因组转录出的mRNA的多样性,从一个基因的pre-mRNA产生多种mRNA,并且翻译出不同的蛋白变体(iso forms),行使不同的功能。因此,可变剪切具有普遍的生物学意义,而可变剪切调控的异常将会导致疾病。hnRNP L是一种重要的可变剪切调控的蛋白,能够调节很多基因的pre-mRNA的可变剪切。此外,它还在染色质的修饰,转录调控,mRNA出核与蛋白质翻译以及mRNA的稳定性调节过程中起到重要作用。
     在本文的工作中,我们首先对hnRNP L各蛋白区段结合RNA的能力进行了测定和分析,发现hnRNP L的多个RRM结构域协同结合RNA。RRM1需要N端的58个氨基酸的加入成RRMN1时才能微弱地结合RNA,RRM2结合RNA能力也较弱,但RRMN12结合能力明显增强。RRM34能作为一个功能单位较强地结合RNA,并且RRM34结合能力比RRMN12更强。我们利用X-射线晶体学方法解析了hnRNP L RRM1和RRM34的结构。在结构分析的基础上,通过定点突变和SPR实验,鉴定出它们主要是通过β折叠面与RNA结合;通过基于结构的序列比对,对hnRNP L选择结合CA重复序列的分子机制进行了初步探讨。通过基于FRET-based EMSA,稳态FRET, Cross-linking和DLS实验,证明hnRNP L RRM34能同时结合在具有合适间隔的两个RNA结合位点上,促进RNA成环。应用hnRNP L在细胞内的天然底物RNA进行EMSA和ITC实验,验证了hnRNP L介导的RNA成环也能够发生在细胞内。最后,我们提出两种hnRNP L在可变剪切调控中的发挥激活或者抑制作用的作用模型,为解释hnRNP L在可变剪切调控中的位置依赖性双重功能提供了结构基础,并且预示了hnRNP L可能通过RNA成环,不需要直接的蛋白-蛋白相互作用就可以募集蛋白质因子的功能。
     第二部分:
     染色质是一种高度包装和精密调控的核糖核蛋白复合物,它通过一种稳定而有序调节的方式保存细胞的遗传信息。因此,与DNA相关的基本生物过程,例如转录,复制和损伤修复等,需要一些蛋白因子的协助,克服核小体的阻碍作用,才能使DNA信息得以表达。FACT复合物是一种组蛋白伴侣,能够在以染色质为模板的相关的转录,复制和损伤修复等过程中起重要作用,既能通过破坏组蛋白-组蛋白和组蛋白-DNA之间的作用来解构核小体也能帮助组蛋白重组装到DNA上。人源FACT复合物由Spt16和SSRP1两个亚基组成。其中的SSRP1蛋白包含有三个确定的结构域:N端/二聚结构域(NTD/DD),中间结构域(MD)和HMG结构域。
     我们解析了人源SSRP1蛋白的中间结构域(SSRP1-M)的1.93A的晶体结构,该结构域采取了两个串联的紧密结合的PH结构域的折叠方式。通过结构比对,发现SSRP1-M蛋白具有独特的p-α-β的超二级结构花样插入在p桶与C端a螺旋中间,并且在不同物种中非常保守。进一步分析发现SSRP1-M表面两侧各有一个横跨两个PH结构域的正电荷富集区,并且通过EMSA实验证明SSRP1-M确实能结合DNA,且这种结合没有序列选择性。通过突变实验表明,SSRP1-M的这两个正电荷富集区参与结合DNA。此外,我们初步的pull down结果表明SSRP1-M并不参与组蛋白的结合,这与其在酵母中的同源蛋白Pob3-M表现出不同。这些研究结果,为进一步了解SSRP1蛋白在核小体解离和重组装过程中发挥的具体作用提供了结构生物学和生物化学的分子基础。
Part I:
     Pre-mRNA splicing is a crucial mechanisom for gene expression. It is regulated at different levels in a tissue-or developmental stage-specific manner. Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. The overall function of alternative splicing is to increase the diversity of mRNA expressed from the genome, generating different splicing isoforms from one pre-mRNA to fulfill various functions. The aberrant regulation of alternative splicing leads to human diseases. hnRNP L is an important splicing regulator involved in alternative-splicing regulation of many genes. Besides, it plays roles in chromatin modification, transcriptional regulation, mRNA export of intronless genes, IRES-dependent translation and mRNA stability regulation.
     hnRNP L contains four RNA recognition motifs (RRMs) that bind with CA repeats or CA-rich elements. In our study, results of surface plasmon resonance (SPR) spectroscopy assays revealed that all the four RRM domains contribute to RNA-binding. Compared to RRM12, RRM34shoulders the major responsibility for RNA binding of hnRNP-L. Then, we elucidated the crystal structures of RRM1and RRM34of hnRNP-L at2.0A and1.8A, respectively. These RRMs all adopt the typical β1α1β2β3α2β4topology except the presence of an unusual fifth P-strand in RRM3. RRM3and RRM4interact intimately with each other mainly through helical surfaces, leading the two β-sheets to point to the opposite directions. Structure-based mutations and SPR assays results suggested that all the antiparallel β-sheets of RRMs are accessible for RNA binding. FRET-based gel shift assays (FRET-EMSA) and steady-state FRET assays (ss-FRET), together with cross-linking and dynamic light scattering (DLS) assays, demonstrated that hnRNP L RRM34facilitates RNA looping when binding to two appropriately separated binding sites within the same target pre-mRNA. EMSA and ITC binding studies with in vivo target RNA suggested that hnRNP L-mediated RNA looping may occur in vivo. Our study provides a mechanistic explanation for the dual functions of hnRNP L in alternative-splicing regulation either as an activator or repressor. Our results also enlighten the possible ability of hnRNP L in recruiting additional factors through RNA looping without direct protein-protein interactions.
     Part II:
     Chromatin is a kind of densely packed and tightly regulated nucleoprotein complex that stores the cellular genetic material in a stable yet readily accessible form. To overcome the inhibitory effects of nucleosomes on the accessibility of DNA during basic chromatin-templated progresses such as transcription, DNA replication and repair, it needs assistance from many factors to alter the chromatin structure. FACT (FAcilitates Chromatin Transcription) complex is an important histone chaperone, which reorganizes nucleosome without hydrolyzing ATP and translocating histone octamers relative to DNA. It can not only disrupt core histone-histone and histone-DNA interactions, but also possess the ability to deposit H2A-H2B dimer and (H3-H4)2tetramer onto DNA. Human FACT complex is composed of Spt16and SSRP1. SSRP1protein contains three well-defined domains:the N-terminal/dimerization Domain (NTD/DD), middle domain (MD), and HMG-1domain (HMG).
     We determined the crystal structure of the middle domain of SSRP1(SSRP1-M) at a resolution of1.93A. The SSRP1-M structure adopts a compact double PH domain architecture. In structural comparison to typical PH domains, PHI domain contains extra two antiparallel strands linked by a helix, which are inserted between the last strand and the C-terminal helix. The residues constituting such unique super secondary structure are conserved through different species. The analysis of electrostatic potential surface of the structure of SSRP1-M showed that one positively charged ridge region exists on each side of surface, suggesting its DNA binding ability. The results of EMSA assays and mutagenesis assays revealed that SSRP1-M binds nonspecificly with DNA and the two positively charged regions are involved in DNA binding. Besides, our pull-down experiments showed that SSRP1-M doesn't interact with histone, differently from its homologous protein in yeast Pob3-M. Our study provides structural and biochemical insights for SSRP1's detailed roles in the reorganization and reassembly of nucleosomes.
引文
Berget, S. M. (1995). Exon Recognition in Vertebrate Splicing. Journal of Biological Chemistry 270,2411-2414.
    Behzadnia, N., Golas, M. M., Hartmuth, K., Sander, B., Kastner, B., Deckert, J., Dube, P., Will, C. L., Urlaub, H., Stark, H.& Lurhrmann, R. (2007). Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. Embo J 26,1737-1748.
    Keren, H., Lev-Maor, G.& Ast, G. (2010). Alternative splicing and evolution:diversification, exon definition and function. Nat Rev Genet 11,345-355.
    Chen, M.& Manley, J. L. (2009). Mechanisms of alternative splicing regulation:insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10,741-754.
    Wang, E. T., Sandberg, R., Luo, S. J., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P.& Burge, C. B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature 456,470-476.
    Kelemen, O., Convertini, P., Zhang, Z., Wen, Y., Shen, M., Falaleeva, M.& Stamm, S. (2013). Function of alternative splicing. Gene 514,1-30.
    Fu, G. L., Condon, K. C., Epton, M. J., Gong, P., Jin, L., Condon, G. C., Morrison, N. I., Dafa'alla, T. H.& Alphey, L. (2007). Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25,353-357.
    Sugnet, C. W., Kent, W. J., Ares, M.& Haussler, D. (2003). Transcriptome and genome conservation of alternative splicing events in humans and mice. Pacific Symposium on Biocomputing 2004,66-77.
    Kim, E., Goren, A.& Ast, G (2008). Alternative splicing:current perspectives. Bioessays 30, 38-47.
    Kafasla, P., Mickleburgh, I., Llorian, M., Coelho, M., Gooding, C., Cherny, D., Joshi, A., Kotik-Kogan, O., Curry, S., Eperon, I. C., Jackson, R. J.& Smith, C. W. J. (2012). Defining the roles and interactions of PTB. Biochem Soc T 40,815-820.
    Jelen, N., Ule, J., Zivin, M.& Darnell, R. B. (2007). Evolution of nova-dependent splicing regulation in the brain. Plos Genetics 3,1838-1847.
    Lee, J. A., Tang, Z. Z.& Black, D. L. (2009). An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons. Gene Dev 23, 2284-2293.
    Ule, J., Stefani, G, Mele, A., Ruggiu, M., Wang, X. N., Taneri, B., Gaasterland, T., Blencowe, B. J.& Darnell, R. B. (2006). An RNA map predicting Nova-dependent splicing regulation. Nature 444,580-586.
    Lin, S. R.& Fu, X. D. (2007). SR proteins and related factors in alternative splicing. Alternative Splicing in the Postgenomic Era 623,107-122.
    Martinez-Contreras, R., Cloutier, P., Shkreta, L., Fisette, J. F., Revil, T.& Chabot, B. (2007). hnRNP proteins and splicing control. Alternative Splicing in the Postgenomic Era 623, 123-147.
    House, A. E.& Lynch, K. W. (2006). An exonic splicing silencer represses spliceosome assembly after ATP-dependent exon recognition. Nature Structural & Molecular Biology 13,937-944.
    Lallena, M. J., Chalmers, K. J., Llamazares, S., Lamond, A. I.& Valcarcel, J. (2002). Splicing regulation at the second catalytic step by sex-lethal involves 3'splice site recognition by SPF45. Cell 109,285-296.
    Sharma, S., Kohlstaedt, L. A., Damianov, A., Rio, D. C.& Black, D. L. (2008). Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat Struct Mol Biol 15,183-191.
    Batsche, E., Yaniv, M.& Muchardt, C. (2006). The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nature Structural & Molecular Biology 13,22-29.
    de la Mata, M.& Kornblihtt, A. R. (2006). RNA polymerase IIC-terminal domain mediates regulation of alternative splicing by SRp20. Nature Structural & Molecular Biology 13, 973-980.
    Sims, R. J., Millhouse, S., Chen, C. F., Lewis, B. A., Erdjument-Bromage, H., Tempst, P., Manley, J. L.& Reinberg, D. (2007). Recognition of trimethylated histone h3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Molecular Cell 28,665-676.
    Wu, J. Y.& Maniatis, T. (1993). Specific Interactions between Proteins Implicated in Splice-Site Selection and Regulated Alternative Splicing. Cell 75,1061-1070.
    Longman, D., McGarvey, T., McCracken, S., Johnstone, I. L., Blencowe, B. J.& Caceres, J. F. (2001). Multiple interactions between SRm160 and SR family proteins in enhancer-dependent splicing and development of C-elegans. Current Biology 11, 1923-1933.
    Tacke, R.& Manley, J. L. (1999). Functions of SR and Tra2 proteins in Pre-mRNA splicing regulation. P Soc Exp Biol Med 220,59-63.
    Forch, P., Puig, O., Martinez, C., Seraphin, B.& Valcarcel, J. (2002). The splicing regulator TIA-1 interacts with U1-C to promote Ul snRNP recruitment to 5'splice sites. Embo J 21,6882-6892.
    Tisserant, A.& Konig, H. (2008). Signal-Regulated Pre-mRNA Occupancy by the General Splicing Factor U2AF. Plos One 3.
    Shin, C., Feng, Y.& Manley, J. L. (2004). Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427,553-558.
    Shin, C. S.& Manley, J. L. (2002). The SR protein SRp38 represses splicing in M phase cells. Cell 111,407-417.
    Feng, Y, Chen, M.& Manley, J. L. (2008). Phosphorylation switches the general splicing repressor SRp38 to a sequence-specific activator. Nature Structural & Molecular Biology 15,1040-1048.
    Sauliere, J., Sureau, A., Expert-Bezancon, A.& Marie, J. (2006). The polypyrimidine tract binding protein (PTB) represses splicing of exon 6B from the beta-tropomyosin pre-mRNA by directly interfering with the binding of the U2AF65 subunit. Molecular and Cellular Biology 26,8755-8769.
    Zhou, H. L.& Lou, H. (2008). Repression of prespliceosome complex formation at two distinct steps by Fox-1/Fox-2 proteins. Molecular and Cellular Biology 28,5507-5516.
    Spellman, R.& Smith, C. W. J. (2006). Novel modes of splicing repression by PTB. Trends in Biochemical Sciences 31,73-76.
    Damgaard, C. K., Tange, T. O.& Kjems, J. (2002). hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. Rna-a Publication of the Rna Society 8,1401-1415.
    Nasim, F. U. H., Hutchison, S., Cordeau, M.& Chabot, B. (2002). High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5'splice site selection in support of a common looping out and repression mechanism. Rna-a Publication of the Rna Society 8,1078-1089.
    Sharma, S., Falick, A. M.& Black, D. L. (2005). Polypyrimidine tract binding protein blocks the 5'splice site-dependent assembly of U2AF and the prespliceosomal E complex. Mol Cell 19,485-496.
    Hutchison, S., LeBel, C., Blanchette, M.& Chabot, B. (2002). Distinct sets of adjacent heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5'splice site selection in the hnRNP A1 mRNA precursor. Journal of Biological Chemistry 277, 29745-29752.
    Kashima, T., Rao, N., David, C. J.& Manley, J. L. (2007). hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Human Molecular Genetics 16,3149-3159.
    Kashima, T., Rao, N.& Manley, J. L. (2007). An intronic element contributes to splicing repression in spinal muscular atrophy. P Natl Acad Sci USA 104,3426-3431.
    Chou, M. Y., Underwood, J. G., Nikolic, J., Luu, M. H. T.& Black, D. L. (2000). Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Molecular Cell 5,949-957.
    Mayeda, A., Helfman, D. M.& Krainer, A. R. (1993). Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF. Mol Cell Biol 13,2993-3001.
    Zahler, A. M., Damgaard, C. K., Kjems, J.& Caputi, M. (2004). SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing. J Biol Chem 279,10077-10084.
    Crawford, J. B.& Patton, J. G. (2006). Activation of alpha-tropomyosin exon 2 is regulated by the SR protein 9GS and heterogeneous nuclear ribonucleoproteins H and F. Molecular and Cellular Biology 26,8791-8802.
    Expert-Bezancon, A., Sureau, A., Durosay, P., Salesse, R., Groeneveld, H., Lecaer, J. P.& Marie, J. (2004). hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B. Journal of Biological Chemistry 279, 38249-38259.
    Blanchette, M., Green, R. E., MacArthur, S., Brooks, A. N., Brenner, S. E., Eisen, M. B.& Rio, D. C. (2009). Genome-wide Analysis of Alternative Pre-mRNA Splicing and RNA-Binding Specificities of the Drosophila hnRNP A/B Family Members. Molecular Cell 33,438-449.
    Dredge, B. K., Stefani, G., Engelhard, C. C.& Darnell, R. B. (2005). Nova autoregulation reveals dual functions in neuronal splicing. Embo J 24,1608-1620.
    Hung, L. H., Heiner, M., Hui, J., Schreiner, S., Benes, V.& Bindereif, A. (2008). Diverse roles of hnRNP L in mammalian mRNA processing:a combined microarray and RNAi analysis. RNA 14,284-296.
    Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X. N., Darnell, J. C.& Darnell, R. B. (2008). HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456,464-U422.
    Martinez-Contreras, R., Fisette, J. F., Nasim, F. H., Madden, R., Cordeau, M.& Chabot, B. (2006). Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. Plos Biology 4,172-185.
    Dredge, B. K.& Darnell, R. B. (2003). Nova regulates GABA(A) receptor gamma 2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Molecular and Cellular Biology 23,4687-4700.
    Hui, J., Hung, L. H., Heiner, M., Schreiner, S., Neumuller, N., Reither, G., Haas, S. A.& Bindereif, A. (2005). Intronic CA-repeat and CA-rich elements:a new class of regulators of mammalian alternative splicing. Embo J 24,1988-1998.
    Schaub, M. C., Lopez, S. R.& Caputi, M. (2007). Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. Journal of Biological Chemistry 282,13617-13626.
    Caputi, M.& Zahler, A. M. (2001). Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H '/F/2H9 family. Journal of Biological Chemistry 276,43850-43859.
    Grover, A., Houlden, H., Baker, M., Adamson, J., Lewis, J., Prihar, G., Pickering-Brown, S., Duff, K.& Hutton, M. (1999).5'splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. Journal of Biological Chemistry 274,15134-15143.
    Hiller, M., Zhang, Z., Backofen, R.& Stamm, S. (2007). Pre-mRNA secondary structures influence exon recognition. Plos Genetics 3,2147-2155.
    Libri, D., Balvay, L.& Fiszman, M. Y. (1992). In vivo splicing of the beta tropomyosin pre-mRNA:a role for branch point and donor site competition. Mol Cell Biol 12, 3204-3215.
    Camats, M., Guil, S., Kokolo, M.& Bach-Elias, M. (2008). P68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras. PLoS One 3, e2926.
    Kishore, S.& Stamm, S. (2006). Regulation of alternative splicing by snoRNAs. Cold Spring Harb Symp Quant Biol 71,329-334.
    Kishore, S.& Stamm, S. (2006). The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311,230-232.
    Sharma, S., Kohlstaedt, L. A., Damianov, A., Rio, D. C.& Black, D. L. (2008). Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nature Structural & Molecular Biology 15,183-191.
    Ohi, M. D., Kooi, C. W. V., Rosenberg, J. A., Ren, L. P., Hirsch, J. P., Chazin, W. J., Walz, T.& Gould, K. L. (2005). Structural and functional analysis of essential pre-mRNA splicing factor Prp19p. Molecular and Cellular Biology 25,451-460.
    Blencowe, B. J., Bauren, G., Eldridge, A. G., Issner, R., Nickerson, J. A., Rosonina, E.& Sharp, P. A. (2000). The SRm160/300 splicing coactivator subunits. Rna-a Publication of the Rna Society 6,111-120.
    Edamatsu, H., Kaziro, Y.& Itoh, H. (2000). LUCA15, a putative tumour suppressor gene encoding an RNA-binding nuclear protein, is down-regulated in ras-transformed Rat-1 cells. Genes to Cells 5,849-858.
    Bonnal, S., Martinez, C., Forch, P., Bachi, A., Wilm, M.& Valcarcel, J. (2008). RBM5/Luca-15/H37 Regulates Fas Alternative Splice Site Pairing after Exon Definition. Molecular Cell 32,81-95.
    Yu, Y., Maroney, P. A., Denker, J. A., Zhang, X. H. F., Dybkov, O., Luhrmann, R., Jankowsky, E., Chasin, L. A.& Nilsen, T. W. (2008). Dynamic Regulation of Alternative Splicing by Silencers that Modulate 5'Splice Site Competition. Cell 135,1224-1236.
    Wang, P., Yan, B., Guo, J. T., Hicks, C.& Xu, Y. (2005). Structural genomics analysis of alternative splicing and application to isoform structure modeling. P Natl Acad Sci USA 102,18920-18925.
    Romero, P. R., Zaidi, S., Fang, Y. Y., Uversky, V. N., Radivojac, P., Oldfield, C. J., Cortese, M. S., Sickmeier, M., LeGall, T., Obradovic, Z.& Dunker, A. K. (2006). Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. P Natl Acad Sci USA 103,8390-8395.
    Zhang, C., Krainer, A. R.& Zhang, M. Q. (2007). Evolutionary impact of limited splicing fidelity in mammalian genes. Trends in Genetics 23,484-488.
    Kim, E., Magen, A.& Ast, G. (2007). Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35,125-131.
    Hull, J., Campino, S., Rowlands, K., Chan, M. S., Copley, R. R., Taylor, M. S., Rockett, K., Elvidge, G., Keating, B., Knight, J.& Kwiatkowski, D. (2007). Identification of common genetic variation that modulates alternative splicing. Plos Genetics 3, 1009-1018.
    Lee, A. W., Champagne, N., Wang, X. J., Su, X. D., Goodyer, C.& Leblanc, A. C. (2010). Alternatively Spliced Caspase-6B Isoform Inhibits the Activation of Caspase-6A. Journal of Biological Chemistry 285,31974-31984.
    Vegran, F., Boidot, R., Oudin, C., Riedinger, J. M.& Lizard-Nacol, S. (2005). Implication of alternative splice transcripts of caspase-3 and survivin in chemoresistance. B Cancer 92, 219-226.
    Lin, Y., Stevens, C., Harrison, B., Pathuri, S., Amin, E.& Hupp, T. R. (2009). The alternative splice variant of DAPK-1, s-DAPK-1, induces proteasome-independent DAPK-1 destabilization. Molecular and Cellular Biochemistry 328,101-107.
    Krieg, A., Le Negrate, G.& Reed, J. C. (2009). RIP2-beta:A novel alternative mRNA splice variant of the receptor interacting protein kinase RIP2. Molecular Immunology 46, 1163-1170.
    Mosley, J. D.& Keri, R. A. (2006). Splice variants of mIAP1 have an enhanced ability to inhibit apoptosis. Biochem Bioph Res Co 348,1174-1183.
    Datta, D., Flaxenburg, J. A., Laxmanan, S., Geehan, C., Grimm, M., Waaga-Gasser, A. M., Briscoe, D. M.& Pal, S. (2006). Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 cells:Relevance for the development of human breast cancer. Cancer Research 66,9509-9518.
    Collesi, C., Santoro, M. M., Gaudino, G.& Comoglio, P. M. (1996). A splicing variant of the RON transcript induces constitutive tyrosine kinase activity and an invasive phenotype. Molecular and Cellular Biology 16,5518-5526.
    Mauger, D. M., Lin, C.& Garcia-Blanco, M. A. (2008). HnRNP H and hnRNP F complex with Fox2 to silence fibroblast growth factor receptor 2 Exon Ⅲc. Molecular and Cellular Biology 28,5403-5419.
    Swanson, M. S.& Dreyfuss, G. (1988). Classification and Purification of Proteins of Heterogeneous Nuclear Ribonucleoprotein-Particles by Rna-Binding Specificities. Molecular and Cellular Biology 8,2237-2241.
    Dreyfuss, G., Matunis, M. J., Pinolroma, S.& Burd, C. G. (1993). Hnrnp Proteins and the Biogenesis of Messenger-Rna. Annual Review of Biochemistry 62,289-321.
    Bilodeau, P. S., Domsic, J. K., Mayeda, A., Krainer, A. R.& Stoltzfus, C. M. (2001). RNA splicing at human immunodeficiency virus type 1 3'splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element. Journal of Virology 75,8487-8497.
    Mayeda, A., Munroe, S. H., Caceres, J. F.& Krainer, A. R. (1994). Function of Conserved Domains of Hnrnp A1 and Other Hnrnp a/B Proteins. Embo J 13,5483-5495.
    Rooke, N., Markovtsov, V, Cagavi, E.& Black, D. L. (2003). Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1. Molecular and Cellular Biology 23,1874-1884.
    Choi, Y. D., Grabowski, P. J., Sharp, P. A.& Dreyfuss, G. (1986). Heterogeneous Nuclear Ribonucleoproteins-Role in Rna Splicing. Science 231,1534-1539.
    Kim, J. H., Paek, K. Y, Choi, K. B., Kim, T. D., Hahm, B. S., Kim, K. T.& Jang, S. K. (2003). Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Molecular and Cellular Biology 23,708-720.
    Sella, O., Gerlitz, G., Le, S. Y.& Elroy-Stein, O. (1999). Differentiation-induced internal translation of c-sis mRNA:Analysis of the cis elements and their differentiation-linked binding to the hnRNP C protein. Molecular and Cellular Biology 19,5429-5440.
    Expert-Bezancon, A., Le Caer, J. P.& Marie, J. (2002). Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a component of an intronic splicing enhancer complex that activates the splicing of the alternative Exon 6A from Chicken beta-tropomyosin Pre-mRNA. Journal of Biological Chemistry 277,16614-16623.
    Wang, Z. R., Day, N., Trifillis, P.& Kiledjian, M. (1999). An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Molecular and Cellular Biology 19,4552-4560.
    Ostareck-Lederer, A., Ostareck, D. H.& Hentze, M. W. (1998). Cytoplasmic regulatory functions of the KH-domain proteins hnRNPs K and E1/E2. Trends in Biochemical Sciences 23,409-411.
    Xue, Y. C., Zhou, Y, Wu, T. B., Zhu, T., Ji, X., Kwon, Y S., Zhang, C., Yeo, G., Black, D. L., Sun, H., Fu, X. D.& Zhang, Y. (2009). Genome-wide Analysis of PTB-RNA Interactions Reveals a Strategy Used by the General Splicing Repressor to Modulate Exon Inclusion or Skipping. Molecular Cell 36,996-1006.
    Soderberg, M., Raffalli-Mathieu, F.& Lang, M. A. (2002). Inflammation modulates the interaction of heterogeneous nuclear ribonucleoprotein (hnRNP) I/polypyrimidine tract binding protein and hnRNP L with the 3'untranslated region of the murine inducible nitric-oxide synthase mRNA. Molecular Pharmacology 62,423-431.
    Hoffman, D. W., Query, C. C., Golden, B. L., White, S. W.& Keene, J. D. (1991). Rna-Binding Domain of the a-Protein Component of the U1 Small Nuclear Ribonucleoprotein Analyzed by Nmr-Spectroscopy Is Structurally Similar to Ribosomal-Proteins. P Natl Acad Sci USA 88,2495-2499.
    Maris, C., Dominguez, C.& Allain, F. H. (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272, 2118-2131.
    Birney, E., Kumar, S.& Krainer, A. R. (1993). Analysis of the Rna-Recognition Motif and Rs and Rgg Domains-Conservation in Metazoan Pre-Messenger-Rna Splicing Factors. Nucleic Acids Res 21,5803-5816.
    Lunde, B. M., Moore, C.& Varani, G. (2007). RNA-binding proteins:modular design for efficient function. Nat Rev Mol Cell Bio 8,479-490.
    Smith, R., Han, S. P.& Tang, Y. H. (2010). Functional diversity of the hnRNPs:past, present and perspectives. Biochemical Journal 430,379-392.
    Valverde, R., Edwards, L.& Regan, L. (2008). Structure and function of KH domains. Febs Journal 275,2712-2726.
    Dominguez, C.& Allain, F. H. T. (2006). NMR structure of the three quasi RNA recognition motifs (qRRMs) of human hnRNP F and interaction studies with Bcl-x G-tract RNA:a novel mode of RNA recognition. Nucleic Acids Res 34,3634-3645.
    Simpson, P. J., Monie, T. P., Szendroi, A., Davydova, N., Tyzack, J. K., Conte, M. R., Read, C. M., Cary, P. D., Svergun, D. I., Konarev, P. V, Curry, S.& Matthews, S. (2004). Structure and RNA interactions of the N-terminal RRM domains of PTB. Structure 12, 1631-1643.
    Vitali, F., Henning, A., Oberstrass, F. C., Hargous, Y, Auweter, S. D., Erat, M.& Allain, F. H. T. (2006). Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. Embo J 25,150-162.
    Motta-Mena, L. B., Heyd, F.& Lynch, K. W. (2010). Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol Cell 37,223-234.
    Guang, S., Felthauser, A. M.& Mertz, J. E. (2005). Binding of hnRNP L to the pre-mRNA processing enhancer of the herpes simplex virus thymidine kinase gene enhances both polyadenylation and nucleocytoplasmic export of intronless mRNAs. Mol Cell Biol 25, 6303-6313.
    Hwang, B., Lim, J. H., Hahm, B., Jang, S. K.& Lee, S. W. (2009). hnRNP L is required for the translation mediated by HCV IRES. Biochem Biophys Res Commun 378,584-588.
    Shih, S. C.& Claffey, K. P. (1999). Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem 274,1359-1365.
    Hamilton, B. J., Nichols, R. C., Tsukamoto, H., Boado, R. J., Pardridge, W. M.& Rigby, W. F. C. (1999). hnRNP A2 and hnRNP L bind the 3'UTR of glucose transporter 1 mRNA and exist as a complex in vivo. Biochem Bioph Res Co 261,646-651.
    Yuan, W., Xie, J., Long, C., Erdjument-Bromage, H., Ding, X., Zheng, Y., Tempst, P., Chen, S., Zhu, B.& Reinberg, D. (2009). Heterogeneous nuclear ribonucleoprotein L Is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J Biol Chem 284,15701-15707.
    Huang, Y., Li, W., Yao, X., Lin, Q. J., Yin, J. W., Liang, Y, Heiner, M., Tian, B., Hui, J.& Wang, G (2012). Mediator Complex Regulates Alternative mRNA Processing via the MED23 Subunit. Mol Cell 45,459-469.
    Lander, E. S., et al, (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921.
    Shankarling,G.& Lynch,.K. W. (2010). Liying or dying by.RNA processing:caspase expression in NSCLC. J Clin Invest 120,3798-3801.
    Preussner, M., Schreiner, S., Hung, L. H., Porstner, M., Jack, H. M., Benes, V, Ratsch, G.& Bindereif, A. (2012). HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing. Nucleic Acids Res.
    Rothrock, C. R., House, A. E.& Lynch, K. W. (2005). HnRNP L represses exon splicing via a regulated exonic splicing silencer. Embo J 24,2792-2802.
    Dery, K. J., Gaur, S., Gencheva, M., Yen, Y, Shively, J. E.& Gaur, R. K. (2011). Mechanistic control of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) splice isoforms by the heterogeneous nuclear ribonuclear proteins hnRNP L, hnRNP A1, and hnRNP M. J Biol Chem 286,16039-16051.
    Heiner, M., Hui, J., Schreiner, S., Hung, L. H.& Bindereif, A. (2010). HnRNP L-mediated regulation of mammalian alternative splicing by interference with splice site recognition. RNA Biol 7,56-64.
    House, A. E.& Lynch, K. W. (2006). An exonic splicing silencer represses spliceosome assembly after ATP-dependent exon recognition. Nat Struct Mol Biol 13,937-944.
    Kenan, D. J., Query, C. C.& Keene, J. D. (1991). RNA recognition:towards identifying determinants of specificity. Trends Biochem Sci 16,214-220.
    Leslie, A. G. (2006). The integration of macromolecular diffraction data. Acta Crystallogr D Biol Crystallogr 62,48-57.
    Otwinowski, Z.& Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276,307-326.
    McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C.& Read, R. J. (2007). Phaser crystallographic software. J Appl Crystallogr 40,658-674.
    Emsley, P.& Cowtan, K. (2004). Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60,2126-2132.
    Murshudov, G. N., Vagin, A. A.& Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-255.
    Winn, M. D., Murshudov, G N.& Papiz, M. Z. (2003). Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol 374,300-321.
    Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B.,3rd, Snoeyink, J., Richardson, J. S.& Richardson, D. C. (2007). MolProbity:all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35, W375-383.
    Vagin, A.& Teplyakov, A. (1997). MOLREP:an automated program for molecular replacement. J Appl Crystallogr 30,1022-1025.
    Hui, J., Stangl, K., Lane, W. S.& Bindereif, A. (2003). HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat Struct Biol 10,33-37.
    Shamoo, Y, Abdul-Manan, N.& Williams, K. R. (1995). Multiple RNA binding domains (RBDs) just don't add up. Nucleic Acids Res 23,725-728.
    Laskowski, R. A., Macarthur, M. W., Moss, D. S.& Thornton, J. M. (1993). Procheck-a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26,283-291.
    Oberstrass, F. C., Auweter, S. D., Erat, M., Hargous, Y., Henning, A., Wenter, P., Reymond, L., Amir-Ahmady, B., Pitsch, S., Black, D. L.& Allain, F. H. (2005). Structure of PTB bound to RNA:specific binding and implications for splicing regulation. Science 309, 2054-2057.
    Holm, L.& Sander, C. (1996). Mapping the protein universe. Science 273,595-602.
    Skrisovska, L.& Allain, F. H. (2008). Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins:application to the RRMs of Np13p and hnRNP L. J Mol Biol 375,151-164.
    Conte, M. R., Grune, T., Ghuman, J., Kelly, G., Ladas, A., Matthews, S.& Curry, S. (2000). Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. Embo J 19,3132-3141.
    Rothrock, C., Cannon, B., Hahm, B.& Lynch, K. W. (2003). A conserved signal-responsive sequence mediates activation-induced alternative splicing of CD45. Mol Cell 12, 1317-1324.
    Tong, A., Nguyen, J.& Lynch, K. W. (2005). Differential expression of CD45 isoforms is controlled by the combined activity of basal and inducible splicing-regulatory elements in each of the variable exons. Journal of Biological Chemistry 280,38297-38304.
    Rossbach, O., Hung, L. H., Schreiner, S., Grishina, I., Heiner, M., Hui, J.& Bindereif, A. (2009). Auto- and cross-regulation of the hnRNP L proteins by alternative splicing. Mol Cell Biol 29,1442-1451.
    Arnold, K., Bordoli, L., Kopp, J.& Schwede, T. (2006). The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
    Teplova, M.& Patel, D. J. (2008). Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Nature Structural & Molecular Biology 15,1343-1351.
    Teplova, M., Malinina, L., Darnell, J. C., Song, J., Lu, M., Abagyan, R., Musunuru, K., Teplov, A., Burley, S. K., Darnell, R. B.& Patel, D. J. (2011). Protein-RNA and protein-protein recognition by dual KH1/2 domains of the neuronal splicing factor Nova-1. Structure 19, 930-944.
    Diaz-Moreno, I., Hollingworth, D., Kelly, G, Martin, S., Garcia-Mayoral, M., Briata, P., Gherzi, R.& Ramos, A. (2010). Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets. Nucleic Acids Res 38,5193-5205.
    Lamichhane, R., Daubner, G M., Thomas-Crusells, J., Auweter, S. D., Manatschal, C., Austin, K. S., Valniuk, O., Allain, F. H.& Rueda, D. (2010). RNA looping by PTB:Evidence using FRET and NMR spectroscopy for a role in splicing repression. Proc Natl Acad Sci U S A 107,4105-4110.
    Clapier, C. R.& Cairns, B. R. (2009). The Biology of Chromatin Remodeling Complexes. Annual Review of Biochemistry 78,273-304.
    Carey, M., Li, B.& Workman, J. L. (2006). RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Molecular Cell 24,481-487.
    Kasten, M., Szerlong, H., Erdjument-Bromage, H., et al. (2004). Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. Embo J 23,1348-1359.
    Mas, G., de Nadal, E., Dechant, R., et al. (2009). Recruitment of a chromatin remodelling complex by the Hogl MAP kinase to stress genes. Embo J 28,326-336.
    Simic, R., Lindstrom, D. L., Tran, H. G., et al. (2003). Chromatin remodeling protein Chdl interacts with transcription elongation factors and localizes to transcribed genes. Embo J 22, 1846-1856.
    Selth, L. A., Sigurdsson, S.& Svejstrup, J. Q. (2010). Transcript Elongation by RNA Polymerase II. Annu Rev Biochem 79,271-293.
    Kelley, D. E., Stokes, D. G.& Perry, R. P. (1999). CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 108,10-25.
    Krogan, N. J., Kim, M., Ahn, S. H., et al. (2002). RNA polymerase Ⅱ elongation factors of Saccharomyces cerevisiae:a targeted proteomics approach. Mol Cell Biol 22,6979-6992.
    Park, Y. J.& Luger, K. (2006). Structure and function of nucleosome assembly proteins. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire 84,549-558.
    Orphanides, G., LeRoy, G., Chang, C. H., et al. (1998). FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92,105-116.
    Orphanides, G., Wu, W. H., Lane, W. S., et al. (1999). The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400,284-288.
    Belotserkovskaya, R., Oh, S., Bondarenko, V. A., et al. (2003). FACT facilitates transcription-dependent nucleosome alteration. Science 301,1090-1093.
    Reinberg, D.& Sims, R. J.,3rd. (2006). de FACTo nucleosome dynamics. J Biol Chem 281, 23297-23301.
    Bortvin, A.& Winston, F. (1996). Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272,1473-1476.
    Kaplan, C. D., Laprade, L.& Winston, F. (2003). Transcription elongation factors repress transcription initiation from cryptic sites. Science 301,1096-1099.
    Ito, T., Ikehara, T., Nakagawa, T., et al. (2000). p300-Mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone. Gene Dev 14, 1899-1907.
    Lorch, Y., Maier-Davis, B.& Kornberg, R. D. (2006). Chromatin remodeling by nucleosome disassembly in vitro. P Natl Acad Sci USA 103,3090-3093.
    Kaplan, T., Liu, C. L., Erkmann, J. A., et al. (2008). Cell Cycle- and Chaperone-Mediated Regulation of H3K56ac Incorporation in Yeast. Plos Genetics 4.
    Kim, H. J., Seol, J. H., Han, J. W, et al. (2007). Histone chaperones regulate histone exchange during transcription. Embo J 26, 4467-4474.
    Rufiange, A., Jacques, P. E., Bhat, W, et al. (2007). Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3K56 acetylation and Asfl. Molecular Cell 27,393-405.
    Luger, K., Mader, A. W., Richmond, R. K., et al. (1997).Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389,251-260.
    McBryant, S. J., Lu, X.& Hansen, J. C. (2010). Multifunctionality of the linker histones:an emerging role for protein-protein interactions. Cell Res 20,519-528.
    Tremethick, D. J. (2007). Higher-order structures of chromatin:the elusive 30 nm fiber. Cell 128, 651-654.
    Ransom, M., Dennehey, B. K.& Tyler, J. K. (2010). Chaperoning histones during DNA replication and repair. Cell 140,183-195.
    Mizuguchi, G., Shen, X., Landry, J., et al. (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303,343-348.
    Saha, A., Wittmeyer, J.& Cairns, B. R. (2006). Chromatin remodelling:the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7,437-447.
    Formosa, T. (2008). FACT and the reorganized nucleosome. Mol Biosyst 4,1085-1093.
    Xin, H., Takahata, S., Blanksma, M., et al. (2009). yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. Mol Cell 35,365-376.
    Orphanides, G.& Reinberg, D. (2000). RNA polymerase Ⅱ elongation through chromatin. Nature 407, 471-475.
    Schlesinger, M. B.& Formosa, T. (2000). POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155,1593-1606.
    Wittmeyer, J.& Formosa, T. (1997). The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein. Mol Cell Biol 17,4178-4190.
    Heo, K., Kim, H., Choi, S. H., et al. (2008). FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt 16. Mol Cell 30,86-97.
    Keller Dm, L. H. (2002). p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRPl complex. J Biol Chem.
    Mason, P. B.& Struhl, K. (2003). The FACT complex travels with elongating RNA polymerase Ⅱ and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol 23,8323-8333.
    Saunders, A., Werner, J., Andrulis, E. D., et al. (2003). Tracking FACT and the RNA polymerase Ⅱ elongation complex through chromatin in vivo. Science 301,1094-1096.
    Sims, R. J.,3rd, Belotserkovskaya, R.& Reinberg, D. (2004). Elongation by RNA polymerase Ⅱ:the short and long of it. Genes Dev 18,2437-2468.
    Zhu, B., Mandal, S. S., Pham, A. D., et al. (2005). The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev 19,1668-1673.
    Malone, E. A., Clark, C. D., Chiang, A., et al. (1991). Mutations in Spt16/Cdc68 Suppress Cis-Acting and Trans-Acting Mutations That Affect Promoter Function in Saccharomyces-Cerevisiae. Molecular and Cellular Biology 11,5710-5717.
    Rowley, A., Singer, R. A.& Johnston, G. C. (1991). Cdc68, a Yeast Gene That Affects Regulation of Cell-Proliferation and Transcription, Encodes a Protein with a Highly Acidic Carboxyl Terminus. Molecular and Cellular Biology 11,5718-5726.
    Okuhara, K., Ohta, K., Seo, H., et al. (1999). A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Curr Biol 9,341-350.
    Hertel, L., De Andrea, M., Bellomo, G., et al. (1999). The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp Cell Res 250,313-328.
    Takahashi, T. S., Wigley, D. B.& Walter, J. C. (2005). Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase. Trends Biochem Sci 30,437-444.
    Tan, B. C., Chien, C. T., Hirose, S., et al. (2006). Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. Embo J 25,3975-3985.
    Gambus, A., Jones, R. C., Sanchez-Diaz, A., et al. (2006). GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8,358-366.
    Labib, K.& Gambus, A. (2007). A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17,271-278.
    Bruhn, S. L., Pil, P. M., Essigmann, J. M., et al. (1992). Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin. Proc Natl Acad Sci U S A 89,2307-2311.
    Yarnell At, O. S. R. D. L. S. J. (2001). Interaction of FACT, SSRP1, and the high mobility group (HMG) domain of SSRP1 with DNA damaged by the anticancer drug cisplatin. J Biol Chem.
    Keller, D. M., Zeng, X., Wang, Y., et al. (2001). A DNA dam age-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7,283-292.
    Li, X.& Heyer, W. D. (2008). Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18,99-113.
    Thoma, N. H., Czyzewski, B. K., Alexeev, A. A., et al. (2005). Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat Struct Mol Biol 12,350-356.
    Mazin, A. V., Alexeev, A. A.& Kowalczykowski, S. C. (2003). A novel function of Rad54 protein-Stabilization of the Rad51 nucleoprotein filament. Journal of Biological Chemistry 278, 14029-14036.
    Mazin, A. V., Bornarth, C. J., Solinger, J. A., et al. (2000). Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Molecular Cell 6,583-592.
    Solinger, J. A., Kiianitsa, K.& Heyer, W. D. (2002). Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10,1175-1188.
    Petukhova, G., Stratton, S.& Sung, P. (1998). Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393,91-94.
    Bugreev, D. V, Mazina, O. M.& Mazin, A. V. (2006). Rad54 protein promotes branch migration of Holliday junctions. Nature 442,590-593.
    Kumari, A., Mazina, O. M., Shinde, U., et al. (2009). A role for SSRP1 in recombination-mediated DNA damage response. J Cell Biochem 108,508-518.
    Celeste, A., Difilippantonio, S., Difilippantonio, M. J., et al. (2003). H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114,371-383.
    Huang, J. Y., Chen, W. H., Chang, Y. L., et al. (2006). Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation. Nucleic Acids Res 34,2398-2407.
    VanDemark, A. P., Blanksma, M., Ferris, E., et al. (2006). The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 22,363-374.
    Adelman, K., Wei, W. X., Ardehali, M. B., et al. (2006). Drosophila Pafl modulates chromatin structure at actively transcribed genes. Molecular and Cellular Biology 26,250-260.
    Lusser, A., Urwin, D. L.& Kadonaga, J. T. (2005). Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nature Structural & Molecular Biology 12,160-166.
    Flanagan, J. F., Mi, L. Z., Chruszcz, M., et al. (2005). Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438,1181-1185.
    Sims, R. J., Chen, C. F., Santos-Rosa, H., et al. (2005). Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. Journal of Biological Chemistry 280,41789-41792.
    Bernstein, B. E., Kamal, M., Lindblad-Toh, K., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120,169-181.
    Schneider, R., Bannister, A. J., Myers, F. A., et al. (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biology 6,73-77.
    Kouskouti, A.& Talianidis, I. (2005). Histone modifications defining active genes persist after transcriptional and mitotic inactivation. Embo J 24,347-357.
    Squazzo, S. L., Costa, P. J., Lindstrom, D. L., et al. (2002). The Pafl complex physically and functionally associates with transcription elongation factors in vivo. Embo J 21,1764-1774.
    Costa, P. J.& Arndt, K. M. (2000). Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtfl protein in transcription elongation. Genetics 156,535-547.
    Pavri, R., Zhu, B., Li, G, et al. (2006). Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125,703-717.
    Margueron, R., Trojer, P.& Reinberg, D. (2005). The key to development:interpreting the histone code? Curr Opin Genet Dev 15,163-176.
    Martin, C.& Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6,838-849.
    Sims, R. J., Nishioka, K.& Reinberg, D. (2003). Histone lysine methylation:a signature for chromatin function. Trends in Genetics 19,629-639.
    Ng, H. H., Dole, S.& Struhl, K. (2003). The Rtfl component of the Pafl transcriptional elongation complex is required for ubiquitination of histone H2B. Journal of Biological Chemistry 278, 33625-33628.
    Wood, A., Schneider, J., Dover, J., et al. (2003). The Pafl complex is essential for histone monoubiquitination by the Rad6-Brel complex, which signals for histone methylation by COMPASS and Dotlp. Journal of Biological Chemistry 278,34739-34742.
    Kang, S. W., Kuzuhara, T.& Horikoshi, M. (2000). Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68. Genes Cells 5, 251-263.
    Belotserkovskaya, R., Saunders, A., Lis, J. T., et al. (2004). Transcription through chromatin: understanding a complex FACT. Bba-Gene Struct Expr 1677,87-99.
    Hsu, T., King, D. L., LaBonne, C., et al. (1993). A Drosophila single-strand DNA/RNA-binding factor contains a high-mobility-group box and is enriched in the nucleolus. Proc Natl Acad Sci U S A 90,6488-6492.
    Formosa, T., Eriksson, P., Wittmeyer, J., et al. (2001). Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. Embo J 20,3506-3517.
    Tsunaka, Y., Toga, J., Yamaguchi, H., et al. (2009). Phosphorylated intrinsically disordered region of FACT masks its nucleosomal DNA binding elements. J Biol Chem 284,24610-24621.
    Ransom, M., Williams, S. K., Dechassa, M. L., et al. (2009). FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation. J Biol Chem 284, 23461-23471.
    Chang, C. H.& Luse, D. S. (1997). The H3/H4 tetramer blocks transcript elongation by RNA polymerase Ⅱ in vitro. Journal of Biological Chemistry 272,23427-23434.
    Kireeva, M. L., Walter, W, Tchernajenko, V, et al. (2002). Nucleosome remodeling induced by RNA polymerase Ⅱ:loss of the H2A/H2B dimer during transcription. Mol Cell 9,541-552.
    Formosa, T., Ruone, S., Adams, M. D., et al. (2002). Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway:Polymerase passage may degrade chromatin structure. Genetics 162,1557-1571.
    Brewster, N. K., Johnston, G. C.& Singer, R. A. (2001). A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Molecular and Cellular Biology 21, 3491-3502.
    Ruone, S., Rhoades, A. R.& Formosa, T. (2003). Multiple Nhp6 molecules are required to recruit Spt16-Pob3 to form yFACT complexes and to reorganize nucleosomes. Journal of Biological Chemistry 278,45288-45295.
    Rhoades, A. R., Ruone, S.& Formosa, T. (2004). Structural features of nucleosomes reorganized by yeast FACT and its HMG box component, Nhp6. Mol Cell Biol 24,3907-3917.
    Biswas, D., Yu, Y, Prall, M., et al. (2005). The yeast FACT complex has a role in transcriptional initiation. Mol Cell Biol 25,5812-5822.
    Winkler, D. D.& Luger, K. (2011). The histone chaperone FACT:structural insights and mechanisms for nucleosome reorganization. J Biol Chem 286,18369-18374.
    Stuwe, T., Hothorn, M., Lejeune, E., et al. (2008). The FACT Spt16 "peptidase" domain is a histone H3-H4 binding module. Proc Natl Acad Sci U S A 105,8884-8889.
    VanDemark, A. P., Xin, H., McCullough, L., et al. (2008). Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits. J Biol Chem 283, 5058-5068.
    Philpott, A., Krude, T.& Laskey, R. A. (2000). Nuclear chaperones. Semin Cell Dev Biol 11,7-14.
    Brewster, N. K., Johnston, G. C.& Singer, R. A. (2001). A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol Cell Biol 21,3491-3502.
    O'Donnell, A. F., Brewster, N. K., Kurniawan, J., et al. (2004). Domain organization of the yeast histone chaperone FACT:the conserved N-terminal domain of FACT subunit Spt16 mediates recovery from replication stress. Nucleic Acids Res 32,5894-5906.
    Lemmon, M. A. (2004). Pleckstrin homology domains:not just for phosphoinositides. Biochem Soc Trans 32,707-711.
    Moreira, J. M.& Holmberg, S. (2000). Chromatin-mediated transcriptional regulation by the yeast architectural factors NHP6A and NHP6B. Embo J 19,6804-6813.
    Kasai, N., Tsunaka, Y., Ohki, I., et al. (2005). Solution structure of the HMG-box domain in the SSRP1 subunit of FACT. J Biomol NMR 32,83-88.
    Masse, J. E., Wong, B., Yen, Y. M., et al. (2002). The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA:DNA and protein conformational changes upon binding. J Mol Biol 323,263-284.
    Adams, P. D., Afonine, P. V, Bunkoczi, G., et al. (2010). PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66,213-221.
    Kasai, N., Tsunaka, Y, Ohki, I., et al. (2005). Solution structure of the HMG-box domain in the SSRP1 subunit of FACT. Journal of Biomolecular Nmr 32,83-88..
    Liu, Y., Huang, H., Zhou, B. O., et al. (2010). Structural analysis of Rtt106p reveals a DNA binding role required for heterochromatin silencing. J Biol Chem 285,4251-4262.
    Li, Q., Zhou, H., Wurtele, H., et al. (2008). Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134,244-255.
    Masumoto, H., Hawke, D., Kobayashi, R., et al. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436,294-298.
    Bustin, M.& Reeves, R. (1996). High-mobility-group chromosomal proteins:architectural components that facilitate chromatin function. Progress in nucleic acid research and molecular biology 54,35-100.
    Lowary, P. T.& Widom, J. (1998). New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276,19-42.
    Winkler, D. D., Muthurajan, U. M., Hieb, A. R., et al. (2011). Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events. J Biol Chem 286, 41883-41892.
    Dyer, M. A., Hayes, P. J.& Baron, M. H. (1998). The HMG domain protein SSRP1/PREIIBF is involved in activation of the human embryonic beta-like globin gene. Molecular and Cellular Biology 18,2617-2628.
    Hondele, M., Stuwe, T., Hassler, M., et al. (2013). Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature.
    Kemble, D. J., Whitby, F. G., Robinson, H., et al. (2013). Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT. Journal of Biological Chemistry 288,10188-10194.
    Su, D., Hu, Q., Li, Q., et al. (2012). Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106. Nature 483,104-107.
    Zunder, R. M., Antczak, A. J., Berger, J. M., et al. (2012). Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proc Natl Acad Sci U S A 109, E144-153.
    Nair, D. M., Ge, Z. Q., Mersfelder, E. L., et al. (2011). Genetic interactions between POB3 and the acetylation of newly synthesized histones. Current Genetics 57,271-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700