用户名: 密码: 验证码:
施氮对黄土高原丘陵沟壑区不同退耕年限植被群落以及土壤养分的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国黄土高原地区是世界上水土流失最为严重的地区,同时还面临着气候干旱、土壤养分贫瘠、植被稀疏等严峻的生态环境问题。植被在防治水土流失和改善生态环境方面具有重要作用,然而受水肥条件的限制植被在自然状态下恢复十分缓慢,不利于植被的生态效益与经济效益的充分发挥,因此,探索加快植被恢复的人工干预或调控措施显得十分必要和迫切。本研究针对黄土丘陵沟壑区土壤氮素缺乏,将施氮作为一种重要的人工干预措施,通过田间施肥试验,采用野外调查、采样与室内分析相结合的方法,研究了该区退耕地不同恢复年限的草本植物群落以及土壤养分对施氮干预的响应过程,分析和比较了不同施氮水平对不同群落类型的组成与结构、生物量分配、细根形态及分布特征、植物叶片与根系的氮分布、土壤养分变化等的影响,以明确土壤氮素对植被恢复的限制状况以及生态适应性,为黄土高原丘陵沟壑区的植被恢复与重建提供科学依据,以促进我国西部的生态环境建设和退耕还林还草工程的顺利实施。主要取得了如下研究结论:
     (1)随施氮量的不断增加,不同恢复阶段的群落中个体密度和物种丰富度均有不同程度地下降,表明施氮肥降低了物种的多样性。不同退耕年限或演替阶段的植物群落物种组成及生物多样性特征对施氮后的响应有所不同,施氮肥对演替初期植被的调控效果更佳,而演替后期的群落对氮肥施用表现出有很强的适应性和稳定性。
     (2)施氮同时提高了不同植物群落的地上、地下生物量,但二者在不同施氮水平下的平均提高幅度具有明显差异。随着施氮量的增加,生物量总体呈增加趋势,表明施氮肥的对群落生物量具有明显的提高作用。不同群落地下生物量主要分布在0-20cm土层中,占65%以上,施肥可促进地下根系生物量积累,有利于增加土壤碳储量,进而提高土壤质量。相关分析结果表明,地上与地下生物量之间呈极显著的正相关关系,施氮对群落地上部生长的促进作用大于根系,从而导致随着施氮量的不断增加地下生物量/地上生物量降低。
     (3)施氮不同程度地提高了各植物群落0-60cm土壤中的细根生物量、根长密度、细根表面积,但并不改变它们随在土壤剖面上随土壤深度的增加而急剧降低的垂直分布特征,细根的根长密度、表面积以及生物量呈现出相似的变化规律,同时施氮主要对直径<0.5mm、0.5-1mm细根根长密度、根表面积影响较大,氮肥施用后明显提高了直径较小的细根根长,相应地增加了细根表面积。
     (4)不同植物群落均表现为随施氮量增加,叶片中氮含量显著增加,并且在N5、N10及N15水平下增幅相对较大,在N20和N30水平则达到稳定或略有下降。细根中氮含量同叶片中氮含量表现出相似的规律,但明显低于叶片中的氮含量。从生长季节的变化来看,不同月份群落叶片与细根中氮含量差异明显,二者变化规律相似,均表现为5月份大于7月和9月,9月略高于7月。相关分析结果表明,不同植物群落细根中氮含量与叶片中氮含量之间存在显著的正相关关系。
     (5)施氮对土壤养分化学性质具有不同程度的影响,施氮肥可显著降低0-60cm剖面土壤的pH值,特别是表层0-20cm层土壤。施氮肥可增加0-20cm、20-40cm土层有机质和全氮含量,而对40-60cm层二者的影响相对较小。总体来看施氮对0-60cm各层土壤N03--N含量的影响大于NH4--N,随施氮量的不断增加,各层土壤N03--N含量均显著增加,且以0-20cm土层提高幅度最大,而各层土壤NH4+-N含量随施氮量增加变化无明显规律。随施氮量增加,各土层速效磷含量的变化趋势不同,其中0-20cm先增加后显著降低,而20-40cm土层总体呈不断降低趋势,施氮对土壤速效钾含量的影响则表现出与速效磷相一致的变化规律。
     整体来看,施氮确实可以在一定程度上促进植被恢复和演替以及改善土壤养分,同时也可能会带来一定的生态风险和环境问题,如何把施氮作为调控植被恢复一种有效手段还有许多的科学问题亟待解决,今后应注重开展长期性、系统性的研究以更好地揭示施氮对生态系统的影响机理,更好地为我国黄土高原地区生态环境建设和社会经济发展服务。
The Loess Plateau was one of the most serious soil erosion regions in the world. This area faced many ecological environmental problems, such as dry climate, poor soil and sparse vegetation. The vegetations had important functions on soil erosion prevention and improving the ecological environment in this region. However, due to the limitation of soil water and soil fertility, Vegetation restoration was very slow in the natural state, which was not conducive to enhancing the ecological benefit and economic benefit of vegetation. So, exploring manual intervention or controlling measures for accelerating vegetation recovery speed was very necessary and urgent. The soil nitrogen content was commonly low in the loess hill and gully area. This research took the nitrogen utilization as an controlling measure, adopting the combined method of fertilization methods, field investigation, sampling and soil or plant analysis to study the response process of nitrogen fertilizer on different plant communities in abandoned lands, including the species composition and structure in plant communities, biomass, fine root's morphology and distribution characteristics, nitrogen content in leaf and in root, and soil nutrient contents. The objective of this study was to determine the restriction and ecological suitability of soil nitrogen on vegetation recovery. It could provide science proofs for vegetation restoration and reconstruction, improving environment construction in the western part of our country, and also making sure the project of returning farmland to forest and grassland would be smoothly implemented. The main results and conclusions were as follows:
     (1) With the increase of nitrogen application amounts, the individual densities and species richness index of the different community in abandoned land declined to some extent, which indicated that nitrogen application reduced the species diversity. The responding characteristics of species composition and the biological diversity of different community on nitrogen utilization were different. The regulative effect of nitrogen fertilizer was more obvious in the early stage of plant succession, but the communities in the latter stages had the better adaptability and stabilization.
     (2) Nitrogen utilization at the same time increased the below ground biomass and above ground biomass, but the increasing effects were different between them in the same nitrogen treatment. With the increase of nitrogen application, the total biomass of community was all increased on the whole. The underground biomass of different community was mainly distributed in0-20cm soil layer, which accounted for above65%. Nitrogen utilization could help to promote the accumulation of the under-ground biomass, and improve the soil quality. Correlation analysis showed that there were significant positive correlations between above ground biomass and below ground biomass. Nitrogen utilization had better increasing effect on the above ground biomass than the underground part of community, so the proportion of below ground biomass and above ground biomass increased with the nitrogen utilization level.
     (3) Nitrogen fertilizer raised the fine root biomass, fine root length density and root surface area in the0-60cm soil profile. The vertical distribution characters of fine root biomass, fine root length density and root surface area in the soil profile were not changed significantly under different nitrogen treatments, and the changes appeared similarity. Nitrogen fertilizer had great effect on length density and root surface area of fine root with diameter<0.5mm and0.5~1mm. After nitrogen application, fine root length density with smaller diameters and increased the fine root surface area.
     (4) The nitrogen content in leaf of different community increased significantly with nitrogen application increase. As a whole, nitrogen content in leaf increased considerably higher in the N5、N10and N15treatments than in the N20and N30treatments, which the leaf nitrogen content began steady or reduced slightly. Although the changes of nitrogen content in fine root were similar to that in leaf, the content in root was significantly lower than that in leaf. In different growth seasons, there were obvious differences between the nitrogen contents in leaf and in fine root, which had the similar variation patterns. The plant nitrogen content in August was greater than that both in July and in September, and the content in September slightly exceeded in July. The correlation analysis showed there was a positive correlation between the nitrogen content of different communities in leaf and fine root.
     (5) The nitrogen utilization could improve the soil nutrient content on several levels. The soil pH in0-60cm soil profile could be reduced significantly with the use of nitrogen fertilizer, especially in0-20cm soil layer. With the increase of nitrogen fertilizer amount, the soil organic matter ant total nitrogen in0-20cm and20-40cm soil layer increased, but that in40-60cm soil layer was not obviously changed. On the whole, the influence of nitrogen utilization on soil NO3--N content in0-60cm soil was greater than the NH4+-N content. With the increase of nitrogen fertilizer, the NO3--N contents in each soil layer increased significantly, and the content in0-20cm soil layer was increased greatly. However, changes of the NH4+-N contents in each soil layer were not obvious. Besides, with the increase of nitrogen fertilizer, soil available P content in0-20cm soil layer were increased at the beginning, and then rapidly decreased. In20-40cm soil layer, soil available P content tended to decrease gradually. The effect of nitrogen fertilizer on soil available K content was similar to soil available P.
     As a whole, nitrogen application could hasten vegetation restoration and succession, and improve soil nutrients. However, the nitrogen fertilizer might also bring some Ecology risks and environment problem. There are still many critical problems urging to be solved in using nitrogen addition as an efficient way of intervening and regulating vegetation restoration. In the future, we should pay more attention to the long-term and systemic consequences of nitrogen application in soil and plant system in order to reveal the mechanism of nitrogen fertilization affecting ecosystem, and better guide the construction of ecological environment and social and economic development on the Loess Plateau.
引文
安慧.2008.子午岭林区典型植物生长的氮素调控机理.[博十学位论文].杨凌:西北农林科技大学.
    安树青,王峥峰,朱学雷,洪必恭,赵儒林.1997.土壤因子对次生森林群落物种多样性的影响.武汉植物学研究,15(2):143-150.
    安卓,牛得草,文海燕,杨益,张洪荣,傅华.2011.氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响.植物生态学报,35(8):801-807.
    白文娟,焦菊英,马祥华,温仲明,焦峰.2005.黄士丘陵沟壑区退耕地自然恢复植物群落的分类与排序.西北植物学报,25(7):1317-1322.
    鲍士旦.2002.土壤农化分析.第三版.北京:中国农业出版社:30-270
    蔡泽江,苏孙楠,王伯仁,徐明岗,黄晶,张会民.2011.长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响.植物营养与肥料学报,17(1):71-78.
    陈光升,钟章成.2004.重庆缙云山常绿阔叶林群落物种多样性与土壤因子的关系.应用与环境生物学报,10(1):012-017.
    陈小燕,梁宗锁,杜峰,邵宏波,刘国彬.2007.施肥干扰对陕北黄土丘陵区三个典型群落结构组成的影响.生态学报,27(7):3061-3071.
    陈小燕.2007.陕北黄土丘陵区植被恢复过程及干预途径研究.[博士学位论文].陕西杨凌:西北农林科技大学.
    程积民,贾恒义,彭祥林.1996.施肥草地植被群落结构和演替研究.水土保持研究,3(4):124-128.
    戴全厚,刘国彬,薛楚,兰雪,余娜.2008a.侵蚀环境退耕撂荒地植物种群演变动态研究.西北农业学报,17(4):320-328.
    戴全厚,薛楚,刘国彬,兰雪,余娜,杨智.2008b.侵蚀环境撂荒地植被恢复与土壤质量的协同效应.中国农业科学,41(5):1390-1399.
    党廷辉,郭胜利,郝明德.2003.黄土早源长期施肥下硝态氮深层累积的定量研究.水土保持研究,10(1):58-61.
    董三孝.2004.黄土丘陵区退耕坡地植被自然恢复过程及其对土壤入渗的影响.水土保持通报,24(4):1-5.
    杜峰,梁宗锁,徐学选,山仑,张兴昌.2007.陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应.生态学报,27(5):1673-1683.
    杜峰,山仑,陈小燕,梁宗锁.2005.陕北黄土丘陵区撂荒演替研究—撂荒演替序列.草地学报,13(4):328-333.
    范变娥,焦菊英,张桂英.2006.黄土丘陵沟壑区退耕地植物群落优势种对显著影响因子的响应.水土保持通报,26(6):4-9.
    范志强,王政权,吴楚,李红心.2004.不同供氮水平对水曲柳苗木生物量、氮分配及其季节变化的影响.应用生态学报,15(9):1497-1501.
    傅伯杰,陈利顶,邱扬,王军,孟庆华.2002.黄土丘陵沟壑区土地利用结构与生态过程.北京:商务出版社.
    高英志,汀诗平,韩兴国,陈全胜,王艳芬,周志勇,张淑敏,杨晶.2004.退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究.植物生态学报,28(3):285-293.
    巩杰,陈利顶,傅伯杰,李延梅,黄志霖,黄奕龙,彭鸿嘉.2004.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响.应用生态学报,15(12):2292-2296.
    郭曼,郑粉莉,和文祥,安韶山,刘雨,安娟.2010.黄土丘陵区不同退耕年限植被多样性变化及其与十壤养分和酶活性的关系.土壤学报,47(5):978-986.
    郝文芳,梁宗锁,陈存根,唐龙.2005.黄土丘陵区弃耕地群落演替过程中的物种多样性研究.草业科学,22(9):1-6.
    何丹,李向林,万里强,何峰,李春荣.2009.施用尿素当年对退化天然草地物种地上生物量和重要值的影响.草业学报,18(3):154-158.
    胡中民,樊江文,钟华平,韩彬.2005.中国草地地下生物量研究进展.生态学杂志,24(9)1095-1101.
    黄德青,于兰,张耀生,赵新全.2011.祁连山北坡天然草地地上生物量及其与土壤水分关系的比较研究.草业学报,20(3):20-27.
    黄刚,赵学勇,苏延桂,黄迎新,崔建垣.2009.小叶锦鸡儿根系生长对土壤水分和氮肥添加的响应.北京林业大学学报,31(5):73-77.
    黄军,王高峰,安沙舟,负静,李海,张荣华.2009.施氮对退化草甸植被结构和生物量及土壤肥力的影响.草业科学,26(3):75-78.
    黄懿梅,安韶山,曲东,赵伟峰.2007.黄土丘陵区植被恢复过程中十壤酶活性的响应与演变.水土保持学报,21(1):152-155.
    霍常富,孙海龙,范志强,王政权.2007.根系氮吸收过程及其主要调节因子.应用生态学报,18(6):1356-1364.
    焦峰,温仲明,焦菊英,李锐.2006.黄土丘陵区退耕地土壤养分变异特征.植物营养与肥料学报,11(6):724-730.
    巨晓棠,刘学军,张福锁.2004.不同氮肥施用后土壤各氮库的动态研究.中国生态农业学报,12(1):92-94.
    雷相东,唐守止,李冬兰,陈宝升,王福军.2002.东北过伐林灌木层物种多样性与林分因子的典型相关分析.应用与环境生物学报,8(4):346-350.
    李鹏,李占斌,澹台湛.2005.黄土高原退耕草地植被根系动态分布特征.应用生态学报,16(5):849-853.
    李世清,李生秀,李凤民.2000.石灰性土壤氮素的矿化和硝化作用.兰州大学学报(自然科学版),36(1):98-104.
    李世清,王瑞军,李紫燕,李凤民,邵明安,李生秀.2004.半干旱半湿润农田生态系统不可忽视的十壤氮库—土壤剖面中累积的硝态氮.干旱地区农业研究,22(4):1-13.
    李文庆,徐保民,冯永军,束怀瑞.2003.氮肥对黑麦草生长及其内部组分的影响.中国草地,25(1):27-31.
    李文祥.2007.长期不同施肥对填土肥力及作物产量的影响.中国土壤与肥料,2:23-25.
    李晓东,魏龙,张永超,郭丁,傅华.2009.土地利用方式对陇中黄土高原土壤理化性状的影响.草业学报,18(4):103-110.
    李勇,张晴雯,李璐,万国江,黄荣贵,朴河春.2005.黄土区植物根系对营养元素在土壤剖面中迁移强度的影响.植物营养与肥料学报,11(4):427-434.
    李玉中,王庆锁,钟秀丽,任娜.2003.羊草草地植被-土壤系统氮循环研究.植物生态学报,27(2):177-182.
    李裕元,邵明安,上官周平,樊军,王丽梅.2006.黄土高原北部紫花苜蓿草地退化过程与植被演替研究.草业学报,15(2):85-92.
    梁十楚,董鸣,王伯荪,张炜银.2003.英罗港红树林土壤粒径分布分形特征.应用生态学报,14(1):11-14.
    梁银丽,翟胜,陈志杰,徐福利,由海霞,杜社妮.2004.黄土高原设施农业与士壤环境效应.沈阳农业大学学报,35(5-6):580-582.
    刘大勇,陈平,范志平,于占源.2006.氮、磷添加对半干旱沙质草地植被养分动态的影响.生态学杂志,25(6):612-616.
    刘金梁,梅莉,谷加存,全先奎,王政权.2009.内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响.生态学杂志,28(1):1-6.
    刘金梁,梅莉.2009.内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响.生态学杂志,20(1):1-6.
    刘世荣,蒋有绪,史作民.1998.中国暖温带森林生物多样性研究.北京:中国科学技术出版社.
    刘莹,王国梁,刘国彬,曲秋玲,袁子成.2010.不同分类系统下油松幼苗根系特征的差异与联系.植物生态学报,34(12):1386-1393.
    马克平,刘玉明.1994.生物群落多样性的测度方法Ⅰ:α多样性的测度方法(下).生物多样性,2(4):231-239.
    马文红,方精云.2006.内蒙古温带草原的根冠比及其影响因素.北京大学学报(自然科学版),42(6):774-778.
    马祥华,焦菊英.2005.黄土丘陵沟壑区退耕地自然恢复植被特征及其与土壤环境的关系.中国水土保持科学,3(2):15-22.
    马玉寿,郎百宁,李青云,施建军,董全民.2003.施氮量与施氮时间对小嵩草草甸草地的影响.草业科学,20(3):47-49.
    彭文英,张科利,陈瑶,杨勤科.2005.黄土坡耕地退耕还林后土壤性质变化研究.自然资源学报,20(2):272-278.
    平晓燕,周广胜,孙敬松.2010.植物光合产物分配及其影响因子研究进展.植物生态学报,34(1):100-111.
    乔利鹏,张峰,张桂萍,武玉珍,韩虹.2007.山西关帝山撂荒地植物群落物种多样性研究.草业学报,16(3):132-135.
    秦伟,朱清科,张宇清,赵磊磊.2009.陕北黄土区生态修复过程中植物群落物种多样性变化.应用生态学报,20(2):403-409.
    全先奎,于水强,史建伟,于立忠,王政权.2007.微根管法和同位素法在细根寿命研究中的应用及比较.生态学杂志,26(3):428-434.
    师伟,王政权,刘金梁,谷加存,郭大立.2008.帽儿山天然次生林20个阔叶树种细根形态.植物生态学报,32(6):1217-1226.
    史建伟,王孟本,于立忠,张育平,张国明.2007.士壤有效氮及其相关因素对植物细根的影响.生态学杂志,26(10):1634-1639.
    宋娟丽,吴发启,姚军,佘雕,包耀贤.2009.弃耕地植被恢复过程中土壤理化性质演变趋势研 究.干旱地区农业研究,27(3):168-173.
    孙力安,刘国彬,梁一民.1994.不同直径土钻测定草地地下生物量方法探讨.中国草地,(2):32-35.
    唐龙,梁宗锁,杜峰,郝文芳.2006.陕北黄土高原丘陵区撂荒演替及其过程中主要乡土牧草的确定与评价.生态学报,26(4):1165-1175.
    陶武辉,沈玉芳,李世清.2009.施氮对黄土高原水蚀风蚀交错区土壤矿质氮的影响.西北农林科技大学(自然科学版),37(10):103-108.
    同延安,张文孝,韩稳社,邓金兰.1998.不同氮肥种类在壤土及黄绵土中的转化.土壤通报,25(8):107-108.
    万宏伟,杨阳,白世勤,徐云虎,白永飞.2008.羊草草原群落6种植物叶片功能特性对氮素添加的响应.植物生态学报,32(3):611-621.
    汪殿蓓,暨淑仪,陈飞鹏.2001.植物群落物种多样性研究综述.生态学杂志,20(4):55-60.
    王兵,刘国彬,薛萐,李占斌,李鹏,刘娴.2009.黄土丘陵区撂荒对土壤酶活性的影响.草地学报,17(3):282-287.
    王国梁,刘国彬,刘芳.2002.黄土丘陵区纸坊沟流域植被特点与生态交错带效应.西北植物学报,22(5):1102-1108.
    王国梁,周东.2009.黄土丘陵区退耕地先锋群落演替过程中细根特征的变化.西北植物学报,29(2):356-364.
    王凯博,陈美玲,秦娟,刘勇,安慧,上官周平.2007.子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系.西北植物学报,27(10):2089-2096.
    王宁,贾燕峰,李靖,焦菊英.2007.黄土丘陵沟壑区退耕地自然恢复植被主要物种生态位特征.水土保持通报,27(6):34-40.
    王树起,韩晓增,乔云发,严君,李晓慧.2009.施氮对大豆根系形态和氮素吸收积累的影响.中国生态农业学报,17(6):1069-1073.
    王向荣,王政权.2005.水曲柳和落叶松不同根序之间细根直径的变异研究.植物生态学报,29(6):871-87.
    王忠强,吴良欢,刘婷婷,褚有为,邵雪玲.2007.供氮水平对爬山虎生物量及养分分配的影响.生态学报,27(8):3435-3441.
    卫星,张国珍.2008.树木细根主要研究领域及展望.中国农学通报,24(5):143-147.
    魏金明,姜勇,符明明,张玉革,徐柱文.2011.水、肥添加对内蒙古典型草原土壤碳、氮、磷及pH的影响.生态学杂志,30(8):1642-1646.
    温仲明,焦峰,赫晓慧,焦菊英.2007.黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响.草业学报,16(1):16-23.
    吴勤.改良长芒草干草原对植物根系影响的研究.宁夏农林科技,1994,(3):44-46.
    吴彦,刘庆,乔永康,潘开文,赵常明,陈庆恒.2001.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤物理性质的影响.植物生态学报,25(6):648-655.
    武建双,沈振西,张宪洲,付刚.2009.藏北高原人工垂穗披碱草种群生物量分配对施氮处理的响应.草业学报,18(6):113-121.
    相辉,岳明.2001.陕北黄土高原森林植被数量分类及环境解释.西北植物学报,21(4):726-731.
    徐冰,程雨曦,甘慧洁,周文嘉,贺金生.2010.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联.植物生态学报,34(1):29-38.
    薛楚,刘国彬,戴全厚,党小虎,周萍.2007.不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响.自然资源学报,22(1):20-27.
    杨涛,王得洋,周金星,王强,蔺雨阳.2009.陕北黄土丘陵沟壑区退耕地植物群落演替规律及物种多样性动态研究.西北林学院学报,24(5):10-15.
    于古源,曾德慧,艾桂艳,姜凤岐.2007.添加氮素对沙质草地土壤氮素有效性的影响.生态学杂志,26(11):1894-1897.
    袁新民,杨学云,同延安,李晓林,张福锁.2001.不同施氮量对土壤N03--N累积的影响.干早地区农业研究,19(1):8-14.
    袁永孝,郭水良,曹同,郭元涛,李军,姜玉乙,杨晶,仇发.2002.白石砬子自然保护区森林植被和主要树种分布的环境解释.辽宁林业科技,(1):1-6.
    张杨,梁爱华,王平平,杨改河,张笑培.2010.黄士丘陵区不同植被恢复模式.西北农业学报,19(9):114-118.
    张北赢,陈天林,王兵.2010.长期施用化肥对土壤质量的影响.中国农学通报,26(11):182-187.
    张杰琦,李奇,任正炜,杨雪,王刚.2010.氮素添加对表藏高原高寒草甸植物群落特种丰富度及其与地上生产力关系的影响.植物生态学报,34(10):1125-1131.
    张金屯,柴宝峰,邱阳,陈廷贵.2000.晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化.生物多样性,8(4):378-384.
    张璐,黄建辉,白永飞,韩兴国.2009.氮素添加对内蒙古羊草草原净氮矿化的影响.植物生态学报,33(3):563-569.
    张喜林,周宝库,孙磊,高中超.2008.长期施用化肥和有机肥料对黑土酸度的影响.土壤通报,39(5):1221-1223.
    张小彦,焦菊英,王宁,贾燕锋,韩鲁艳.2010.陕北黄土丘陵沟壑区14种植物的萌发特性.植物研究,30(5):604-611.
    赵刚,尤文忠,邢兆凯,颜廷武,张慧东,魏文俊,由福军.2008.柞蚕场封山育林对植被恢复的影响.辽宁林业科技,(4):1-5.
    郑剑英,吴瑞俊,翟连宁.1996.黄土丘陵沟壑区小流域土壤养分的分布特征.水土保持通报,16(4):26-30.
    中国科学院南京土壤研究所.1978.土壤理化分析.上海:上海科学技术出版社.
    周萍,刘国彬,侯喜禄.2008.黄土丘陵区铁杆蒿群落植被特性及土壤养分特征研究.草业学报,17(2):9-18.
    周萍,刘国彬,侯喜禄.2009.黄土丘陵区不同坡向及坡位草本群落生物量及多样性研究.中国水土保持科学,7(1):67-73.
    周晓兵,张元明.2009.干早半干旱区氮沉降生态效应研究进展.29(7):3835-3845.
    邹厚远,程积民,周麟.1998.黄土高原草原植被的自然恢复演替及调节.水土保持研究,5(1):126-138.
    邹厚远,刘国彬,王晗生.2002.子午岭林区北部近50年植被的变化发展.西北植物学报,22(1):1-8.
    Al-Mufti M M, Sydes C L, Furness S B, Grime J P, Band S R.1997. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology,65,759-791.
    Anna K, Bandick, Dick R P.1999. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, (31):1471-1479.
    Bedford B L, Walbridge M R, Aldous A.1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology,80:2151-2169.
    Blake L, Goulding K W T, Mott C J B, Johnston A E.1999. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station UK. European Journal of Soil Science,50:401-412.
    Borken W, Kossmann G D, Matzner E.2007. Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant Soil,292:79-93.
    Bormann F H, Likens G E, Melillo J M.1977. Nitrogen budget for an aggrading northern hardwood forest ecosystem. Science,196:981-983.
    Brubaker S C, Jones A J, Lewis D T, Frank K.1986. Soil properties associated with landscape positions. Soil Science Society of America Proceedings,50:401-408.
    Clarkson D T, Earnshaw M J, White P J, Cooper H D.1988. Temperature dependent factors influencing nutrient uptake:An analysis of responses at different levels of organization. Cambridge, UK: Society for Experimental Biology:181-230.
    Coupland R T.1979. Grassland ecosystems of the world:analysis of grasslands and their uses. Cambridge:Cambridge University Press.
    Curtin D, Campbell C A, Jalil A.1998. Effects of acidity on mineralization:pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology and Biochemistry,30(1):57-64.
    Desrochers A, Landhausser S M, Lieffers V J.2002. Coarse and fine root respiration in aspen (Populus tremuloides). Tree Physiology,22:725-732.
    Dreccer M F, Van Oijen M, Schapendonk A H C M, Pot C S, Rabbinge R.2000. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Annals of Botany,86:821-831.
    Fitter A H.1985. Functional significance of root morphology and root system architecture. In:Fitter A H, Read D J, Atkinson D, et al., eds. Ecological Interactions in Soil. Oxford:Blackwell Scientific Publications,86-106.
    Fitter A H.1996. Characteristics and functions of root sy stems//Waisel Y, Eshel E, Kafkafi U, eds. Plant Roots:The Hidden Half (2nd ed.). New York:Marcel Dekker Press:1-20.
    Galloway J N, Cowling E B.2002. Reactive nitrogen and the world:200 years of change. Ambio,31: 64-71.
    Gastal F, Lemaire G.2002. N uptake and distribution in crops:An agronomical and ecophysiological perspective. J Exp Bot,53:789-799.
    Gill R A, Jackson R B.2000. Global patterns of root turnover for terrestrial ecosystems. New Phytologist,147,13-31.
    Granato T C, Raper C D.1989. Proliferation of maize roots in response to localized supply of nitrate. Journal of Experimental Botany,40:263-275.
    Guo D L, Mitchell R J, Hendricks J J.2004. Fine root branch orders respond differentially to carbon source sink manipulations in a longleaf pine forest. Oecologia,140:450-457.
    Gusewell S, Koerselman W.2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Ecol Evol Syst,5:37-61.
    Gusewell S.2004. N:P ratios in terrestrial plants:variation and functional significance. New Phytol, 164:243-266.
    Hendricks J J, Hendrick R L, Wilson C A, Mitchell R J, Pecot S, Guo D.2006. Assessing the patterns and controls of fine root dynamics:An empirical test and methodological review. Journal of Ecology,94:40-57.
    Hendricks J J, Nadelhoffer K J, Aber J D.1993. Assessing the role of fine roots in carbon and nutrient cycling. Trends Ecol Evol,8:174-178.
    Hikosaka K, Terashima I, Katoh S.1994. Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine grown horizontally to avoid mutual shading of leaves. Oecologia,97:451-457.
    Hill J O, Simpson R J, Moorel A D, Chapman D F.2006. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition.Plant and Soil,286:7-19.
    Hirano Y, Noguchi K, Miura S.2007. Special feature:development and function of roots of forest trees in Japan. J For Res,12:75-77.
    Hishi T.2007. Heterogeneity of individual roots within the fine root architecture:Causal links between physiological and ecosystem functions. Journal of Forest Research,12:126-133.
    Hodge A.2004. The plastic plant:Root responses to he terogeneous supplies of nutrients. New Phytologist,162:9-24.
    Holland E A, Dentene F J R, Braswell B H, Sulzman J M.1999. Contemporary and preindustrial global reactive nitrogen budgets. Biogeochemistry,46:7-43.
    Huberty L E, Gross K L, Miller C J.1998. Effects of nitrogen addition on successional dynamics and species diversity in Michigan old-fields. Journal of Ecology,86:794-803.
    Jagadamma S, Lal R, Hoeft R G, Nafziger E D, Adee E A.2007. Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel—plow tillage in Illinois. Soil & Tillage Research,95:348-356.
    Kaiser J.2001. The other global pollutant:nitrogen p roves tough to curb. Science,294:1268-1269.
    Khalil M I, Rahman M S, Schmidhalter U, Olfs H W.2007. Nitrogen fertilizer-induced mineralization of soil organic C and N in six contrasting soil of Bangladesh. Journal of Plant Nutrition and soil Science,170:210-218.
    Koerselman W, Meuleman A F M.1996. The vegetation N:P ratio:A new tool to detect the nature of nutrient limitation. J. Appl. Ecol.,33:1441-1450.
    Lambers H, Stulen I, Wert A.1996. Carbon use in root respiration as affected by elevated atmospheric O2. Plant and Soil,187:251-263.
    LeBauer D S, Treseder K K.2008. Nitrogen limitation of netprimary productivity in terrestrial ecosystems is globallydistributed. Ecology,89,371-379.
    Lemaire G, Avice J C, Kim T H, Ourry A.2005. Developmental changes in shoot N dynamics of lucerne (Medicago sativa L.) in relation to leaf growth dynamics as a function of plant density and hierarchical position within the canopy. J Exp Bot,56:935-943.
    Li D J, Mo J M, Fang Y T, Peng S L, Gundersen P.2003. Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica,23 (9):1891-1900.
    Mackie D L A, Pratt S M, Buckland S T.1995. The effect of nitrogen on fine white root persistence in cherry. Plant and Soil,173:349-353.
    Majdi H.2001. Changes in fine rot production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiology,21:1057-1061.
    Marschner H, Kirkby E A, Cakmak T.1996. Effect of mineral nutritional status on shoot-root partitioning of photoassilates and cycling of mineral nutrients. J Exp Bot,47:1255-1263.
    Milroy S P, Bange M P, Sadras V O.2001. Profiles of leaf nitrogen and light in reproductive canopies of cotton(Gossypium hirsutum). Annals of Botany,87:325-333.
    Mokany K, Raison R J, Prokushkin A S.2006. Critical analysis of root:shoot ratios in terrestrial biomass. Global Change Biology, 11(1):84-96.
    Mooney H, Vitousek P M, Matson P A.1987. Exchange of materials between terrestrial ecosystems and the atmosphere. Science,238:926-932
    Mou P, Mitchell R J, Jones R H.1997. Rot distribution of two tree species under a heterogeneous nutrient environment. Journal of Applied Ecology,34:645-656.
    Newman E I.1973. Competition and diversity in herbaceous vegetation. Nature,244,310-311.
    Peter S, Han O.2000. Biomass partitioning, architecture and turnover of six herbaceous species from habitats with different nutrient supply. Plant Ecology,149:219-231.
    Pregitzer K S, Deforest J L, Burton A J, Allen M F, Ruess R W, Hendrick R L.2002. Fine root architecture of nine North American trees. Ecological Monographs,72:293-309.
    Pregitzer K S, Kubiske M E,Yu C K, Hendrick R L.1997. Relationships among root branch order, carbon, and nitrogen in four termperate species. Oecologia,111:302-308.
    Ren Z W, Li Q, Chu C J, Zhao L Q, Zhang J Q, Ai D X C,Yang Y B, Wang G.2010. Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology,3(1):25-31.
    Rey A, Pegoraro E, Tedeschi V, Parri I D, Jarvis P G, Valentini R.2002. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology,8:851-866.
    Ryan M G, Hubbard R M, Pongracic S, Raison R J, McMurtrie R E.1996. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology,16: 333-343.
    Sala O E, Chapin F S, Armesto J J, Berlow E, Bloomfield J, Dirzo R, Elisabeth H S, Huenneke L F, Jackson R B, Kinzig A, Leemans R, Lodge D M, Mooney H A, Oesterheld M, Poff N L, Sykes M T, Walker B H, Walker M, Wall D H.2000. Global biodiversity scenarios for the year 2100. Science,287, 1770-1774.
    Scurlock J M O, Hall D O.1998. The global carbon sink:a grassland perspective. Global Change biology,4(2):229-233.
    Shirawa T, Sinclair T R.1993. Distribution of nitrogen among leaves in soybean canopies. Crop Sci., 33:804-808.
    Tilman D.1988. Plant strategies and the dynamics and structure of plant communities. Princeton, New Jersey:Princeton University Press.
    Vanguelova E I, Nortcliffl S, Moffat A J, Kennedy F.2005. Morphology, biomass and nutrient status of fine roots of Scots pine (Pinussylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant and Soil,270:233-247.
    Vitousek P M, Aber J D, Howarth R W, Likens G, Matson P A, Schindler D W, Schlesinger W H, Tilman D G.1997. Human alteration of the global nitrogen cycle:Sources and consequences. Ecological Applications,7(3):737-750.
    Vitousek P M, Howarth R W.1991. Nitrogen limitation on land and in the sea:How can it occur? Biogeochemistry,13,87-115.
    Wagner B W, Beck E.1993. Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta,190:511-518.
    Wedin D A, Tilman D L.1996. Influence of nitrogen loading and species composition on the carbon balance of grassland. Sci,274:1720-1723.
    Weiner J.1990. Asymmetric completion in plant populations. Trends in Ecology and Evolution, 5:360-364.
    Wells C E, Glenn D M, Eissenstat D M.2002. Changes in the risk o f fine root mortality with age:A case study in peach, Prunus persica (Rosaceae). American Journal of Botany,89:79-87.
    Widen B, Majdi H.2001. Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation. Canadian Journal of Forest Research,31:786-796.
    Willems J H, Peer R K, Bik L.1993. Changes in chalk grassland structure and species richness resulting from selective nutrient additions. Journal of Vegetation Science,4,203-212.
    Zheng F L.2006. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere,16:420-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700