用户名: 密码: 验证码:
钝齿棒杆菌厌氧发酵产琥珀酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
琥珀酸是一种广泛用于食品、医药及化工产品重要的四碳二元羧酸。目前,琥珀酸主要采用化学法合成,容易造成环境污染,且其发展受到石化资源短缺的限制。可再生资源微生物发酵制备琥珀酸是一种最具发展潜力的绿色工艺模式,不仅摆脱了对石化原料的依赖,而且开辟了温室气体CO2利用的新途径。近年来,国内外学者对微生物发酵制备琥珀酸进行了大量的研究,卓有成效。但是,仍然存在菌株代谢网络不完善、无法有效降低代谢副产物、琥珀酸生产强度低等问题。
     Corynebacterium crenatum是工业发酵制备谷氨酸的主要菌株,已有的研究发现,改变C.crenatum氨基酸发酵培养基溶氧水平,会对该菌株的代谢流分布产生较大的影响,厌氧发酵条件下,有相当部分碳流向琥珀酸发酵途径。本文基于Corynebacterium crenatum CICC20219厌氧发酵特性研究,以提高琥珀酸产量和生产强度为主要目标,通过对胞内碳代谢关键酶活测定,并结合代谢抑制分析,分析了C. crenatum在厌氧条件下的代谢网络,计算出琥珀酸形成的代谢通量分布;通过基因工程方法对其代谢网络进行针对性改造,有效降低代谢副产物的生成,提高了琥珀酸产量。研究并优化了琥珀酸厌氧发酵pH调控工艺,提高了生产强度。主要结论如下:
     (1)通过对比C. crenatum在有氧和厌氧两种条件下的代谢产物,并结合关键酶活测定,研究C. crenatum厌氧发酵产琥珀酸特性,分析其产酸的能力。将C. crenatum在厌氧条件下培养,发现C. crenatum细胞不增殖,但可以吸收利用葡萄糖产乳酸、琥珀酸等有机酸。C crenatum厌氧发酵22h内共产生了19.8g/L琥珀酸和46g/L乳酸,琥珀酸和乳酸的产量分别为0.27g/g和0.62g/g。将C. crenatum进行两阶段培养,发现在有氧阶段时,C.crenatum生物量迅速增加,而琥珀酸和乳酸的积累量很少,在通入二氧化碳转为厌氧发酵后,C.crenatum的生物量不再增加,而琥珀酸和乳酸的浓度开始迅速增加,分别达到了15g/L和51g/L。富集C. crenatum细胞进行高密度厌氧发酵时,乳酸和琥珀酸的生产强度与C. crenatum的生物量呈线性关系,生物量为60g/L时,乳酸和琥珀酸的积累浓度在2h内分别达到了59g/L和23g/L,生产强度分别达到了29.5g/(L·h)和11.5g/(L·h)。将C. crenatum进行循环厌氧发酵,C. crenatum在10批共100h的循环发酵时间内利用780g葡萄糖,生成310g乳酸和423g琥珀酸,糖酸转化率在90%以上,乳酸与琥珀酸生产强度分别为3.1g/(L·h)和4.2g/(L-h)。 C. crenatum厌氧发酵产酸的特性表明C. crenatum具有持续、高强度产琥珀酸的能力,这一结论为进一步利用C.crenatum发酵产琥珀酸奠定了基础。
     (2)通过对C. crenatum代谢途径中关键酶活性分析,发现该菌株在厌氧条件下的磷酸烯醇式丙酮酸羧化酶和苹果酸脱氢酶的酶活较高,异柠檬酸裂合酶的酶活较弱,检测不到异柠檬酸脱氢酶的酶活。通过分析抑制剂对C. crenatum厌氧发酵产琥珀酸的影响,发现当培养基中的丙二酸浓度由0g/L增加到2g/L时,琥珀酸的终浓度下降了43%,而氟乙酸对该菌株产琥珀酸的影响很小。通过研究氧化还原电位(ORP)对C. crenatum厌氧发酵产琥珀酸的影响,发现当培养基的ORP由-40mv降低为-300mv时,发酵液中琥珀酸的终浓度由14.4g/L增加到21.5g/L,同比增加了50%,琥珀酸产量也由0.18g/g上升到0.31g/g。结合酶活分析结果及抑制剂、ORP对发酵结果的影响,表明C. crenatum产琥珀酸的代谢途径主要是C4途径和乙醛酸循环。参考Corynebacterium glutamicum基因组信息,得出C. crenatum在厌氧条件下的代谢网络模型,代谢通量计算结果表明C4途径及乙醛酸循环是C. crenatum产琥珀酸的主要代谢途径,经由C4途径生产的琥珀酸占整个琥珀酸产量的93%,为对C. crenatum代谢途径进行针对性改造提供了理论支持。
     (3)乳酸是C. crenatum厌氧发酵产琥珀酸的主要副产物。以C. crenatum基因组为模板PCR扩增山ldhA基因,构建了ldhA基因敲除载体pMKA,并电转化C. crenatum,质粒pMKA与C. crenatum基因组进行基因重组,敲除了C. crenatum的IdhA基因,获得突变株C. crenatum AldhA。与原始菌株相比,突变株的葡萄糖消耗速度下降50%,乳酸脱氢酶酶活和乳酸产量均为0,琥珀酸的产量由0.22g/g上升到0.62g/g。通过敲除IdhA基因达到了消除乳酸生成、增加琥珀酸产量的目的。
     (4)通过表达ppc和pyc基因,可以强化C. crenatum磷酸烯醇式丙酮酸与丙酮酸羧化途径,将更多的碳引向C4途径。以C. crenatum基因组为模板PCR扩增出磷酸烯醇式丙酮酸羧化酶基因ppc和丙酮酸羧化酶基因pyc,构建了ppc与pyc基因表达质粒pJA、pJC。分别以表达质粒为载体在C. crenatum△AldhA内过表达ppc与pyc基因,获得菌株C. crenatum△ldhA(pJA)与C. crenatum△ldhA(pJC)。与C. crenatum△ldhA相比,C. crenatum△ldhA(pJA)的磷酸烯醇式丙酮酸羧化酶活力比对照株增加1.5倍,葡萄糖的消耗速度和琥珀酸的产量并没有明显的变化,表明磷酸烯醇式丙酮酸羧化酶不是C. crenatum△ldhA产琥珀酸的限速酶。过量表达pyc后,C.crenatum△ldhA(pJC)胞内丙酮酸羧化酶活力比C. crenatum△ldhA增加8倍,葡萄糖消耗速度增加了46%,琥珀酸的产量由0.64g/g增加到0.68g/g,同比增加了7.8%。
     (5)通过选择合适的pH及中和剂,可以提高琥珀酸的生产效率以降低生物法生产琥珀酸的生产成本。pH优化结果显示,pH为6.8时的发酵效果优于其它pH值。pH为6.8时,消耗的葡萄糖和琥珀酸的生产强度达到最大,分别为43.6g/L和1.88g/(L-h),发酵液中琥珀酸的终浓度也达到最大,为30g/L. Mg(OH)2对C. crenatum AldhA(pJC)发酵产琥珀酸过程中的pH调控效果优于Ca(OH)2. KOH和NaOH。Mg(OH)2作为中和剂时,琥珀酸的产量达到最大,葡萄糖的消耗速度与琥珀酸的生产强度也明显高于Ca(OH)2、KOH和NaOH作为中和剂时的发酵结果。当pH为6.8,以Mg(OH)2作为中和剂,C.crenatum△ldhA(pJC)在22h内共消耗78.5g/L葡萄糖,发酵液中琥珀酸的终浓度达到53.8g/L,琥珀酸的平均生产强度为2.45g/(L-h)。通过优化琥珀酸厌氧发酵pH调控工艺,获得了适于C. crenatum AldhA(pJC)厌氧发酵产琥珀酸的pH和中和剂,为进一步扩大发酵规模提供技术支持。
     C. crenatum厌氧发酵产琥珀酸是生物法制备琥珀酸产业中的新工艺。C. crenatum具有高密度、高强度持续发酵产琥珀酸的能力。基于琥珀酸生产强度和产酸培养基中所含的营养元素,C. crenatum厌氧发酵产琥珀酸的工艺比其它琥珀酸发酵工艺更具有优势。通过本研究实施,掌握了C. crenatum厌氧发酵产琥珀酸的特点,可为工业化生产琥珀酸提供理论与实际意义。
As a C4-dicarboxylic acid, succinic acid is valuable due to its widely use in food, chemical and pharmaceutical industries. It is currently produced primarily from fossil fuels by chemical synthetic process. This process causes environmental pollution easily and the development is limited by the shortage of fossil fuels. Therefore, the biological synthetic process for succinic acid is more economical and acceptable. The commercial production of succinic acid by biological process will become one sustainable model of development due to the consumption of greenhouse gas-CO2, meanwhile, the microbial transformation of renewable resources to produce succinic acid can get rid of the dependence on petrochemical raw materials. Scholars have done a lot of effective research on the microbial production of succinic acid, however, there are still some problems to solve, such as the unclear metabolic network and the formation of by-product, particularly the low succinic acid productivity.
     Corynebacterium crenatum is one of the main glutamic acid production microorganisms used in the practical production for many years. It is known that the metabolic flux will be changed during the production of glutamic acid when the medium dissolved oxygen is insufficient. When the culture condition is changed to anaerobic, the carbon flow was directed into the succinic acid biosynthesis pathway. In this report, in order to enhance the succinic acid yield and productivity, the features of succinic acid production by Corynebacterium crenatum CICC202019under anaerobic conditions were investigated, and the intracellular key enzyme activity was analyzed. On the basis of above results and combined with metabolic inhibition analysis, the metabolic net of C. crenatum under anaerobic condition was constructed. Meanwhile, the metabolic net was modified by genetically engineering for decreasing the production of by-product and enhancing succinic acid productivity. In order to improve succinic acid productivity, the pH control process was also optimized. The main conclusions and results are as follows.
     (1) The characters of lactic acid and succinic acid production by C. crenatum were studied by comparing the products and enzyme activities under different aerobic conditions. When C. crenatum cells were cultured under anaerobic conditions, the cells could produce succinic acid and lactic acid from glucose even through their proliferation was arrested. About19.8g/L succinic acid and46g/L lactic acid were produced in22h, with the yield of succinic acid and lactic acid as0.27g/g and0.62g/g, respectively. In the dual-phase fermentation of C. crenatum, the cells proliferated quickly in the aerobic phase without the production of succinic acid and lactic acid. When aerobic conditions were changed to anaerobic phase by aerating with CO2gas, the concentration of succinic acid and lactic acid increased significantly, which were15g/L and51g/L, respectively. The results of high-cell-density fermentation indicated that a proximate linear relationship existed between cell concentration and the production rates of lactic acid and succinic acid. When dry cell concentration was60g/L,59g/L of lactic acid and23g/L of succinic acid were produced within2h. The productivity of lactic acid and succinic acid was29.5g/(L-h) and11.5g/(L-h), respectively. During cell-recycling repeated fermentation, about310g lactic acid and423g succinic acid were produced from780g glucose in100h. The volumetric productivities of succinic acid and lactic acid could maintain above4.2g/(L-h) and3.1g/(L-h) for at least100h. The characters of acid production by C. crenatum demonstrated that C. crenatum cells had sustained succinic acid production ability and high acid volumetric productivity under anaerobic conditions, those conclusions in this part are beneficial to produce succinic acid subsequently with C. crenatum.
     (2) Through analyzing the key enzyme activity in metabolic pathway, it was found that the phosphoenolpyruvate carboxylase and malate dehydrogenase enzyme activity in anaerobic conditions were higher than the value detected in aerobic conditions, meantime, isocitrate lyase enzyme activity was low. However, the isocitric dehydrogenase enzyme activity could not be detected. The effect of inhibitor on succinic acid production indicated that succinic acid concentration decreased43%with propane diacid concentration increasing from0to2g/L, while fluoroacetic acid had no obvious effect on succinic acid production. From the effect of ORP on succinic acid production, it was found that when reducing the ORP level from-40mv to-300mv, succinic acid concentration increased from14.4g/L to21.5g/L, meanwhile, the yield of succinic acid increased from0.18g/g to0.31g/g. The conclusions stated above in this part indicated that succinic acid was produced through C4pathway and glyoxylate cycle. Combined with Corynebacterium glutamicum genome information, the metabolic network of C. crenatum under anaerobic conditions was constructed. Metabolic flux calculation results indicated that the C4pathway was the main metabolic pathway for succinic acid production, the succinic acid produced by C4pathway accounted for93%of the whole succinic acid produced.
     (3) Lactic acid is the primary by-product when C. crenatum is used to produce succinic acid. The effect of lactate dehydrogenase(1dhA) knockout on the succinic acid production was studied. The IdhA gene was amplified and the knockout plasmid pMKA was constructed and electrotransformed. Compared with the wild strain, the lactate dehydrogenase (LDH) enzyme activity in mutant could not be detected, and glucose consumed by mutant decreased50%. The yield of succinic acid produced by mutant is0.62g/g, which is higher than the value (0.22g/g) obtained from the wild strain. The biosynthetic pathway was removed to enhance the yield of succinic acid by knocking out the1dhA gene.
     (4) The effect of ppc and pyc overexpression on the succinic acid production in1dhA mutant was investigated. Although the phosphoenolpyruvate carboxylase activity increased by1.5fold when ppc gene was overexpressed through pJA expression vector, but.the glucose consumption rate and the yield of succinic acid had no obvious change, implying that the phosphoenolpyruvate carboxylase was not the rate-limiting enzymes in the production of succinic acid by C. crenatum AldhA. The pyruvate carboxylase activity increased by8fold when pyc gene was overexpressed through pJC expression vector and the glucose consumption rate increased46%compared with C. crenatum AldhA, meanwhile, the yield of succinic acid increased from0.64g/g to0.68g/g.
     (5) The succinic acid biological production cost can be reduced by improving succinic acid production efficiency through optimizing appropriate pH and neutralizing agent. The results indicated, when the pH was6.8, the glucose consumed and succinic acid productivity was the maximum compared with the other pH, which were43.6g/L and1.88g/(L-h), respectively. The succinic acid concentration in broth was also the maximum, which achieved to30g/L. The fermentation efficiency obtained at pH6.8was better than that of the other pH. For controlling the pH during C. crenatum AldhA(pJC) fermentation, Mg(OH)2was superior to Ca (OH)2、KOH and NaOH. When Mg(OH)2as neutralizing agent, the yield of succinic acid reached the maximum, the glucose consumption rate and succinic acid productivity were obviously higher than that of Ca (OH)2, KOH and NaOH. When pH was6.8and with Mg (OH)2as neutralizing agent, there was78.5g/L glucose was consumed within22h, and the final succinic acid concentration reached53.8g/L, with the average succinic acid productivity as of2.45g/(L-h). Through optimizing the pH control process during succinic acid anaerobic fermentation, the suitable pH and neutralizing agent for C. crenatum△IdhA (pJC) anaerobic fermentation were obtained, which can provide technical support to large scale fermentation.
     A new succinic acid production bioprocess by C. crenatum was investigated in mineral medium under anaerobic conditions. The results indicated that C. crenatum cells can produce succinic acid with sustained acid production ability and high acid volumetric productivity. The biological process was more efficient than some of the conventional fermentations in terms of volumetric productivity and dispensability of complex nutrients. Through this project, the characteristics of succinic acid production by C. crenatum under anaerobic conditions were known, the obtained results in this paper have theoretical and practical significance for succinic acid industrial production.
引文
[1]Clark J H, Budarin V, Dugmore T, et al. Catalytic performance of carbonaceous materials in the esterification of succinic acid[J]. Catalysis Communications,2008.9(8):1709-1714.
    [2]司航,化工产品手册,有机化工原料[M].化学工业出版社,北京:1985,230-232.
    [3]Lloyd T A and Wyman C E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids[J]. Bioresource Technology,2005.96(18):1967-1977.
    [4]Guettler M V, Jain M K, and Rumler D. Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants.1996, United States Patent 5573931.
    [5]Zeikus J, Jain M, and Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products[J]. Applied Microbiology and Biotechnology,1999.51(5): 545-552.
    [6]Jain M, Datta R, and Zeikus J. High-value organic acids fermentation:emerging processes and products[J]. Bioprocess Engineering:The First Generation. Chichester, Ellis Horwood, 1989:366-389.
    [7]Isar J, Agarwal L, Saran S, et al. A statistical approach to study the interactive effects of process parameters on succinic acid production from Bacteroides fragilis[J]. Anaerobe, 2007.13(2):50-56.
    [8]Okino S, Noburyu R, Suda M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology,2008.81(3):459-64.
    [9]Agarwal L, Isar J, and Saxena R K. Rapid screening procedures for identification of succinic acid producers[J]. Journal of Biochemical and Biophysical Methods,2005.63(1): 24-32.
    [10]Stephanopoulos G. Metabolic fluxes and metabolic engineering[J]. Metabolic engineering, 1999.1(1):1-11.
    [11]Markowitz V M, Ivanova N N, Szeto E, et al. IMG/M:a data management and analysis system for metagenomes[J]. Nucleic Acids Research,2008.36(suppl 1):D534-D538.
    [12]Der Werf M J V, Guettler M V, Jain M K, et al. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z[J]. Archives of microbiology,1997.167(6):332-342.
    [13]Schomburg I, Chang A, and Schomburg D. BRENDA, enzyme data and metabolic information[J]. Nucleic Acids Research,2002.30(1):47.
    [14]Kim P, Laivenieks M, Vieille C, et al. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli[3]. Applied and Environmental Microbiology,2004.70(2):1238-1241.
    [15]Brenner D J, Krieg N R, Garrity G M, et al. Bergey's manual of systematic bacteriology: The proteobacteria.2004:Springer, p.2816.
    [16]Guettler M V, Rumler D, and Jain M K. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen[J]. Int J Syst Bacteriol,1999.49(1): 207-216.
    [17]Du C, Lin S K C, Koutinas A, et al. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid[J]. Bioresource Technology,2008. 99(17):8310-8315.
    [18]Liu Y P, Zheng P, Sun Z H, et al. Economical succinic acid production from cane molasses by Actinobacillus succinogenes[J]. Bioresource Technology,2008.99(6):1736-1742.
    [19]Wan C, Li Y, Shahbazi A, et al. Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z[J]. Biotechnology for Fuels and Chemicals,2008: 111-119.
    [20]McKinlay J B, Zeikus J G, and Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium[J]. Applied and Environmental Microbiology,2005.71(11):6651.
    [21]McKinlay J B, Shachar-Hill Y, Zeikus J G, et al. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of l3C-labeled metabolic product isotopomers[J]. Metabolic engineering,2007.9(2):177-192.
    [22]Nanchen A, Schicker A, and Sauer U. Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli[J]. Applied and Environmental Microbiology,2006.72(2):1164.
    [23]McKinlay J B and Vieille C.13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations[J]. Metabolic engineering,2008.10(1):55-68.
    [24]Guettler M V, Jain M K, and Rumler D. Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants.1996, United States Patents 5573931.
    [25]Park D, Laivenieks M, Guettler M, et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J]. Applied and Environmental Microbiology,1999.65(7):2912.
    [26]Sauer U and Eikmanns B J. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria[J]. FEMS microbiology reviews,2005.29(4):765-794.
    [27]Kim P, Laivenieks M, McKinlay J, et al.Construction of a shuttle vector for the overexpression of recombinant proteins in Actinobacillus succinogenes[J]. Plasmid,2004. 51(2):108-115.
    [28]De Mey M, Maertens J, Lequeux G, et al. Construction and model-based analysis of a promoter library for E. coli:an indispensable tool for metabolic engineering[J]. BMC biotechnology,2007.7(1):34.
    [29]Lee P, Lee S, Hong S, et al. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen[J]. Applied Microbiology and Biotechnology,2002.58(5):663-668.
    [30]Song H, Kim T Y, Choi B K, et al. Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence[J]. Applied Microbiology and Biotechnology,2008.79(2):263-272.
    [31]Georgellis D, Kwon O, De Wulf P, et al. Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system[J]. Journal of Biological Chemistry,1998. 273(49):32864.
    [32]Unden G and Schirawski J.The oxygen-responsive transcriptional regulator FNR of Escherichia coli:the search for signals and reactions[J]. Molecular microbiology,1997. 25(2):205-210.
    [33]Unden G, Achebach S, Holighaus G, et al. Control of FNR Function of Escherichia coli by O2 and Reducing Conditions[J]. Journal of molecular microbiology and biotechnology,2002. 4(3):263-268.
    [34]Kwon O, Georgellis D, and Lin E. Phosphorelay as the Sole Physiological Route of Signal Transmission by the Arc Two-Component System of Escherichia coli[S]. Journal of bacteriology,2000.182(13):3858-3862.
    [35]Georgellis D, Kwon O, and Lin E C C. Amplification of signaling activity of the Arc two-component system of Escherichia coli by anaerobic metabolites[J]. Journal of Biological Chemistry,1999.274(50):35950.
    [36]Malpica R, Franco B, Rodriguez C, et al. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase[J]. Proceedings of the National Academy of Sciences of the United States of America,2004.101(36):13318.
    [37]Jung W S, Jung Y R, Oh D B, et al.Characterization of the Arc two-component signal transduction system of the capnophilic rumen bacterium Mannheimia succiniciproducens[J]. FEMS microbiology letters,2008.284(1):109-119.
    [38]Hong S H, Kim J S, Lee S Y, et al. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens[J]. Nature biotechnology,2004.22(10): 1275-1281.
    [39]Jang Y S, Jung Y R, Lee S Y, et al.Construction and characterization of shuttle vectors for succinic acid-producing rumen bacteria[J]. Applied and Environmental Microbiology,2007. 73(17):5411.
    [40]Lee S J, Song H, and Lee S Y. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production[J]. Applied and Environmental Microbiology,2006.72(3):1939-1948.
    [41]Kim J M, Lee K H, and Lee S Y. Development of a markerless gene knock-out system for Mannheimia succiniciproducens using a temperature-sensitive plasmid[J]. FEMS microbiology letters,2008.278(1):78-85.
    [42]Song H, Lee J W, Choi S, et al. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production[J]. Biotechnology and bioengineering,2007.98(6):1296-1304.
    [43]Lee S Y, Song H, Jang Y S, et al. Gene encoding malic enzyme and method for preparing succinic acid using the same.2008, United States Patent Application 20070042476.
    [44]Lee S Y, Lim S W, and Song H, Novel engineered microoganism producing homo-succinic acid and method for preparing succinic acid using the same.2008, WO Patent,2008013405.
    [45]Rifkin G D and Opdyke J E. Anaerobiospirillum succiniciproducens septicemia[J]. Journal of clinical microbiology,1981.13(5):811.
    [46]Tee W, Korman T M, Waters M J, et al.Three cases of Anaerobiospirillum succiniciproducens bacteremia confirmed by 16S rRNA gene sequencing[J]. Journal of clinical microbiology,1998.36(5):1209.
    [47]Samuelov N S, Datta R, Jain M K, et al. Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive[J]. Applied and Environmental Microbiology,1999.65(5):2260.
    [48]Lee P, Lee S, Hong S, et al. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens[J]. Biotechnology letters,2003.25(2):111-114.
    [49]Stackebrandt E and Hespell R.The family Succinivibrionaceae[J]. The prokaryotes,2006: 419-29.
    [50]Lee P C, Lee W G,Lee S Y, et al. Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production[J]. Process Biochemistry,1999.35(1):49-55.
    [51]Samuelov N, Lamed R, Lowe S, et al. Influence of CO2-HCO3- levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens[l]. Applied and Environmental Microbiology,1991.57(10):3013-3019.
    [52]Dworkowski F and Cook P.6-Phosphogluconate Dehydrogenase.2002.
    [53]Laivenieks M, Vieille C, and Zeikus J G. Cloning, sequencing, and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene[J]. Applied and Environmental Microbiology,1997.63(6):2273-2280.
    [54]Lee S Y, Hong S H, and Moon S Y. In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example[J]. Genome Informatics Series,2002:214-223.
    [55]Datsenko K A and Wanner B L.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences,2000. 97(12):6640.
    [56]Neidhardt F C, Ingraham J L, Low K, et al. Escherichia coli and Salmonella typhimuriim: cellular and molecular biology[M].1987.
    [57]Clark D P. The fermentation pathways of Escherichia coli[J]. FEMS microbiology letters, 1989.63(3):223-234.
    [58]Wolfe A J. The acetate switch[J]. Microbiology and molecular biology reviews,2005.69(1): 12.
    [59]De Mey M, De Maeseneire S, Soetaert W, et al. Minimizing acetate formation in E. coli fermentations[J]. Journal of industrial microbiology & biotechnology,2007.34(11): 689-700.
    [60]Zeng Q, Qiu F, and Yuan L. Production of artemisinin by genetically-modified microbes[J]. Biotechnology letters,2008.30(4):581-592.
    [61]Postma P, Lengeler J, and Jacobson G. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria[J]. Microbiological reviews,1993.57(3):543-594.
    [62]Geerse R, Pluijm J, and Postma P. The repressor of the PEP:fructose phosphotransferase system is required for the transcription of the pps gene of Escherichia coli[J]Molecular and General Genetics MGG,1989.218(2):348-352.
    [63]Saier Jr M H and Ramseier T M. The catabolite repressor/activator (Cra) protein of enteric bacteria[J]. Journal of bacteriology,1996.178(12):3411.
    [64]Chatterjee R, Millard C S, Champion K, et al. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli[J]. Applied and Environmental Microbiology,2001.67(1):148.
    [65]De Anda R, Lara A R, Hernandez V, et al. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate[J]. Metabolic engineering,2006.8(3):281-290.
    [66]Flores N, Leal L, Sigala J C, et al.Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease[J]. Journal of molecular microbiology and biotechnology,2007. 13(1-3):105-116.
    [67]Wang Q, Wu C, Chen T, et al. Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions[J]. Biotechnology letters,2006.28(2):89-93.
    [68]Wohl R C and Markus G.Phosphoenolpyruvate carboxylase of Escherichia coli[S]. Journal of Biological Chemistry,1972.247(18):5785.
    [69]Fujita N, Miwa T, Ishijima S, et al. The primary structure of phosphoenolpyruvate carboxylase of Escherichia coli. Nucleotide sequence of the ppc gene and deduced amino acid sequence[J]. Journal of biochemistry,1984.95(4):909.
    [70]Yano M and Izui K. The Replacement of lys620 by serine desensitizes Escherichia Coli phosphoenolpyruvate carboxylase to the effects of the feedback inhibitors 1-aspartate and 1-malate[J]. European Journal of Biochemistry,1997.247(1):74-81.
    [71]Lin H, Bennett G N, and San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield[J]. Metabolic engineering,2005.7(2):116-127.
    [72]Lin H, Bennett G N, and San K Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions[J]. Biotechnology and bioengineering,2005.90(6):775-779.
    [73]Lin H, Vadali R V, Bennett G N, et al. Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli[J]. Biotechnology progress,2004.20(5): 1599-1604.
    [74]Izui K, Matsumura H, Furumoto T, et al. Phospho enol-pyruvate carboxylase:a new era of structural biology[J]. Annual review of plant biology,2004.55:69-84.
    [75]Millard C S, Chao Y P, Liao J C, et al. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli[J]. Applied and Environmental Microbiology,1996.62(5):1808-1810.
    [76]Stols L and Donnelly M I. Production of succinic acid through overexpression of NAD (+)-dependent malic enzyme in an Escherichia coli mutant[J]. Applied and Environmental Microbiology,1997.63(7):2695.
    [77]Hong S H and Lee S Y. Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity[J]. Biotechnology and bioengineering,2001.74(2):89-95.
    [78]Sanchez A M, Bennett G N, and San K Y. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant[J]. Biotechnology progress,2005.21(2): 358-365.
    [79]Alexeeva S, De Kort B, Sawers G, et al. Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli[J]. Journal of bacteriology, 2000.182(17):4934.
    [80]Flores N, Flores S, Escalante A, et al. Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system[J]. Metabolic engineering,2005.7(2):70-87.
    [81]Alexeeva S, Hellingwerf K J, and Teixeira de Mattos M J. Quantitative assessment of oxygen availability:perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli[J]. Journal of bacteriology,2002.184(5):1402.
    [82]Lin H, Bennett G N, and San K Y. Genetic reconstruction of the tricarboxylic acid cycle in Escherichia coli for the complete aerobic production of succinate through the glyoxylate bypassfJ]. In:Abstracts of papers of the American chemical society,2004.227(2):217-217.
    [83]Sanchez A M, Bennett G N, and San K Y. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity[J]. Metabolic engineering,2005.7(3):229-239.
    [84]Sanchez A M, Bennett G N, and San K Y. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains[J]. Metabolic engineering,2006. 8(3):209-226.
    [85]Jantama K, Haupt M, Svoronos S A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and bioengineering,2008.99(5):1140-1153.
    [86]Jantama K, Zhang X, Moore J, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C[J]. Biotechnology and bioengineering, 2008.101(5):881-893.
    [87]陈琦,李玲阁.产L-谷氨酸钝齿棒杆菌AS1542菌株的研究[J].微生物学报,1975.5(2):119-124.
    [88]Xu M, Rao Z, Xu H, et al. Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum[J].Applied biochemistry and biotechnology,2011.163(6):707-719.
    [89]Jiao H, Yuan Y, Xiong Y, et al. Analysis of the arginine biosynthetic gene cluster argCJBDFR of Corynebacterium crenatum[J]. Journal of Biomedical Science and Engineering,2011.4(1):70-75.
    [90]Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatwn L-arginine production[J]. Amino acids,2012.43(1):255-266.
    [91]Dou W, Xu M, Cai D, et al. Improvement of l-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum[J]. Applied biochemistry and biotechnology,2011.165(3):845-855.
    [92]武标,武威,张千等.抗噬菌体谷氨酸高产菌株选育[J].激光生物学报,2006.15(4):409-412.
    [93]刘森芝.谷氨酸发酵生产菌的研究与开发[J].发酵科技通讯,2009.38(3):28-29.
    [94]Kimura E. Metabolic engineering of glutamate production[J]. Microbial Production of l-Amino Acids,2003:37-57.
    [95]许虹,窦文芳,许泓瑜等.不同供氧水平对L-精氨酸分批发酵过程的影响[J].化工学报,2008.59(9):2295-2301.
    [96]徐凯,王营,崔玉波等.谷氨酸发酵过程不同溶氧水平产有机酸[J].中国调味品,2007. 1:42-46.
    [97]李小曼,赵智,张英姿等.γ-谷氨酰激酶基因敲除对产L-精氨酸钝齿棒杆菌8-193生理代谢的影响[J].微生物学报,2011.51(11):1476-1484.
    [98]Xu M. Rao Z, Dou W. Site-directed mutangenesis studies on the L-arginine-binding sites of feedback in N-acetyl-L-glutemate kinase (NAGK) from Corynebacterium glutamicum[J] Curednt Microbiology,2012.64(2):164-172.
    [99]刘飞,饶志明,徐美娟等.钝齿棒杆菌乙酰谷氨酸激酶编码基因argB的克隆表达,纯化及酶学性质研究[J].工业微生物,2010(4):23-28.
    [100]蔡冬梅.精氨酸高产菌株钝齿棒杆菌中argJ基因的功能研究[D].2009,江南大学.
    [101]饶志明,徐美娟,陆元修等.钝齿棒杆菌精氨酸琥珀酸酶编码基因argH的克隆表达及其重组菌发酵产精氨酸研究[J].中国生物工程杂志,2010.30(9):49-55.
    [102]徐美娟,张显,饶志明等.钝齿棒杆菌N-乙酰鸟氨酸转氨酶的克隆表达分析及其重组菌的精氨酸发酵[J].生物工程学报,2011.27(7):1013-1023.
    [103]赵智,刘阳剑,王宇等.抗反馈抑制的天冬氨酸激酶基因在钝齿棒杆菌中的表达[J].微生物学报,2005.45(4):530-533.
    [104]焦海涛,袁永,徐锋等.钝齿棒杆菌argR基因克隆,表达及其重组菌发酵产精氨酸研究[J].中国生物工程杂志,2011.31(10):57-62.
    [105]王绛,刘阳剑,王宇等.钝齿棒杆菌CD945丙酮酸羧化酶基因的克隆,序列分析及表达[J].微生物学报,2003.43(2):214-219.
    [106]张潇潇.钝齿棒杆菌L-天冬氨酸α-脱羧酶基因的克隆与表达[D].2008,浙江工业大学.
    [1]Jain M, Datta R, and Zeikus J. High-value organic acids fermentation:emerging processes and products[J]. Bioprocess Engineering:The First Generation. Chichester, Ellis Horwood, 1989:366-389.
    [2]Zeikus J, Jain M, and Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products[J]. Applied Microbiology and Biotechnology,1999.51(5): 545-552.
    [3]Flieger M, Kantorov M, Prell A, et al. Biodegradable plastics from renewable sources[J]. Folia microbiologica,2003.48(1):27-44.
    [4]Chotani G, Dodge T, Hsu A, et al. The commercial production of chemicals using pathway engineering[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2000.1543(2):434-455.
    [5]陈琦,李玲阁.产L-谷氨酸钝齿棒杆菌AS1542菌株的研究[J].微生物学报,1975.5(2):119-124.
    [6]许虹,窦文芳,许泓瑜等.不同供氧水平对L-精氨酸分批发酵过程的影响[J].化工学报,2008.59(9):2295-2301.
    [7]徐凯,王营,崔玉波等.谷氨酸发酵过程不同溶氧水平产有机酸[J].中国调味品,2007.1:42-46.
    [8]卢志洪,刘志成,郑穗平.不同溶氧条件下谷氨酸棒杆菌发酵过程代谢物及关键酶酶活分析[J].中国酿造,2010(6):28-31.
    [9]Okino S, Noburyu R, Suda M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology,2008.81(3):459-64.
    [10]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976. 72(1-2):248-254.
    [1]McKinlay J B and Vieille C.13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations[J]. Metabolic engineering,2008.10(1); 55-68.
    [2]Hong S H, Kim J S, Lee S Y, et al. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens[J]. Nature biotechnology,2004.22(10): 1275-1281.
    [3]Samuelov N, Lamed R, Lowe S, et al. Influence of CO2-HCO3-levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens[J] Applied and Environmental Microbiology,1991.57(10):3013-3019.
    [4]Lu S, Eiteman M A, and Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations[J]. Journal of biotechnology,2009.143(3):213-223.
    [5]Lu S, Eiteman M A, and Altman E. pH and base counterion affect succinate production in dual-phase Escherichia coli fermentations[J]. Journal of industrial microbiology & biotechnology,2009.36(8):1101-1109.
    [6]Lin H, Bennett G N, and San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield[J]. Metabolic engineering,2005.7(2):116-127.
    [7]康振,耿艳平,张园园等.好氧发酵生产琥珀酸工程菌株的构建[J].生物工程学报,2008.24(12):2081-2085.
    [8]Liu C G, Lin Y H, and Bai F W. Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation[J]. Journal of biotechnology,2011.45(l-2):42-47.
    [9]Park S, Sinskey A, and Stephanopoulos G. Metabolic and physiological studies of Corynebacterium glutamicum mutants[J]. Biotechnology and bioengineering,1997.55(6): 864-879.
    [10]Kiss R D and Stephanopoulos G. Metabolic characterization of a L-lysine-producing strain by continuous culture[J]. Biotechnology and bioengineering,1992.39(5):565-574.
    [11]Inui M, Murakami S, Okino S, et al. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions[J]. Journal of Molecular Microbiology and Biotechnology,2004.7(4):182-96.
    [12]Wu H, Li Z, Zhou L, et al. Improved succinic acid production in the anaerobic culture of an Escherichia colipflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture[J]. Applied and Environmental Microbiology,2007.73(24): 7837-7843.
    [13]Bunch P K, Mat-Jan F, Lee N, et al. The IdhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli[J]. Microbiology,1997.143(1):187.
    [14]Bormann E, Eikmanns B, and Sahm H. Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase[J]. Molecular microbiology,1992. 6(3):317-326.
    [15]Uy D, Delaunay S, Engasser J M, et al. A method for the determination of pyruvate carboxylase activity during the glutamic acid fermentation with Corynebacterium glutamicum[J]. Journal of microbiological methods,1999.39(1):91-96.
    [16]Danshina P, Schmalhausen E, Avetisyan A, et al. Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis[J]. IUBMB life,2001.51(5):309-314.
    [17]Li J, Jiang M, Chen K Q, et al. Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes[J]. Bioprocess and biosystems engineering,2010. 33(8):911-920.
    [I1]Litchfield J H. Microbiological production of lactic acid[J]. Advances in applied microbiology,1996.42:45-95.
    [2]John R P, Nampoothiri K M, and Pandey A. Fermentative production of lactic acid from biomass:an overview on process developments and future perspectives[J]. Applied Microbiology and Biotechnology,2007.74(3):524-534.
    [3]Guettler M V and Jain M K. Method for making succinic acid, Anaerobiospirillum succiniciproducems variants for use in process and methods for obtaining variants.1996, United States Patents 5521075.
    [4]Vemuri G, Eiteman M, and Altman E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions[J]. Journal of Industrial Microbiology and Biotechnology,2002.28(6):325-332.
    [5]Song H and Lee S Y. Production of succinic acid by bacterial fermentation[J]. Enzyme and Microbial Technology,2006.39(3):352-361.
    [6]Lee S J, Song H, and Lee S Y. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production[J]. Applied and Environmental Microbiology,2006.72(3):1939-1948.
    [7]Lin H, Bennett G N, and San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield[J]. Metabolic engineering,2005.7(2):116-127.
    [8]李小曼,赵智,张英姿等.γ-谷氨酰激酶基因敲除对产L-精氨酸钝齿棒杆菌8-193生理代谢的影响[J].微生物学报,2011.51(11):1476-1484.
    [9]Knorr R, Ehrmann M A, and Vogel R F. Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis[J].Microbiological research,2001. 156(3):267-277.
    [10]Dominguez H, Rollin C, Guyonvarch A, et al. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose[J]. European Journal of Biochemistry,2001.254(1):96-102.
    [11]Danshina P, Schmalhausen E, Avetisyan A, et al. Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis[J]. IUBMB life,2001.51(5):309-314.
    [1]Michiko M and Shiio I. Purification and some properties of phosphoenolpyruvate carboxylase from Brevibacterium flavum and its aspartate-overproducing mutant[J]. Journal of biochemistry,1985.97(4):1119-1128.
    [2]Peters-Wendisch P G, Wendisch V F, Paul S, et al. Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum[J]. Microbiology,1997.143(4):1095-1103.
    [3]Park S, Shaw-Reid C, Sinskey A, et al. Elucidation of anaplerotic pathways in Corynebacterium glutamicum via 13 C-NMR spectroscopy and GC-MS[J]. Applied Microbiology and Biotechnology,1997.47(4):430-440.
    [4]Samuelov N, Lamed R, Lowe S, et al. Influence of CO2-HCO3-levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens[J]. Applied and Environmental Microbiology,1991.57(10):3013-3019.
    [5]Lee P C, Lee W G, Kwon S, et al. Succinic acid production by Anaerobiospirillum succiniciproducens:effects of the H2/CO2 supply and glucose concentration[J]. Enzyme and Microbial Technology,1999.24(8-9):549-554.
    [6]Okino S, Noburyu R, Suda M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology,2008.81(3):459-464.
    [7]Millard C S, Chao Y P, Liao J C, et al. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli[J]Applied and Environmental Microbiology,1996.62(5):1808-1810.
    [8]王绛,刘阳剑,王宇等.钝齿棒杆菌CD945丙酮酸羧化酶基因的克隆,序列分析及表达[J].微生物学报,2003.43(2):214-219.
    [9]Park S M, Sinskey A J, and Stephanopoulos G. Metabolic and physiological studies of Corynebacterium glutamicum mutants[J]. Biotechnology and Bioengineering,1997.55(6): 864-79.
    [10]Delaunay S, Uy D, Baucher M F, et al. Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation[J]. Metabolic Engineering,1999.1(4):334-43.
    [1]Guettler M V, Jain M K, and Rumler D. Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants.1996, United States Patents 5573931.
    [2]Lee P C, Lee W G, Kwon S, et al. Succinic acid production by Anaerobiospirillum succiniciproducens:effects of the H2/CO2 supply and glucose concentration[J]. Enzyme and Microbial Technology,1999.24(8-9):549-554.
    [3]Peters-Wendisch P G, Kreutzer C, Kalinowski J, et al. Pyruvate carboxylase from Corynebacterium glutamicum:characterization, expression and inactivation of the pyc gene[J]. Microbiology,1998.144(4):915.
    [4]Booth I R. Regulation of cytoplasmic pH in bacteria[J]. Microbiological reviews,1985. 49(4):359.
    [5]李小俊,胡克良,黄允兰等.红外光谱对碱士金属二元羧酸盐结构的研究[J].光谱学与光谱分析,2002.22(3):392-395.
    [6]Corwin L M and Fanning G R. Studies of parameters affecting the allosteric nature of phosphoenolpyruvate carboxylase of Escherichia coli[J]. Journal of Biological Chemistry, 1968.243(12):3517-3525.
    [7]杨卓娜,姜岷,李建等.不同pH调节剂对产琥珀酸放线杆菌NJ113发酵产丁二酸的影响[J].生物工程学报,2010.26(11):1500-1506.
    [8]Bazaes S, Toncio M, Laivenieks M, et al. Comparative kinetic effects of Mn (Ⅱ), Mg (Ⅱ) and the ATP/ADP ratio on phosphoenolpyruvate carboxykinases from Anaerobiospirillum succiniciproducens and Saccharomyces cerevisiae[J]. The Protein Journal,2007.26(4): 265-269.
    [9]Urbance S E, Anthony Ⅲ L, DiSpirito A A, et al. Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes[J]. Food Biotechnology,2003.17(1):53-65.
    [10]Guettler M V and Jain M K. Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants.1996, United States Patents 5521075.
    [1]Corona-Gonzalez R I, Bories A, Gonzalez-Alvarez V, et al.Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130[J]. Process Biochemistry,2008.43(10): 1047-1053.
    [12]Liu Y P, Zheng P, Sun Z H, et al. Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593[J]. Journal of chemical Technology and Biotechnology,2008.83(5):722-729.
    [13]Glassner D A and Datta R. Process for the production and purification of succinic acid.1992, United States Patents 5143834.
    [14]Datta R, Glassner D A, Jain M K, et al. Fermentation and purification process for succinic acid.1992, United States Patents 5168055.
    [15]Lee P C, Lee S Y, and Chang H N. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system[J]. Journal of Microbiology and Biotechnology,2008.18(7):1252-1256.
    [16]Meynial-Salles I, Dorotyn S, and Soucaille P. A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity[J]. Biotechnology and bioengineering,2008.99(1):129-135.
    [17]Lee P, Lee S, Hong S, et al. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen[J]. Applied Microbiology and Biotechnology,2002.58(5):663-668.
    [18]Lee P, Lee S, Hong S, et al. Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor[J]. Bioprocess and biosystems engineering,2003.26(1):63-67.
    [19]Song H, Lee J W, Choi S, et al. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production[J]. Biotechnology and bioengineering,2007.98(6):1296-1304.
    [20]Song H, Jang S H, Park J M, et al. Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens [J]. Biochemical Engineering Journal,2008. 40(1):107-115.
    [21]Lee S J, Song H, and Lee S Y. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production[J]. Applied and Environmental Microbiology,2006.72(3):1939-1948.
    [22]Vemuri G, Eiteman M, and Altman E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions[J]. Journal of industrial microbiology & biotechnology,2002.28(6):325-332.
    [23]Lin H, Bennett G N, and San K Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions[J]. Biotechnology and bioengineering,2005.90(6):775-779.
    [24]Andersson C, Hodge D, Berglund K A, et al. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli[J]. Biotechnology progress,2008.23(2):381-388.
    [25]Jantama K, Zhang X, Moore J, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C[J]. Biotechnology and bioengineering, 2008.101(5):881-893.
    [26]Okino S, Noburyu R, Suda M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology,2008.81(3):459-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700