用户名: 密码: 验证码:
托卡马克边缘等离子体带状流及其在L-H模转换过程中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高约束(H)模是1982年在德国ASDEX托卡马克上首次发现的一种改善约束的等离子体放电状态。H模期间,在边缘等离子体区会自发形成边缘输运垒(ETB)。在ETB区内由于湍流及其驱动的输运被抑制了,形成了陡峭的压强梯度区,使总体的等离子体约束得到了改善。因此研究L-H模的转换机制对于降低L-H模的转换阈值功率具有十分现实的意义。理论和实验研究表明流剪切WE×B在L-H模转换过程中扮演十分重要的角色。流剪切主要由平衡流和带状流贡献。其中带状流是一种极向和环向对称的静电涨落结构,分为低频带状流以及测地声模两种。实验和理论表明带状流主要是从湍流得到能量,并反过来能够抑制湍流所导致的反常输运。本论文研究工作主要围绕着带状流的激发、传播、与背景湍流的相互作用关系以及它在L-H模转换过程中可能的作用机制等物理内容展开的。主要的研究结果概述如下:
     1)在HL-2A上,我们利用边界探针阵列观察到测地声模的涨落幅度在时序上呈现出一种随机的阵发特性。利用这一阵发特性,我们将等离子体放电时序分成GAM强和GAM弱两种情况,并统计了这两种情况下反常径向粒子输运通量Tr的变化特征。实验结果表明,反常粒子输运主要是由20kHz~100kHz背景湍流所驱动的。较之GAM弱或无GAM的情况,GAM强时的径向粒子通量减小了13%,并且Tr随GAM涨落幅度的增加而单调下降。我们还统计了GAM强和GAM弱时,反常粒子输运计算公式中各项的变化。实验结果表明,GAM主要是通过降低背景湍流的涨落幅度来抑制反常输运的,这其中包括密度涨落幅度|ne~|(贡献38%)和电势涨落幅度|Eθ~|(15%)的下降,以及电势涨落与密度涨落相关系数γneEθ(38%)的降低。而电势涨落与密度涨落的耦合项cosαneEθ并不随GAM涨落幅度的变化而变化。
     2)我们利用静电探针阵列测量了HL-2A边界湍流和带状流在不同ECRH加热功率下的演化特征。ECRH注入功率大于一定阈值时,边界杂质含量开始显著增加。通过比较纯欧姆加热和ECRH加热两种条件下GAM的涨落功率谱变化,我们发现,除了当地的电子温度Te能够影响的GAM峰值频率外,当地的杂质离子含量同样能够改变GAM的峰值频率。通过一些合理的假设,我们发现碳杂质离子含量对GAM频率的影响与考虑杂质效应后GAM的色散关系所预言的GAM本征频率定性符合。我们同时观察了边界平衡径向电场Er、带状流以及背景湍流的演化特征,实验结果表明,当ECRH功率逐渐提高过程中,Er略有变负,低频带状流和测地声模的涨落功率明显增大,而背景湍流占总湍流的功率份额却在这一过程中逐渐减小,这些观察与“捕猎者-猎物”模型所预言的特征是相符的。通过双谱研究,我们发现ECRH注入之后,GAM出现自相互作用。一种可能的原因是ECRH注入之后,GAM的涨落功率超过一定阈值之后出现的一种非线性饱和机制。此外,随着ECRH注入功率的提高,GAM与背景湍流的相互作用强度也在逐渐提高,这可能预示着GAM在触发L-H模转换机制中起到重要的作用。
     3)在HL-2A欧姆放电过程中,通过降低等离子放电的弦平均密度,我们利用静电探针在边界观察到双GAM的实验现象。类似的现象在锂化处理后的HT-7边界也有观察到,同时我们还在HT-7观察到多GAM的实验现象。利用静电探针阵列,我们测量了不同径向位置处的电子温度,GAM的涨落幅度,频率以及径向波数的分布特征。HT-7上的实验结果表明,在HT-7上观察到两个不同频率的测地声模LFGAM和HFGAM, LFGAM和HFGAM的中心频率分别为12kHz和21kHz,并且在探针测量的径向范围内(r-α=0~2cm)基本保持不变。同时实验还观察至LFGAM的径向波数接近于0的位置为LFGAM涨落幅度最大的点。利用温度我们求得GAM的本征频率fGAMth随径向的分布,LFGAM波数为O的点同时对应fGAMth等于实际测量LFGAM频率的位置。这一位置对应的是LFGAM的激发点,LFGAM激发后,同时向里和向外传播,向外传播过程中其径向波数逐渐增大。HFGAM的径向分布特征也满足上述基本物理图像。这些实验结果与考虑动理学效应的GAM的色散关系有较好的符合。此外,LFGAM的激发点位置,我们观察至LFGAM与HFGAM的非线性三波相互作用。由于这一径向位置对应LFGAM涨落幅度最强的位置,因此我们有理由相信, LFGAM与HFGAM的非线性耦合是GAM涨落幅度大到一定程度的结果。我们还在HT-7上观察到多GAM的实验现象。其中一些GAM的中心频率存在倍频的关系。利用幅度相关法,我们判断得到倍频的GAM源自于基频GAM的自相互作用。这也暗示着,当GAM的涨落幅度大到一定程度时,存在一种非线性饱和机制,使得GAM的能量能够转移到其他频率的测地声模上。
     4)在HL-2A中,当中性束加热功率处于L-H模转换阈值功率附近时,L-H模之间出现一种中间态,既I-phase。I-phase放电期间,我们观察到在最后闭合磁面里面的悬浮电位巧,电子温度Te,密度ne。以及压强Pe上均观察到明显的低频振荡,振荡频率一般为几kHz,并且上述物理参数的低频振荡相位均滞后于径向电场的幅度|Er|大概Л/2的相角。利用静电探针阵列,我们测量了I-phase放电期间电势低频扰动的环向模数和极向模数满足n=m=0,即LCO振荡在环向和极向上是一种对称的静电涨落结构。电势涨落上LCO振荡的幅度沿径向向外逐渐衰减,并在最后闭合磁面附近将到一个很低的水平。我们在HL-2A上的观察还表明,径向电场上LCO振荡的幅度|Er~,LCO|要超前于背景湍流的涨落幅度,即后者更多的表现为被|Er~,LC||调制的一种“结果”,这与“捕猎者-猎物”模型所预言的理论结果是完全相反。径向电场的低频振荡豆,Er~,LCO在时序上基本上超前于所有上述提到的物理量而唯独滞后于平衡径向电场Er~的变化。这一实验结果表明,平衡径向电场与低频涨落径向电场之间存在密切的联系,前者可能是激发后者的一个主要的原因。类似的现象R.R.Weynants等人在TEXTOR上的偏压电极实验也有过报道。此外,在等离子体水平位移保持平稳的情况下,我们测量了平衡径向电场和涨落电场在L-I-L模转换过程中完整的演化关系,同时对比了L-I模转换和I-L模反转换过程中平均流的变化。实验结果表明,触发L-I模转换时刻的径向电场要比I-L转换时刻的值要负很多。这一实验现象与早期S-I.Itoh等人的理论预言符合得很好。
Zonal flows (ZFs) are ubiquitous in fluid turbulence, for example, in planetary atmospheres, and the terrestrial jet stream, and are of general interest in turbulence self organization across different scales. Over the last decade, it has been recognized that spontaneously generated ZFs may also play an important role for turbulence or transport self-regulation in magnetically confined plasmas. Considerable attention has focused on their potential role as a trigger mechanism for the transition from low-to high confinement regimes (L-to H-mode transition) in toroidal fusion plasmas, reduc-ing edge plasma turbulence (and transport) possibly in combination with equilibrium E x B flow shear. Our study concentrate at the excitation, propagation and nonlinear interaction with ambient turbulence, as well as the role of the L-H mode transition. The main results are performed as following:
     1) Three sets of triple probe arrays (four-tip) are applied to study the transport properties in the edge of HL-2A tokamak. The Geodesic Acoustic Mode (GAM) ex-hibits the intermittency characteristics during the discharge. The radial particle flux has been studied under different phases corresponding to the variable GAM intensity. The experiment results reveal that the radial particle flux has been suppressed by13%during the GAM bursts contrasting to weak GAM cases in the frequency range of am-bient turbulence (20kHz-100kHz). Power of density fluctuations and coherence between density and potential fluctuations contribute most reducing of particle flux, while changing of cross phase between density and potential fluctuations and suppres-sion of power of potential fluctuations contribute few to it. It suggests that the GAM may regulate the turbulent transport mainly by changing the amplitude of ambient turbulence, rather than cross phase between density and potential fluctuations.
     2) Geodesic acoustic mode (GAM) and low frequency zonal flow (LFZF) are both observed through Langmuir probe arrays during electron cyclotron resonance heating (ECRH) on the HL-2A tokamak edge. The radial distributions of the ampli-tude and peak frequency of GAM in floating potential fluctuations are investigated through rake probe arrays under different ECRH powers. For the first time it is ob- served that the GAM frequency decreased due to the carbon impurity increasing and the experimental results are qualitatively compared with theoretical dispersion rela-tionship of GAM including the effects of impurities. It is also found that during ECRH phase besides the mean flow, both GAM and LFZF are strengthened. The total fluc-tuation power and the fraction of that power associated with zonal flows power both increase with the ECRH power, consistent with a predator-prey model. The auto-and cross-bicoherence analyses show the coupling between GAM and its second harmon-ic during ECRH phase firstly. Moreover, the results also suggest that the couplings between GAM and the components with multiple GAM frequency are strengthened during ECRH phase. These couplings may be important for the GAM saturation.
     3) Multiple GAMs, especially dual GAMs are studied through the Langmuir probe arrays at the edge plasmas of HT-7Tokamak with Lithium coated wall. The dual GAMs are called as low freqeuncy GAM (LFGAM) and high frequency GAM (HFGAM) respectively and it is found that the two modes both have maximum am-plitudes at the location with radial wavenumber close to zero. Within the measur-ing range, HFGAM propagates outwards while LFGAM propagates both inwards and outwards with their central frequencies nearly unchanged. These phenomena could be basically explained by the kinetic GAM theory and quantitative comparison is al-so done on the dispersion relationship of HFGAM. The nonlinear couplings between the kinetic GAMs are also analysed. It is observed that LFGAM strongly interacts with HFGAM near the location with maximum amplitude, additionally, bicoherence and amplitude correlation analyses both suggest that the second harmonic GAMs are probably generated from self interaction of fundamental GAMs.
     4) An intermediate stage (I-phase) between L-mode and H-mode has been ob-served on HL-2A when heating power is close to threshold power of L-H mode tran-sition. Langmuir probe arrays have performed to measure the physical parameters inside LCFS as potential Φf, electric field Er, density ne, temperature Te and pressure Pe. The experimental results reveal that an oscillation with frequency of-2kHz can be found in all those parameters which lag with amplitude of electric field|Er|by π/2, implying that the oscillations in ne Te Pe are induced by the time changing of|Er|. The amplitude of ambient turbulence|ΦAT|estimated from envelope analysis is also found lags with|Er|by π/2. The result disagrees with the predictions of "Predator- Prey" model. Moreover, magnetic hystersis loop of mean electric field Er has been found during the L-I mode transition and I-L mode back transition, which is consistent with the prediction of the transition model by S-I. Itoh.
引文
[1]A. Gibson JET Team. Deuterium-tritium plasmas in the joint european torus (jet):Behavior and implications. Physics of Plasmas,5(5):1839-1847,1998.
    [2]Dale Meade.50 years of fusion research. Nuclear Fusion,50(1):014004,2010.
    [3]J D Lawson. Some criteria for a power producing thermonuclear reactor. Pro-ceedings of the Physical Society. Section B,70(1):6-10,1957.
    [4]F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engel-hardt, G. Fussmann, O. Gehre, J. Gernhardt, G. v. Gierke, G. Haas, M. Huang, F. Karger, M. Keilhacker, O. Kluber, M. Kornherr, K. Lackner, G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. Muller, H. Murmann, H. Niedermey-er, W. Poschenrieder, H. Rapp, and H. Rohr. Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the asdex tokamak. Phys. Rev. Lett.,49(19):1408-1412, Nov 1982.
    [5]ITER Physics Expert Group on Confinement, Transport, ITER Physics Expert Group on Confinement Modelling, Database, and ITER Physics Basis Editors. Chapter?2:Plasma confinement and transport. Nuclear Fusion,39(12):2175, 1999.
    [6]X.R. Duan, J.Q. Dong, L.W. Yan, X.T. Ding, Q.W. Yang, J. Rao, D.Q. Liu, W.M. Xuan, L.Y. Chen, X.D. Li, G.J. Lei, J.Y. Cao, Z. Cao, X.M. Song, Y. Huang, Yi Liu, W.C. Mao, Q.M. Wang, Z.Y. Cui, X.Q. Ji, B. Li, G.S. Li, H.J. Li, C.W. Luo, Y.Q. Wang, L.H. Yao, L.Y. Yao, J.H. Zhang, J. Zhou, Y. Zhou, Yong Liu, and HL-2A team. Preliminary results of elmy h-mode experiments on the hl-2a tokamak. Nuclear Fusion,50(9):095011,2010.
    [7]R. A. Moyer, K. H. Burrell, T. N. Carlstrom, S. Coda, R. W. Conn, E. J. Doyle, P. Gohil, R. J. Groebner, J. Kim, R. Lehmer, W. A. Peebles, M. Porkolab, C. L. Rettig, T. L. Rhodes, R. P. Seraydarian, R. Stockdale, D. M. Thomas, G. R. Tynan, and J. G. Watkins. Beyond paradigm:Turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the diii-d tokamak. Phys. Plasmas,2(6):2397-2407,1995.
    [8]H. Zohm. Dynamic behavior of the L-H transition. Phys. Rev. Lett.,72:222-225, Jan 1994.
    [9]M E Manso. Reflectometry in fusion devices. Plasma Physics and Controlled Fusion,35(SB):B 141,1993.
    [10]K. Ida, S. Hidekuma, Y. Miura, T. Fujita, M. Mori, K. Hoshino, N. Suzuki, T. Yamauchi, and JFT-2M Group. Edge electric-field profiles of H-mode plasmas in the jft-2m tokamak. Phys. Rev. Lett.,65:1364-1367, Sep 1990.
    [11]F Wagner. A quarter-century of h-mode studies. Plasma Physics and Controlled Fusion,49(12B):B 1,2007.
    [12]J A Snipes, A E Hubbard, D T Gamier, S N Golovato, R S Granetz, M Green-wald, I H Hutchinson, J Irby, B LaBombard, E S Marmar, A Niemczewski, P J O'Shea, M Porkolab, P Stek, Y Takase, J L Terry, R Watterson, and S M Wolfe. H-modes on alcator c-mod. Plasma Physics and Controlled Fusion,38(8):1127, 1996.
    [13]D R Roberts, R V Bravenec, R D Bengtson, D L Brower, G Cima, T P Crowley, A Darbar, P H Edmonds, H Gasquet, K W Gentle, G A Hallock, J W Heard, P D Hurwitz, Y Jiang, Y Y Karzhavin, J Lierzer, A Nikitin, A Ouroua, D M Patterson, P E Phillips, S Reedy, B Richards, W L Rowan, P M Schoch, D C Sing, E R Solano, D Storek, C Watts, D Winslow, A J Wootton, L Zeng, B Zhang, and S-B Zheng. H-mode development in text-u limiter plasmas. Plasma Physics and Controlled Fusion,38(8):1117,1996.
    [14]S V Lebedev, M V Andrejko, L G Askinazi, V E Golant, V A Kornev, S V Krikunov, L S Levin, B M Lipin, G T Razdobarin, V A Rozhansky, V V Rozhdestvensky, AI Smirnov, M Tendler, A S Tukachinsky, and S P Yaroshe-vich. H-mode studies on tuman-3 and tuman-3m. Plasma Physics and Con-trolled Fusion,38(8):1103,1996.
    [15]G. R. Tynan, L. Schmitz, R. W. Conn, R. Doerner, and R. Lehmer. Steady-state convection and fluctuation-driven particle transport in the H-mode transition. Phys. Rev. Lett.,68:3032-3035, May 1992.
    [16]H. Weisen, H. Bergs?ker, D.J. Campbell, S.K. Erents, L.C.J.M. de Kock, G.M. McCracken, M.F. Stamp, D.D.R. Summers, P.R. Thomas, M. von Hellermann, and J. Zhu. Boundary ion temperatures and ion orbit losses in jet. Nuclear Fusion,31(12):2247,1991.
    [17]M. G. Shats and D. L. Rudakov. Reversal of the fluctuation-induced trans-port during low to high transitions in the h-1 heliac plasma. Phys. Rev. Lett., 79:2690-2693, Oct 1997.
    [18]A Fujisawa, A Shimizu, H Nakano, S Ohsima, K Itoh, H Iguchi, Y Yoshimu-ra, T Minami, K Nagaoka, C Takahashi, M Kojima, S Nishimura, M Isobe, C Suzuki, T Akiyama, Y Nagashima, K Ida, K Toi, T Ido, S-I Itoh, K Matsuoka, S Okamura, and P H Diamond. Turbulence and transport characteristics of a bar-rier in a toroidal plasma. Plasma Physics and Controlled Fusion,48(4):S205, 2006.
    [19]R J Groebner, S L Allen, D R Baker, N H Brooks, D A Buchenauer, K H Burrell, T N Carlstrom, M S Chu, S Coda, J Cuthbertson, E J Doyle, T E Evans, J R Ferron, D Finkenthal, A H Futch, P Gohil, C M Greenfield, D N Hill, D L Hillis, F L Hinton, J Hogan, C L Hsieh, A W Hyatt, G L Jackson, R Jong, J Kim, Y B Kim, C C Klepper, S Konoshima, R J La Haye, L L Lao, C J Lasnier, E A Lazarus, A W Leonard, S I Lippmann, M A Mahdavi, R Maingi, W Mandl, Y Martin, R A Moyer, T H Osborne, W A Peebles, T W Petrie, G D Porter, M E Rensink, C L Rettig, T H Rhodes, M J Schaffer, D P Schissel, R P Seraydarian, R T Snider, G M Staebler, R D Stambaugh, H St John, E J Strait, T S Taylor, D M Thomas, S J Thompson, A D Turnbull, M R Wade, J G Watkins, W P West, R D Wood, and D Wroblewski. Overview of h-mode studies in diii-d. Plasma Physics and Controlled Fusion,36(7A):A13,1994.
    [20]The JET Team (presented by D Stork). Overview of high performance h-modes in jet. Plasma Physics and Controlled Fusion,36(7A):A23,1994.
    [21]K. H. Burrell. Effects of e x b velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. Physics of Plasmas,4(5):1499-1518,1997.
    [22]Keith H. Burrell. Tests of causality:Experimental evidence that sheared e x b flow alters turbulence and transport in tokamaks. Phys. Plasmas,6(12):4418-4435,1999.
    [23]J W Connor and H R Wilson. A review of theories of the 1-h transition. Plasma Physics and Controlled Fusion,42(1):R1-R74,2000.
    [24]P. W. Terry. Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys.,72(1):109-165, Jan 2000.
    [25]P. Gohil, K.H. Burrell, E.J. Doyle, R.J. Groebner, J. Kim, and R.P. Seraydarian. The phenomenology of the 1-h transition in the diii-d tokamak. Nuclear Fusion, 34(8):1057,1994.
    [26]T Ido, K Kamiya, Y Miura, Y Hamada, A Nishizawa, and Y Kawasumi. Tem-poral behaviour of the potential and fluctuations at the 1-h transition on jft-2m. Plasma Physics and Controlled Fusion,42(5A):A309,2000.
    [27]A.R. Field, G. Fussmann, and J.V. Hofmann. Measurement of the radial electric field in the asdex tokamak. Nuclear Fusion,32(7):1191,1992.
    [28]R. J. Taylor, M. L. Brown, B. D. Fried, H. Grote, J. R. Liberati, G. J. Morales, P. Pribyl, D. Darrow, and M. Ono. H-mode behavior induced by cross-field currents in a tokamak. Phys. Rev. Lett.,63:2365-2368, Nov 1989.
    [29]R R Weynants, S Jachmich, and G Van Oost. Demonstration of the role of flow shear in improved confinement. Plasma Physics and Controlled Fusion, 40(5):635,1998.
    [30]P. H. Diamond, Y.-M. Liang, B. A. Carreras, and P. W. Terry. Self-regulating shear flow turbulence:A paradigm for the L to H transition. Phys. Rev. Lett., 72:2565-2568, Apr 1994.
    [31]J Baldzuhn, M Kick, H Maassberg, and the W7-AS Team. Measurement and calculation of the radial electric field in the stellarator w7-as. Plasma Physics and Controlled Fusion,40(6):967,1998.
    [32]J. Schirmer, G.D. Conway, H. Zohm, W. Suttrop, and the ASDEX Upgrade Team. The radial electric field and its associated shear in the asdex upgrade tokamak. Nuclear Fusion,46(9):S780,2006.
    [33]Y. H. Xu, C. X. Yu, J. R. Luo, J. S. Mao, B. H. Liu, J. G. Li, B. N. Wan, and Y. X. Wan. Role of reynolds stress-induced poloidal flow in triggering the transition to improved ohmic confinement on the ht-6m tokamak. Phys. Rev. Lett.,84(17):3867-3870, Apr 2000.
    [34]许宇鸿.多脉冲湍流加热实现L-H模转换物理机制的研究.博士论文,中国科学技术大学,1998.
    [35]Yuhong Xu, Chang-Xuan Yu, J. R. Luo, J. S. Mao, B. H. Liu, J. G. Li, Y. F. Liang, Y. X. Jie, and Z. W. Wu. Improved ohmic confinement induced by multipulse turbulent heating in the hefei tokamak-6m. Physics of Plasmas, 5(6):2317-2325,1998.
    [36]N. Asakura, R.J. Fonck, K.P. Jaehnig, S.M. Kaye, B. LeBlanc, and M. Ok-abayashi. Toroidal rotation and ion heating during neutral beam injection in pbx-m. Nuclear Fusion,33(8):1165,1993.
    [37]Sanae-I. Itoh and Kimitaka Itoh. Model of l to h-mode transition in tokamak. Phys. Rev. Lett.,60:2276-2279, May 1988.
    [38]K. C. Shaing and Y. Z. Zhang. Transition to high mode induced by reduction of magnetic stress. Phys. Plasmas,2(9):3243-3245,1995.
    [39]A. B. Hassam, T. M. Antonsen, J. F. Drake, and C. S. Liu. Spontaneous poloidal spin-up of tokamaks and the transition to the h mode. Phys. Rev. Lett., 66(3):309-312,Jan 1991.
    [40]V. Rozhansky and M. Tendler. The effect of the radial electric field on the 1-h transitions in tokamaks. Phys. Fluids B:Plasma Physics,4(7):1877-1888, 1992.
    [41]Akira Hasegawa and Masahiro Wakatani. Self-organization of electrostatic tur-bulence in a cylindrical plasma. Phys. Rev. Lett.,59:1581-1584, Oct 1987.
    [42]P. H. Diamond and Y.-B. Kim. Theory of mean poloidal flow generation by turbulence. Physics of Fluids B:Plasma Physics,3(7):1626-1633,1991.
    [43]T. S. Hahm and K. H. Burrell. Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma. Phys. Plasmas,2(5):1648-1651, 1995.
    [44]H. Biglari, P. H. Diamond, and P. W. Terry. Influence of sheared poloidal rota-tion on edge turbulence. Phys. Fluids B:Plasma Physics,2(1):1-4,1990.
    [45]K. C. Shaing and E. C. Crume. Bifurcation theory of poloidal rotation in toka-maks:A model for L-H transition. Phys. Rev. Lett.,63:2369-2372, Nov 1989.
    [46]Y. Z. Zhang and S. M. Mahajan. Edge turbulence scaling with shear flow. Physics of Fluids B:Plasma Physics,4(6):1385-1387,1992.
    [47]J. A. Boedo, P. W. Terry, D. Gray, R. S. Ivanov, R. W. Conn, S. Jachmich, G. Van Oost, and The TEXTOR Team. Suppression of temperature fluctuations and energy barrier generation by velocity shear. Phys. Rev. Lett.,84(12):2630-2633, Mar 2000.
    [48]G R Tynan, J Liberati, P Pribyl, R J Taylor, and B Wells. Externally-driven h-mode studies in cct. Plasma Physics and Controlled Fusion,38(8):1301,1996.
    [49]G. R. Tynan, L. Schmitz, L. Blush, J. A. Boedo, R. W. Conn, R. Doerner, R. Lehmer, R. Moyer, H. Kugel, R. Bell, S. Kaye, M. Okabayashi, S. Sesnic, Y. Sun, and PBX-M Group. Turbulent edge transport in the princeton beta experiment-modified high confinement mode. Physics of Plasmas, 1(10):3301-3307,1994.
    [50]Carolyn C. Porco, Robert A. West, Alfred McEwen, Anthony D. Del Genio, An-drew P. Ingersoll, Peter Thomas, Steve Squyres, Luke Dones, Carl D. Murray, Torrence V. Johnson, Joseph A. Burns, Andre Brahic, Gerhard Neukum, Joseph Veverka, John M. Barbara, Tilmann Denk, Michael Evans, Joseph J. Ferrier, Paul Geissler, Paul Helfenstein, Thomas Roatsch, Henry Throop, Matthew Tis-careno, and Ashwin R. Vasavada. Cassini Imaging of Jupiter's Atmosphere, Satellites, and Rings. Science,299(5612):1541-1547,2003.
    [51]Moritz Heimpel, Jonathan Aurnou, and Johannes Wicht. Simulation of equa-torial and high-latitude jets on jupiter in a deep convection model. Nature, 438:193-196, November 2005.
    [52]Akira Hasegawa and Kunioki Mima. Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Physics of Fluids,21(1):87-92,1978.
    [53]M. N. Rosenbluth and F. L. Hinton. Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett.,80(4):724-727, Jan 1998.
    [54]F. L. Hinton and M. N. Rosenbluth. Dynamics of axisymmetric exb and poloidal flows in tokamaks. Plasma Phys. Control. Fusion,41:A653-A662,1999.
    [55]P H Diamond, S-I Itoh, K Itoh, and T S Hahm. Zonal flows in plasma-a review. Plasma Physics and Controlled Fusion,47(5):R35,2005.
    [56]T S Hahm, K H Burrell, Z Lin, R Nazikian, and E J Synakowski. Zonal flow measurements concept i. Plasma Physics and Controlled Fusion,42(5A):A205, 2000.
    [57]Akihide Fujisawa. A review of zonal flow experiments. Nuclear Fusion, 49(1):013001,2009.
    [58]H. Y. W. Tsui, P. M. Schoch, and A. J. Wootton. Observation of a quasicoherent mode in the texas experimental tokamak. Physics of Fluids B:Plasma Physics, 5(4):1274-1280,1993.
    [59]P. M. Schoch, K. A. Connor, D. R. Demers, and X. Zhang. Zonal flow mea-surements using a heavy ion beam probe. Rev. Sci. Instrum.,74(3):1846-1849, 2003.
    [60]P. M. Schoch. Electric field measurements on text that indicate zonal like flows. Bull. Am. Phys. Soc.,46:8,2001.
    [61]A. V. Melnikov, L. G. Eliseev, A. V. Gudozhnik, S. E. Lysenko, V. A. Mavrin, S. V. Perfilov, L. G. Zimeleva, M. V. Ufimtsev, L. I. Krupnik, and P. M. Schoch. Investigation of the plasma potential oscillations in the range of geodesic acous-tic mode frequencies by heavy ion beam probing in tokamaks. Czechoslovak Journal of Physics,55(3):349-360,2005.
    [62]A. D. Liu, T. Lan, C. X. Yu, H. L. Zhao, L. W. Yan, W. Y. Hong, J. Q. Dong, K. J. Zhao, J. Qian, J. Cheng, X. R. Duan, and Y. Liu. Characterizations of low-frequency zonal flow in the edge plasma of the hl-2a tokamak. Phys. Rev. Lett.,103:095002, Aug 2009.
    [63]兰涛.托卡马克边缘等离子体中测地声模带状流的实验研究.博士论文,中国科学技术大学,2008.
    [64]M. Jakubowski, R. J. Fonck, and G. R. McKee. Observation of coherent sheared turbulence flows in the diii-d tokamak. Phys. Rev. Lett.,89(26):265003,2002.
    [65]T. Ido, Y. Miura, K. Kamiya, Y. Hamada, K. Hoshino, A. Fujisawa, K. Itoh, S.-I Itoh, A. Nishizawa, H. Ogawa, Y. Kusama, and JFT-2M group. Geodesic-acoustic-mode in jft-2m tokamak plasmas. Plasma Phys. Control. Fusion, 48(4):S41-S50, April 2006.
    [66]T. Ido, Y. Miura, K. Hoshino, K. Kamiya, Y. Hamada, A. Nishizawa, Y. Kawa-sumi, H. Ogawa, Y. Nagashima, K. Shinohara, Y. Kusama, and JFT-2M group. Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the jft-2m tokamak. Nucl. Fusion,46:512-520,2006.
    [67]Y. Hamada, A. Nishizawa, T. Ido, T. Watari, M. Kojima, Y. Kawasumi, K. Nar-ihara, K. Toi, and JIPP T-IIU Grp. Zonal flows in the geodesic acoustic mode frequency range in the jipp t-iiu tokamak plasmas. Nucl. Fusion,45(2):81-88, 2005.
    [68]Y. Hamada, T. Watari, A. Nishizawa, T. Ido, M. Kojima, Y. Kawasumi, K. Toi, and JIPP T-Ⅱ U Group. Wavelet and fourier analysis of zonal flows and den-sity fluctuations in jipp t-llu tokamak plasmas. Plasma Phys. Control. Fusion, 48(4):S177-S192, April 2006.
    [69]K. J. Zhao, T. Lan, J. Q. Dong, L. W. Yan, W. Y. Hong, C. X. Yu, A. D. Li-u, J. Qian, J. Cheng, D. L. Yu, Q. W. Yang, X. T. Ding, Y. Liu, and C. H. Pan. Toroidal symmetry of the geodesic acoustic mode zonal flow in a tokamak plas-ma. Phys. Rev. Lett.,96(25):255004,2006.
    [70]T. Lan, A. D. Liu, C. X. Yu, L. W. Yan, W. Y. Hong, K. J. Zhao, J. Q. Dong, J. Qian, J. Cheng, D. L. Yu, and Q. W. Yang. Spectral features of the geodesic acoustic mode and its interaction with turbulence in a tokamak plasma. Phys. Plasmas,15(5):056105,2008.
    [71]T. Lan, A. D. Liu, C. X. Yu, L. W. Yan, W. Y. Hong, K. J. Zhao, J. Q. Dong, J. Qian, J. Cheng, D. L. Yu, and Q. W. Yang. Spectral features of the geodesic acoustic mode and its interaction with turbulence in a tokamak plasma. Physics of Plasmas,15(5):056105,2008.
    [72]A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T. Minami, Y. Yoshimura, K. Nagaoka, C. Takahashi, M. Kojima, H. Nakano, S. Ohsima, S. Nishimura, M. Isobe, C. Suzuki, T. Akiyama, K. Ida, K. Toi, S.-I. Itoh, and P. H. Diamond. Identification of zonal flows in a toroidal plasma. Phys. Rev. Lett.,93(16):165002,2004.
    [73]U Kauschke. Observation of coherent self-organized drift structures in a turbu-lent dc discharge. Plasma Physics and Controlled Fusion,35(1):93,1993.
    [74]V Sokolov, X Wei, A K Sen, and K Avinash. Observation and identification of zonal flows in a basic physics experiment. Plasma Physics and Controlled Fusion,48(4):S111,2006.
    [75]C. Holland, J. H. Yu, A. James, D. Nishijima, M. Shimada, N. Taheri, and G. R. Tynan. Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device. Phys. Rev. Lett.,96:195002, May 2006.
    [76]Yoshihiko Nagashima, Sanae-I. Itoh, Shunjiro Shinohara, Masayuki Fukao, Akihide Fujisawa, Kenichiro Terasaka, Yoshinobu Kawai, Naohiro Kasuya, George R. Tynan, Patrick H. Diamond, Masatoshi Yagi, Shigeru Inagaki, Taku-ma Yamada, and Kimitaka Itoh. Coexistence of zonal flows and drift-waves in a cylindrical magnetized plasma. Journal of the Physical Society of Japan, 77(11):114501,2008.
    [77]YU Chang-Xuan LIU A-Di LAN Tao ZHANG Shou-Biao HU Guang-Hai LI Hong LIU Wan-Dong CHEN Ran, XIE Jin-Lin**. Identification of low-frequency zonal flow in a linear magnetic plasma device. Chinese Physics Let-ters,28(2):25202,2011.
    [78]N Winsor, J. L. Johnson, and J. M. Dawson. Geodesic acoustic waves in hydro-magnetic systems. Phys. Fluids,11(11):2448,1968.
    [79]A. Kramer-Flecken, S. Soldatov, H. R. Koslowski, and O. Zimmermann TEX-TOR Team. Properties of geodesic acoustic modes and the relation to density fluctuations. Phys. Rev. Lett.,97(4):045006,2006.
    [80]Zhao Hailin, Lan Tao, Liu Adi, Kong Defeng, Xie Jinlin, Liu Wandong, Yu Changxuan, Zhang Wei, Chang Jiafeng, Wan Baonian, and Li Jiangang. Prop-erties of density fluctuations induced by geodesic acoustic mode in the edge of ht-7 tokamak. Plasma Science and Technology,12(3):262,2010.
    [81]Wenfeng Guo, Shaojie Wang, and Jiangang Li. Effect of impurity ions on the geodesic acoustic mode. Physics of Plasmas,17(11):112510,2010.
    [82]K J Zhao, J Q Dong, L W Yan, W Y Hong, A Fujisawa, C X Yu, Q Li, J Qian, J Cheng, T Lan, A D Liu, H L Zhao, D F Kong, Y Huang, Yi Liu, X M Song, Q W Yang, X T Ding, X R Duan, and Yong Liu. Turbulence and zonal flows in edge plasmas of the hl-2a tokamak. Plasma Physics and Controlled Fusion, 52(12):124008,2010.
    [83]G D Conway, C Troster, B Scott, K Hallatschek, and the ASDEX Upgrade Team. Frequency scaling and localization of geodesic acoustic modes in asdex upgrade. Plasma Physics and Controlled Fusion,50(5):055009,2008.
    [84]A D Liu, T Lan, C X Yu, W Zhang, H L Zhao, D F Kong, J F Chang, and B N Wan. Spectral characteristics of zonal flows in the edge plasmas of the ht-7 tokamak. Plasma Physics and Controlled Fusion,52(8):085004,2010.
    [85]A V Melnikov, V A Vershkov, L G Eliseev, S A Grashin, A V Gudozhnik, L I Krupnik, S E Lysenko, V A Mavrin, S V Perfilov, D A Shelukhin, S V Soldatov, M V Ufimtsev, A O Urazbaev, G Van Oost, and L G Zimeleva. Investigation of geodesic acoustic mode oscillations in the t-10 tokamak. Plasma Physics and Controlled Fusion,48(4):S87,2006.
    [86]F. Zonca and L. Chen. Radial structures and nonlinear excitation of geodesic acoustic modes. EPL (Europhysics Letters),83(3):35001,2008.
    [87]仇志勇.托卡马克等离子体中测地声模的理论研究.博士论文,中国科学技术大学,2010.
    [88]Kimitaka ITOH, Sanae-I. ITOH, Patrick H. DIAMOND, Akihide FUJISAWA, Masatoshi YAGI, Tetsuo WATARI, Yoshihiko NAGASHIMA, and Atsushi FUKUYAMA. Geodesic acoustic eigenmodes. Plasma and Fusion Research, 1:037-037,2006.
    [89]S-I Itoh, K Itoh, M. Sasaki, A Fujisawa, T Ido, and Y Nagashima. Geodesic acoustic mode spectroscopy. Plasma Physics and Controlled Fusion,49(8):L7, 2007.
    [90]Itoh K.-Ejiri A. Sasaki, M. and Y. Takase. Radial eigenmodes of geodesic a-coustic modes. Contrib. Plasma Phys.,48:68-72,2008.
    [91]Zhiyong Qiu, Liu Chen, and Fulvio Zonca. Collisionless damping of short wavelength geodesic acoustic modes. Plasma Physics and Controlled Fusion, 51(1):012001,2009.
    [92]Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and P. H. Diamond. Effects of colli-sional zonal flow damping on turbulent transport. Phys. Rev. Lett.,83(18):3645-3648, Nov 1999.
    [93]C. T. Hsu, K. C. Shaing, and R. Gormley. Time dependent parallel viscosity and relaxation rate of poloidal rotation in the banana regime. Phys. Plasmas, 1(1):132-138,1994.
    [94]S. V. Novakovskii, C. S. Liu, R. Z. Sagdeev, and M. N. Rosenbluth. The radial electric field dynamics in the neoclassical plasmas. Phys. Plasmas,4(12):4272-4282,1997.
    [95]R. Maingi, T. H. Osborne, B. P. LeBlanc, R. E. Bell, J. Manickam, P. B. Snyder, J. E. Menard, D. K. Mansfield, H. W. Kugel, R. Kaita, S. P. Gerhardt, S. A. Sabbagh, and F. A. Kelly. Edge-localized-mode suppression through density-profile modification with lithium-wall coatings in the national spherical torus experiment. Phys. Rev. Lett.,103:075001, Aug 2009.
    [96]A. I. Smolyakov, P. H. Diamond, and M. Malkov. Coherent structure phenome-na in drift wave zonal flow turbulence. Phys. Rev. Lett.,84:491-494, Jan 2000.
    [97]T. Taniuti and H. Washimi. Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett.,21:209-212, Jul 1968.
    [98]Akira Hasegawa. Observation of self-trapping instability of a plasma cyclotron wave in a computer experiment. Phys. Rev. Lett.,24:1165-1168, May 1970.
    [99]Martin Centurion, Mason A. Porter, Ye Pu, P. G. Kevrekidis, D. J. Frantzeskakis, and Demetri Psaltis. Modulational instability in a layered kerr medium:Theory and experiment. Phys. Rev. Lett.,97:234101, Dec 2006.
    [100]R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko. Convective cells and anomalous plasma diffusion. Soviet Journal of Plasma Physics,4(3):306-310, 1978.
    [101]G Manfredi, C M Roach, and R O Dendy. Zonal flow and streamer generation in drift turbulence. Plasma Physics and Controlled Fusion,43(6):825,2001.
    [102]K Hallatschek and P H Diamond. Modulational instability of drift waves. New Journal of Physics,5(1):29,2003.
    [103]L. Chen, Z. H. Lin, and R. White. Excitation of zonal flow by drift waves in toroidal plasmas. Phys. Plasmas,7(8):3129-3132,2000.
    [104]T. E. Stringer. Diffusion in toroidal plasmas with radial electric field. Phys. Rev. Lett.,22(15):770-774, Apr 1969.
    [105]B. B. Kadomtsev. "Plasma Turbulence". New York:Academic,1965.
    [106]Y. Nagashima, K. Hoshino, A. Ejiri, K. Shinohara, Y. Takase, K. Tsuzuki, K. Uehara, H. Kawashima, H. Ogawa, T. Ido, Y. Kusama, and Y. Miura. Ob-servation of nonlinear coupling between small-poloidal wave-number potential fluctuations and turbulent potential fluctuations in ohmically heated plasmas in the jft-2m tokamak. Phys. Rev. Lett.,95:095002, Aug 2005.
    [107]Xie Jin-Lin, Chen Ran, Lan Tao, Liu A-Di, Liu Wan-Dong, and Yu Chang-Xuan. Characterization of low frequency zonal flow in linear magnetized plas-ma. The 51st Annual Meeting of the American Physical Society (APS) Division of Plasma Physics,2009.
    [108]M. A. Malkov and P. H. Diamond. Bifurcation and scaling of drift wave tur-bulence intensity with collisional zonal flow damping. Physics of Plasmas, 8(9):3996-4009,2001.
    [109]M. Xu, G. R. Tynan, P. H. Diamond, P. Manz, C. Holland, N. Fedorczak, S. Chakraborty Thakur, J. H. Yu, K. J. Zhao, J. Q. Dong, J. Cheng, W. Y. Hong, L. W. Yan, Q. W. Yang, X. M. Song, Y. Huang, L. Z. Cai, W. L. Zhong, Z. B. Shi, X. T. Ding, X. R. Duan, and Y. Liu. Frequency-resolved nonlinear turbulent energy transfer into zonal flows in strongly heated/-mode plasmas in the hl-2a tokamak. Phys. Rev. Lett.,108:245001, Jun 2012.
    [110]T. S. Hahm, M. A. Beer, Z. Lin, G. W. Hammett, W. W. Lee, and W. M. Tang. Shearing rate of time-dependent e x b flow. Phys. Plasmas,6(3):922-926,1999.
    [111]R. A. Moyer, G. R. Tynan, C. Holland, and M. J. Burin. Increased nonlinear coupling between turbulence and low-frequency fluctuations at the l-h transi-tion. Phys. Rev. Lett.,87:135001, Sep 2001.
    [112]P. N. Guzdar, R. G. Kleva, R. J. Groebner, and P. Gohil. Comparison of a low-to high-confinement transition theory with experimental data from diii-d. Phys. Rev. Lett.,89:265004, Dec 2002.
    [113]Eun-jin Kim and P. H. Diamond. Zonal flows and transient dynamics of the l-h transition. Phys. Rev. Lett.,90:185006, May 2003.
    [114]K. Miki, P. H. Diamond, O. D. Gurcan, G. R. Tynan, T. Estrada, L. Schmitz, and G. S. Xu. Spatio-temporal evolution of the 1-? i-? h transition. Physics of Plasmas,19(9):092306,2012.
    [115]S. J. Zweben, R. J. Maqueda, R. Hager, K. Hallatschek, S. M. Kaye, T. Munsat, F. M. Poli, A. L. Roquemore, Y. Sechrest, and D. P. Stotler. Quiet periods in edge turbulence preceding the l-h transition in the national spherical torus experiment. Physics of Plasmas,17(10):102502,2010.
    [116]G. D. Conway, C. Angioni, F. Ryter, P. Sauter, and J. Vicente. Mean and os-cillating plasma flows and turbulence interactions across the l-h confinement transition. Phys. Rev. Lett.,106:065001, Feb 2011.
    [117]T. Estrada, C. Hidalgo, T. Happel, and P. H. Diamond. Spatiotemporal structure of the interaction between turbulence and flows at the l-h transition in a toroidal plasma. Phys. Rev. Lett.,107:245004, Dec 2011.
    [118]G. S. Xu, B. N. Wan, H. Q. Wang, H. Y. Guo, H. L. Zhao, A. D. Liu, V. Naulin, P. H. Diamond, G. R. Tynan, M. Xu, R. Chen, M. Jiang, P. Liu, N. Yan, W. Zhang, L. Wang, S. C. Liu, and S. Y. Ding. First evidence of the role of zonal flows for the l-h transition at marginal input power in the east tokamak. Phys. Rev. Lett.,107:125001, Sep 2011.
    [119]L. Schmitz, L. Zeng, T. L. Rhodes, J. C. Hillesheim, E. J. Doyle, R. J. Groebner, W. A. Peebles, K. H. Burrell, and G. Wang. Role of zonal flow predator-prey oscillations in triggering the transition to h-mode confinement. Phys. Rev. Lett., 108:155002, Apr 2012.
    [120]P.H. Diamond, S. Champeaux, M. Malkov, A. Das, I. Gruzinov, M.N. Rosen-bluth, C. Holland, B. Wecht, A.I. Smolyakov, F.L. Hinton, Z. Lin, and T.S. Hahm. Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation. Nuclear Fusion,41(8):1067,2001.
    [121]H. Zohm. Dynamic behavior of the 1-h transition. Phys. Rev. Lett,,72:222-225, Jan 1994.
    [122]H Zohm, F Ryter, C Fuchs, A Herrmann, M Kaufmann, J Neuhauser, and N Salmon. Dynamic behaviour of the h-mode in asdex upgrade. Plasma Physics and Controlled Fusion,36(7A):A129,1994.
    [123]J.G. Cordey, D.G. Muir, V.V. Parail, G. Vayakis, S. Ali-Arshad, D.V. Bartlet-t, D.J. Campbell, A.L. Colton, A.E. Costley, R.D. Gill, A. Loarte, S.V. Neu-dachin, L. Porte, A.C.C. Sips, E.M. Springmann, P.M. Stubberfield, A. Taroni, K. Thomsen, and M.G. Von Hellermann. Evolution of transport through the 1-h transition in jet. Nuclear Fusion,35(5):505,1995.
    [124]R. J. Colchin, M. J. Schaffer, B. A. Carreras, G. R. McKee, R. Maingi, T. N. Carlstrom, D. L. Rudakov, C. M. Greenfield, T. L. Rhodes, E. J. Doyle, N. H. Brooks, and M. E. Austin. Slow L- H transitions in diii-d plasmas. Phys. Rev. Lett.,88:255002, Jun 2002.
    [125]R R Weynants, S Jachmich, and G Van Oost. Demonstration of the role of exb flow shear in improved confinement. Plasma Physics and Controlled Fusion, 40(5):635,1998.
    [126]S Jachmich, G Van Oost, R R Weynants, and J A Boedo. Experimental investi-gations on the role of exb flow shear in improved confinement. Plasma Physics and Controlled Fusion,40(6):1105,1998.
    [127]T. Estrada, T. Happel, C. Hidalgo, E. Ascasibar, and E. Blanco. Experimen-tal observation of coupling between turbulence and sheared flows during 1-h transitions in a toroidal plasma. EPL (Europhysics Letters),92(3):35001,2010.
    [128]B.A. Carreras, B.Ph. van Milligen, R.B. Perez, M.A. Pedrosa, C. Hidalgo, and C. Silva. Extraction of intermittent waveforms associated with the zon-al flow at the transition leading to the edge shear flow layer. Nuclear Fusion, 51(5):053022,2011.
    [129]Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shi-h, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,454(1971):903-995,1998.
    [130]Tom Burr. Hilbert-huang transform analysis of hydrological and environmental time series. Eos Trans. AGU,90(22),2009.
    [131]R. Jha, D. Raju, and A. Sen. Analysis of tokamak data using a novel hilbert transform based technique. Physics of Plasmas,13(8):082507,2006.
    [132]J. M. Beall, Y. C. Kim, and E. J. Powers. Estimation of wavenumber and fre-quency spectra using fixed probe pairs. J. Appl. Phys.,53(6):3933-3940,1982.
    [133]Naofumi Iwama, Yasuo Ohba, and Takashige Tsukishima. Estimation of wavenumber and frequency spectra using fixed probe pairs. J. Appl. Phys., 50(5):3197-3206,1979.
    [134]D. R. Brillinger and M. Rosenblatt. "Spectral Analysis of Time Series.". Pre-liminary version edition,1967.
    [135]Young C. Kim and Edward J. Powers. Digital bispectral analysis and its appli-cations to nonlinear wave interactions. IEEE. Transactions on Plasma Science, PS-7(2):120-131,1979.
    [136]Y. C. Kim, J. M. Beall, E. J. Powers, and R. W. Miksad. Bispectrum and non-linear wave coupling. Physics of Fluids,23(2):258-263,1980.
    [137]Jamsek Janez, S. Aneta, V. E. Peter, McClintock, and et.al. Time-phase bispec-tral analysis. Physical Review E,68:016201,2003.
    [138]V. Chandran and S.L. Elgar. Time-phase bispectral analysis. IEEE Trans. Signal Process,39:2640-2651,1991.
    [139]A.R. Osborne and A. Provenzale. Finite correlation dimension for stochastic systems with power-law spectra. Physica D:Nonlinear Phenomena,35(3):357-381,1989.
    [140]F. J. Crossley, P. Uddholm, P. Duncan, and M. Khalid. Experimental study of drift-wave saturation in quadrupole geometry. Plasma Phys. Control. Fusion, 34(2):235-262,1992.
    [141]P J Duncan and M G Rusbridge. The'amplitude correlation'method for the s-tudy of nonlinear interactions of plasma waves. Plasma Physics and Controlled Fusion,35(7):825,1993.
    [142]H L Pecseli and J Trulsen. On the interpretation of experimental methods for in-vestigating nonlinear wave phenomena. Plasma Phys. Control. Fusion,35:825-835,1993.
    [143]Q. W. Yang, Yong Liu, X. T. Ding, J. Q. Dongl, L. W. Yan, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. R. Duan, X. M. Song, Z. Cao, J. H. Zhang, W.C. Mao, C.P. Zhou, X.D. Li, S.J.Wang, M.N. Bu, W. Chen, Y.H. Chen, C.H. Cui, Z.Y. Cui, Z.C. Deng,Y.B. Dong, B.B. Feng, Q.D. Gao, W.Y. Hong, H.T. Hu, Y. Huang, Z.H. Kang, T. Lan, B. Li, G.S. Li, H.J. Li, Qiang Li, Qing Li, W. Li, Y.G. Li, Z.J. Li, Yi Liu, Z.T. Liu, C.W. Luo, X.H. Mao, YD. Pan, J.F. Peng, K. Shao, Z.B. Shi, X.Y. Song, A.K.Wang, H. Wang, M.X.Wang, Q.M.Wang, Y.Q. Wang, W.W. Xiao, Z.G. Xiao, Y.F. Xie, L.H. Yao, L.Y. Yao, C.X. Yu, B.S. Yuan, K.J. Zhao, Y.Z. Zheng, G.W. Zhong, H.Y. Zhou, Y. Zhou, J.C. Yan, C.H. Pan, and the HL-2A team. Overview of hl-2a experiment results. Nucl. Fusion, 47:S635-S644,2007.
    [144]段旭如.中国环流器二号A装置实验进展.2009年度“中国等离子体物理暑期学校”,核工业西南物理研究院,2009.
    [145]Longwen Yan, Wenyu Hong, Jun Qian, Cuiwen Luo, and Li Pan. Fast recip-rocating probe system on the hl-2a tokamak. Rev. Sci. Instrum.,76(9):093506, 2005.
    [146]Zhao Hailin, Lan Tao, Liu Adi, Kong Defeng, Xie Jinlin, Liu Wandong, Yu Changxuan, Zhang Wei, Chang Jiafeng, Wan Baonian, and Li Jiangang. Prop-erties of density fluctuations induced by geodesic acoustic mode in the edge of ht-7 tokamak. Plasma Science and Technology,12(3):262,2010.
    [147]G F Matthews. Tokamak plasma diagnosis by electrical probes. Plasma Phys. Control. Fusion,36(10):1595-1628,1994.
    [148]P. C. Stangeby and G. M. McCracken. Plasma boundary phenomena in toka-maks. Nucl. Fusion,30(7):1225,1990.
    [149]I. H. Hutchinson. "Principles of Plasma Diagnostics". University Press, Cam-bridge, second edition,2002.
    [150]H. Lin, G. X. Li, Roger D. Bengtson, Ch. P. Ritz, and H. Y. W. Tsui. A com-parison of langmuir probe techniques for measuring temperature fluctuations. Review of Scientific Instruments,63(10):4611-4613,1992.
    [151]H. Y. W. Tsui, R. D. Bengtson, G. X. Li, H. Lin, M. Meier, Ch. P. Ritz, and A. J. Wootton. A new scheme for langmuir probe measurement of transport and elec-tron temperature fluctuations. Review of Scientific Instruments,63(10):4608-4610,1992.
    [152]S.J. Levinson, J.M. Beall, E.J. Powers, and R.D. Bengtson. Space/time statistics of the turbulence in a tokamak edge plasma. Nuclear Fusion,24(5):527,1984.
    [153]D W Ross. On standard forms for transport equations and quasilinear fluxes. Plasma Physics and Controlled Fusion,34(2):137,1992.
    [154]Deng Zhou. Electromagnetic geodesic acoustic modes in tokamak plasmas. Physics of Plasmas,14(10):104502,2007.
    [155]H.L. Berk, C.J. Boswell, D. Borba, A.C.A. Figueiredo, T. Johnson, M.F.F. Nave, S.D. Pinches, S.E. Sharapov, and JET EFDA contributors. Explanation of the jet n= 0 chirping mode. Nuclear Fusion,46(10):S888,2006.
    [156]V. B. Lebedev and P. H. Diamond. Theory of the spatiotemporal dynamics of transport bifurcations. Physics of Plasmas,4(4):1087-1096,1997.
    [157]N. Miyato Y. Kishimoto, K. Miki. Proceedings of the 21th IAEA Fusion Energy Conference, Chengdu, China, PD-2,2006.
    [158]A. Fujisawa, K. Itoh, A. Shimizu, H. Nakano, S. Ohshima, H. Iguchi, K. Mat-suoka, S. Okamura, T. Minami, Y. Yoshimura, K. Nagaoka, K. Ida, K. Toi, C. Takahashi, M. Kojima, S. Nishimura, M. Isobe, C. Suzuki, T. Akiyama, Y. Nagashima, S.-I. Itoh, and P. H. Diamond. Experimental evidence of a zonal magnetic field in a toroidal plasma. Phys. Rev. Lett.,98:165001, Apr 2007.
    [159]S. V. Novakovskii, C. S. Liu, R. Z. Sagdeev, and M. N. Rosenbluth. The radial electric field dynamics in the neoclassical plasmas. Phys. Plasmas,4(12):4272-4282,1997.
    [160]T. Ido, Y. Miura, K. Kamiya, Y. Hamada, K. Hoshino, A. Fujisawa, K. Itoh, S.-I Itoh, A. Nishizawa, H. Ogawa, Y. Kusama, and JFT-2M group. Geodesic-acoustic-mode in jft-2m tokamak plasmas. Plasma Phys. Control. Fusion, 48(4):S41-S50, April 2006.
    [161]Y. Xu, I. Shesterikov, M. Van Schoor, M. Vergote, R. R. Weynants, A. Kraemer-Flecken, S. Zoletnik, S. Soldatov, D. Reiser, K. Hallatschek, C. Hidalgo, and TEXTOR Team. Observation of geodesic acoustic modes (GAMs) and their radial propagation at the edge of the TEXTOR tokamak. PLASMA PHYSICS AND CONTROLLED FUSION,53(9), SEP 2011.
    [162]K. J. Zhao, J. Q. Dong, L. W. Yan, W. Y. Hong, Q. Li, J. Qian, J. Cheng, A. D. Liu, H. L. Zhao, D. F. Kong, Yi Liu, Y. Huang, X. M. Song, X. T. Ding, Q. W. Yang, X. R. Duan, and Yong Liu. Two distinct regimes of turbulence in HL-2A tokamak plasmas. NUCLEAR FUSION.49(8), AUG 2009.
    [163]Y Nagashima, K Itoh, S-I Itoh, A Fujisawa, M Yagi, K Hoshino, K Shinohara, A Ejiri, Y Takase, T Ido, K Uehara, Y Miura, and the JFT-2M group. In search of zonal flows by using direct density fluctuation measurements. Plasma Physics and Controlled Fusion,49(10):1611,2007.
    [164]H. S. Zhang, Z. Qiu, L. Chen, and Z. Lin. The importance of parallel nonlin-earity in the self-interaction of geodesic acoustic mode. NUCLEAR FUSION, 49(12), DEC 2009.
    [165]M. Sasaki, K. Itoh, Y. Nagashima, A. Ejiri, and Y. Takase. Nonlinear self-interaction of geodesic acoustic modes in toroidal plasmas. PHYSICS OF PLASMAS,16(2), FEB 2009.
    [166]D. J. Schlossberg, D. K. Gupta, R. J. Fonck, G. R. McKee, and M. W. Shafer. Velocity fluctuation analysis via dynamic programming. Review of Scientific Instruments,77(10):10F518,2006.
    [167]Deepak K. Gupta, George R. McKee, and Raymond J. Fonck. Dynamic pro-gramming based time-delay estimation technique for analysis of time-varying time-delay. Review of Scientific Instruments,81(1):013501,2010.
    [168]H. Biglari, P. H. Diamond, and P. W. Terry. Influence of sheared poloidal rota-tion on edge turbulence. Physics of Fluids B:Plasma Physics,2(1):1-4,1990.
    [169]Zhengying Cui, Shigeru Morita, Bingzhong Fu, Yuan Huang, Ping Sun, Yadong Gao, Yuan Xu, Chunfeng Dong, Ping Lu, Quanming Wang, Xuantong Ding, Qingwei Yang, and Xuru Duan. Space-resolved vacuum ultraviolet spectrom-eter system for edge impurity and temperature profile measurement in hl-2a. Review of Scientific Instruments,81(4):043503,2010.
    [170]R.J. Colchin, B.A. Carreras, R. Maingi, L.R. Baylor, T.C. Jernigan, M.J. Schaf-fer, T.N. Carlstrom, N.H. Brooks, C.M. Greenfield, P. Gohil, G.R. McKee, D.L. Rudakov, T.L. Rhodes, E.J. Doyle, M.E. Austin, and J.G. Watkins. Physics of slow 1-h transitions in the diii-d tokamak. Nuclear Fusion,42(9):1134,2002.
    [171]Deepak K. Gupta, George R. McKee, and Raymond J. Fonck. Dynamic pro-gramming based time-delay estimation technique for analysis of time-varying time-delay. Review of Scientific Instruments,81(1):013501,2010.
    [172]E.J. Doyle (Chair Transport Physics), W.A. Houlberg (Chair Confinemen-t Database, Modelling), Y. Kamada (Chair Pedestal, Edge), V. Mukhovatov (co Chair Transport Physics), T.H. Osborne (co Chair Pedestal, Edge), A. Polevoi (co Chair Confinement Database, Modelling), G. Bateman, J.W. Connor, J.G. Cordey (retired), T. Fujita, X. Garbet, T.S. Hahm, L.D. Horton, A.E. Hub-bard, F. Imbeaux, F. Jenko, J.E. Kinsey, Y. Kishimoto, J. Li, T.C. Luce, Y. Martin, M. Ossipenko, V. Parail, A. Peeters, T.L. Rhodes, J.E. Rice, C.M. Roach, V. Rozhansky, F. Ryter, G. Saibene, R. Sartori, A.C.C. Sips, J.A. S-nipes, M. Sugihara, E.J. Synakowski, H. Takenaga, T. Takizuka, K. Thomsen, M.R. Wade, H.R. Wilson, ITPA Transport Physics Topical Group, ITPA Con-finement Database, Modelling Topical Group, ITPA Pedestal, and Edge Top-ical Group. Chapter 2:Plasma confinement and transport. Nuclear Fusion, 47(6):S18,2007.
    [173]F. Ryter, T. Putterich, M. Reich, A. Scarabosio, E. Wolfrum, R. Fischer, M. Gemisic Adamov, N. Hicks, B. Kurzan, C. Maggi, R. Neu, V. Rohde, G. Tardini, and the ASDEX Upgrade TEAM. H-mode threshold and confinement in helium and deuterium in asdex upgrade. Nuclear Fusion,49(6):062003,2009.
    [174]Grigory Kagan and Peter J. Catto. Zonal flow in a tokamak pedestal. Physics of Plasmas,16(5):056105,2009.
    [175]M. G. Shats, D. L. Rudakov, R. W. Boswell, and G. G. Borg. Ion temperature and plasma flows in improved confinement mode in the h-1 heliac. Physics of Plasmas,4(10):3629-3634,1997.
    [176]J. Kim, K. H. Burrell, P. Gohil, R. J. Groebner, Y.-B. Kim, H. E. St. John, R. P. Seraydarian, and M. R. Wade. Rotation characteristics of main ions and impurity ions in H-mode tokamak plasma. Phys. Rev. Lett.,72:2199-2202, Apr 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700