用户名: 密码: 验证码:
贝叶斯非参数统计中的先验的估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贝叶斯非参数统计是一个新兴的但发展迅速的统计研究领域,不但其理论成果非常丰富,其实际应用范围也十分广泛。然而,贝叶斯非参数统计的传统研究着眼于一种纯贝叶斯的多层先验结构,其中需要事先确定先验分布。一旦不能事先容易地确定先验,特别是因为贝叶斯非参数统计通常要求一个复杂的过程先验,那么这一多层先验结构将会受到挑战和质疑。传统的贝叶斯非参数统计分析的这一缺陷促使我们采用一种更加灵活,更加稳健的统计框架—经验贝叶斯分析—来实施统计推断和统计建模。这是因为在进行经验贝叶斯分析时,人们通常基于观测数据来估计先验参数,而不是事先主观地给定。另外,众所周知,如果可识别性不成立,那么基于观测值来估计参数将会变得毫无意义,而且,可识别性也是证明参数估计或者后验分布的渐近收敛性质的前提条件之一。许多统计学家试图找出可识别性成立的条件,但据我们所知,确实存在许多关于有限混合可识别性的理论成果;但可数无穷混合的可识别性仍然很少被研究到,因此也是一个开放的问题。例如,Ferguson(1983)指出Dirichlet过程先验的混合模型,作为一个可数无穷混合的特例,其可识别性尚未解决。为了解决贝叶斯非参数统计中这些问题和挑战,基于经验贝叶斯的框架和几种不同的数据结构:一元数据,多元数据和单调缺失数据,我们尝试分别对几类过程先验中的参数进行估计。另外,对可数无穷混合的可识别性问题,我们试图提出某些更加方便验证的充分条件。本博士论文的主要内容如下所述。
     首先,在第一章中,我们对贝叶斯非参数统计进行一个全面的回顾,包括:人们为什么使用贝叶斯非参数统计,其简要的历史发展,其丰富的理论成果和实际应用。我们以回顾一系列文献的方式,阐述了贝叶斯非参数统计中的计算问题、未来的研究方向和可能面临的挑战。在此之后,我们引入了人们所熟知的经验贝叶斯假定和几种数据结构。这些数据结构非常普遍且颇具代表性,因而能够表达对多种实际数据进行统计建模的设想。
     在第二章,通过引入分布集上的良序和序列的一致收敛,我们提出了一个可数无穷混合可识别性成立的充分条件,并且相信此充分条件比Tallis(1969)所提出的无穷维矩阵条件更加容易验证。然后我们运用此充分条件去重新验证了已知可识别性成立的几个例子,进而考查了几个新分布族的可数无穷混合的可识别性,其中包括:正态分布,伽玛分布,柯西分布,非中心卡方分布和广义逻辑斯蒂分布。
     第三章涉及单调缺失数据机制下Dirichlet过程先验中的先验参数估计问题。我们试图基于经验贝叶斯框架下的部分观测数据,来估计DP(α,α)中的未知精度参数α和未知概率测度a。我们发现,在Dirichlet过程先验的假定下,数据的缺失不影响精度参数α的估计,因其可以通过极大化某个似然函数来有效地估计。然而,对假定密度函数存在的概率测度a而言,我们必须借助于处理缺失数据的非参数密度估计方法来对其进行估计。精度参数α的估计的强相合性和渐近正态性在非常一般的条件下得到了证明,同时我们也证明了a的密度估计的L1收敛性。另外基于二维单调缺失数据,通过最小化渐近积分均方误差,我们提出了此密度估计的最优窗宽选取方法,并且发现此密度估计优于单调缺失数据下其他已有的方法。
     第四章涉及一元数据下Polya tree先验中的先验参数估计问题,也就是说,在事先确定好分划(?)的情况下,我们试图基于数据来估计PT(π,(?))中参数集合(?)中的参数。首先,我们回顾了Polya tree先验的基本模型和理论性质,然后定义了几类Polya tree先验,并给出了使得它们取绝对连续分布集作为支撑的充分条件。之后,我们提出了Polya tree先验中的先验参数的两种估计:矩估计和极大似然估计,并讨论了相应的理论性质,其中包括该模型与beta-binomial分布之间的联系。最后,我们提供了各种估计的数值模拟来验证各自的理论表现。
     在第五章中,基于经验贝叶斯框架下的多元观测数据,我们进行了多元Polya tree先验的参数估计。这一节可以视为上述一元Polya tree先验的参数估计问题的一个多元推广,而且此处的经验贝叶斯分析确实类似于一元情形下的相应的分析。首先我们给出多元Polya tree先验的定义和理论性质,然后提出相应的数据结构和模型假设。接下来,我们给出多元Polya tree先验中的先验参数的矩估计和极大似然估计,并讨论了该模型与Dirichlet-multinomial分布之间的联系。最后,我们进行了数值模拟,并通过相应的图表来说明我们所提出的经验贝叶斯估计的理论性质。
Bayesian nonparametrics is a relatively young, yet fast growing field of statistics, in which it not only produces a large number of theoretical achievements but also widely applies itself in various substantive fields and directions. However, its classical research spots focus on a pure Bayes hierarchical structure, with the priors specified presumably. This framework might be challenged once the prior could not be assigned easily, especially in view of the fact that Bayesian nonparametrics requests a rather complicated process prior. This disadvantage of traditional Bayesian nonparametric analysis stimulates us to employ a more flexible and robust framework—empirical Bayes—to proceed statistical inference and modeling. This is due to in empirical Bayes analysis, the prior parameters are estimated based on observations, rather than pre-specified. On the other hand, as is well-known, estimating parameters via observations would not make sense if without identifiability, and identifiability is one of the preconditions to prove asymptotic conver-gence properties of parameter estimates or posterior distributions. Many statisticians tried to figure out under what conditions identifiability will naturally holds and to our knowledge, there exist plenty of fruits on identifiability of finite mixtures while identifia-bility for countably infinite mixture models is still rarely studied thus an open problem. For example, as a special kind of countably infinite mixture, Ferguson (1983) pointed out the identifiability of Dirichlet process mixture model was yet unsolved and ambiguous. Motivated by these challenges in Bayesian nonparametrics, we try to estimate the prior parameters of several process priors under an empirical Bayes framework with different data structures:univariate data, multivariate data, even monotone missing data. We also try to generate some conveniently-applied sufficient conditions for identifiability of countably infinite mixtures. This dissertation is organized as the following chapters.
     Firstly, we provide a comprehensive review on Bayesian nonparametrics in Chapter1, including why we apply Bayesian nonparametrics, a brief history of Bayesian non-parametrics, its abundant theoretical achievements and applications. We also discuss the computational issues, future research directions and potential challenges to Bayesian nonparametrics, via recalling a series of literatures from numerous statisticians. Also, we introduce several types of data structures, accompanied with a familiar empirical Bayes assumption. We believe these data structures are so general and representative that they would recapitulate our efforts on modeling various practical datasets.
     In chapter2, it presents a sufficient condition for identifiability of countably infinite mixtures, which is expressed by means of well-ordering on the sets of distributions and uniform convergence of series. We think this sufficient condition is easier to be checked than the infinite-dimensional matrix conditions generated by Tallis (1969). Then this suf-ficiency is applied to revisit some examples for which the identifiability is well-established and further explore the identifiability for several novel distribution families, including normal, gamma, cauchy, noncentral χ2, generalized logistic distributions.
     The next chapter is concerned with estimating the prior parameters in Dirichlet pro-cess priors when the data are monotonically missing. Our goal is to estimate the unknown precision parameter a and the probability measure a of DP(α, α), with partially observed data in the empirical Bays framework. We find that, under Dirichlet process priors, data missing has no impact on the estimation of the precision parameter a, which can be effec-tively estimated by maximizing certain likelihood function. For the probability measure a, on the contrary, one has to resort to nonparametric density estimation methodologies for missing data when it assumes a has density. The strong consistency and asymp-totic normality of the estimates of a are given under very weak conditions, then the L1convergence of a's density estimate is also proved. Besides, the optimal selection of the bandwidths via minimizing the asymptotic mean integrated squared errors involved in this density estimate is examined for2-dimensional missing data. We find that our density estimate behaves better than some existing approaches under monotone missing data.
     Chapter4is related to the estimation of prior parameters in Polya tree priors with univariate observations. Specifically, we try to obtain the empirical Bayes estimates of prior parameters in (?) of Polya tree prior PT(Ⅱ,(?)) with presumably specified partition II based on data. Firstly, we overview the basic model and theoretical properties of Polya tree priors, then define several kinds of Polya tree priors and give sufficiencies to take absolutely continuous distributions as their supports. Two types of estimates to prior parameters in Polya tree priors—the maximum likelihood estimate and the moment estimate—are given, where associated properties are also illustrated, including the rela-tionship between this model and Beta-binomial distribution. We also present numerical simulations on various estimates to validate their respective theoretical performances.
     In the last chapter, we estimate the prior parameters of multivariate Polya tree prior based on multivariate observed samples within an empirical Bayes framework. This part could be regarded as a multivariate generalization to the univariate Polya tree, and the corresponding empirical Bayes analyses indeed are similar to the ones of univariate case. At the commencement, we give the definition and prove several theoretical properties of multivariate Polya tree priors, accompanied with data structure and model assumptions. Then we provide the moment estimate and maximum likelihood estimate to the prior parameters of multivariate Polya tree priors, and discuss the relationship between this model and the Dirichlet-multinomial distribution. Numerical simulations are also given to illustrate the performance of the empirical Bayes estimates, in forms of several tables and graphs.
引文
[1]Ahmad, K.E. and Al-Hussaini, E.K. (1982). Remarks on the non-identifiability of mixtures of distributions. Annals of the Institute of Statistical Mathematics,34,543-544.
    [2]Al-Hussaini, E.K. and Ahmad, K.E. (1981). On the identifiability of finite mixtures of distributions. IEEE Transactions on Information Theory,27,664-668.
    [3]Allison, P.D. (2000). Multiple Imputation for Missing Data:A Cautionary Tale. Sociological Methods and Research,28, No.3,301-309.
    [4]Amewou-Atisso, M., Ghosal, S., Ghosh, J.K. and Ramamoorthi, R.V. (2003). Posterior consistency for semiparametric regression problems. Bernoulli,9,291-312.
    [5]Antoniak, C.E. (1974). Mixtures of Dirichlet processes with applications to Bayesian non-parametric problems. The Annals of Statistics,2,1152-1174.
    [6]Atienza, N., Garcia-Heras, J. and Munoz-Pichardo, J.M. (2006). A new condition for iden-tifiability of finite mixture distributions. Metrika,63,215-221.
    [7]Barron, A.R. (1989). Uniformly powerful goodness of fit tests. The Annals of Statistics,17, No.1,107-124.
    [8]Barron, A.R. (1999). Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems. In Bayesian statistics,6, New York:Oxford Univ. Press,27-52.
    [9]Barron, A.R., Schervish, M.J. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems. The Annals of Statistics,27, No.2,536-561.
    [10]Beal, M.J. and Krishnamurthy, P. (2012). Gene Expression Time Course Clustering with Countably Infinite Hidden Markov Models. arXiv preprint arXiv:1206.6824-
    [11]Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis Nonparametrics, 2nd ed., Springer-Verlag, New York.
    [12]Berger, J.O. and Guglielmi, A. (2001). Bayesian and Conditional Frequentist Testing of a Parametric Model versus Nonparametric Alternatives. Journal of the American Statistical Association,96,174-184.
    [13]Berry, D. A. and Christensen, R. (1979). Empirical Bayes Estimation of a Binomial Param-eter Via Mixtures of Dirichlet Processes. The Annals of Statistics,7,558-568.
    [14]Bigelow, J.L. and Dunson, D.B. (2009). Bayesian semiparametric joint models for functional predictors. Journal of the American Statistical Association,104,26-36.
    [15]Blackwell, D. (1973). Discreteness of Ferguson selections. The Annals of Statistics,1,356-358.
    [16]Blackwell. D. and MacQueen, J.B. (1973). Ferguson distributions via Polya urn schemes. The Annals of Statistics,1,353-355.
    [17]Blei, D.M., Griffiths. T.L.. Jordan, M.I. and Tenenbaum, J.B. (2004). Hierarchical topic models and the nested Chinese restaurant process. In Advances in Neural Information Processing Systems,16, ed. S. Thrun, B. Scholkopt and L.K. Saul. Cambridge, Mass.:MIT Press.
    [18]Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003). Latent Dirichlet allocation. Journal of Ma-chine Learning Research,3,993-1022.
    [19]Bouguila, N. and Ziou, D. (2012). A countably infinite mixture model for clustering and feature selection. Knowledge and Information Systems,33, No.2,351-370.
    [20]Breiman, L., Friedman, J., Olshen, R.A. and Stone, C.J. (1984). Classification and Regres-sion Trees. Monterey, Calif.:Wadsworth Press.
    [21]Buhlmann, H. and Gisler, A. (2005). A course in credibility theory and its applications, Springer.
    [22]Carlin, B.P. and Louis, T.A. (2000). Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed., Chapman & Hall/CRC, New York.
    [23]Casella, G. (1985). An Introduction to Empirical Bayes Data Analysis. The American Statistician,39, No.2,83-87.
    [24]Chandra, S. (1977). On the mixtures of probability distributions. Scandinavian Journal of Statistics,3,105-112.
    [25]Chatfield, C. and Goodhardt, G.J. (1970). The beta-binomial model for consumer purchas-ing behavior. Journal of the Royal Statistical Society. Series C (Applied Statistics),19, No.3,240-250.
    [26]Chen, M., Silva, J., Paisley, J., Wang, C., Dunson, D.B. and Carin, L. (2010). Compressive sensing on manifolds using a nonparametric mixture of factor analysis:Algorithm and performance bounds. IEEE Transactions on Signal Processing,58,6140-6155.
    [27]Chen, S.F. and Goodman, J.T. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech and Language,13,359-393.
    [28]Chipman, H.A., George, E.I. and McCulloch, R.E. (2010). BART:Bayesian additive re-gression trees. The Annals of Applied Statistics,4, No.1,266-298.
    [29]Christensen, R., Hanson, T.E. and Jara, A. (2008). Parametric Nonparametric Statistics. The American Statistician,62, No.4,296-306.
    [30]Cowans, P. (2004). Information retrieval using hierarchical Dirichlet processes. In Proceed-ings of the Annual International Conference on Research and Development in Information Retrival,27,564-565.
    [31]Cowans, P. (2006). Probabilistic document modelling. Ph.D. Thesis, University of Cam-bridge.
    [32]DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability. Springer-Verlag, New York.
    [33]De Iorio, M., Muller, P., Rosner, G.L. and MacEachern, S.N. (2004). An anova model for dependent random measures. Journal of the American Statistical Association,99,205-215.
    [34]De la Cruz-Mesia, R., Quintana, F.A. and Muller, P. (2007). Semiparametric Bayesian classification with longitudinal markers. Applied Statistics,56,119-137.
    [35]Devroye, L. and Gyorfi, L. (1985). Nonparametric density estimation:The L1 view, John Wiley & Sons, Inc., New York.
    [36]Devroye, L. and Krzyzak, A. (2002). New Multivariate Product Density Estimators. Journal of Multivariate Analysis,82,88-110.
    [37]Dey, D., Muller, P. and Sinha, D. (1998). Practical Nonparametric and Semiparametric Bayesian Statistics, Springer-Verlag, New York.
    [38]Diaconis, P. and Freedman, D.A. (1986a). On the consistency of Bayes estimates. The Annals of Statistics,14, No.l,1-67.
    [39]Diaconis, P. and Freedman, D.A. (1986b). On inconsistent Bayes estimates of location. The Annals of Statistics,14, No.1,68-87.
    [40]Do, K.A., Muller, P. and Tang, F. (2005). A Bayesian mixture model for differential gene expression. Applied Statistics,54,627-644.
    [41]Doksum, K. (1974). Tailfree and Neutral Random Probabilities and Their Posterior Distri-butions. The Annals of Probability,2, No.2,183-201.
    [42]Doob, J.L. (1949). Application of the theory of martingales. In Le Calcul des Probabilites et ses Applications. Centre National de la Recherche Scientifique, Paris,23-27.
    [43]Doss, H. (1984). Bayesian estimation in the symmetric location problem. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete,68, No.2,127-147.
    [44]Doss, H. (1985a). Bayesian nonparametric estimation of the median. I. Computation of the estimates. The Annals of Statistics,13, No.4,1432-1444.
    [45]Doss, H. (1985b). Bayesian nonparametric estimation of the median. II. Asymptotic prop-erties of the estimates. The Annals of Statistics,13, No.4,1445-1464.
    [46]Dubins, L.E. and Freedman, D.A. (1967). Random distribution functions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics,2, No.l,183-214.
    [47]Dunson, D.B. (2006). Bayesian dynamic modeling of latent trait distributions. Biostatistics, 7,551-568.
    [48]Dunson, D.B., Herring, A.H. and Mulherin-Engel, S.M. (2008). Bayesian selection and clus-tering of polymorphisms in functionally related genes. Journal of the American Statistical Association,103,534-546.
    [49]Dunson, D.B. and Park, J.H. (2008). Kernel stick-breaking processes. Biometrika,95,307-323.
    [50]Dunson, D.B., Pillai, N. and Park, J.H. (2007). Bayesian density regression. Journal of the Royal Statistical Society. Series B (Methodological),69,163-183.
    [51]Efron, B. (1979). Bootstrap Methods:Another Look at the Jackknife. The Annals of Statis-tics,7, No.l,1-26.
    [52]Efron, B. (2003). Robbins, empirical Bayes and microarrays. The Annals of Statistics,31, No.2,366-378.
    [53]Efron, B. and Morris, C. (1972). Limiting the Risk of Bayes and Empirical Bayes Estimation — PartⅡ:The Empirical Bayes Case. Journal of the American Statistical Association,67, 130-139.
    [54]Efron, B. and Morris, C. (1973). Stein's Estimation Rule and Its Competitors — An Em-pirical Bayes Approach. Journal of the American Statistical Association,68,117-130.
    [55]Escobar, M.D. (1988). Estimating the means of several normal populations by nonparametric estimation of the distribution of the means. Ph.D. Dissertation, Department of Statistics, Yale University.
    [56]Escobar, M.D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association,89,268-277.
    [57]Escobar, M.D. and West, M. (1995). Bayesian density estimation and inference using mix-tures. Journal of the American Statistical Association,90,577-588.
    [58]Escobar, M.D. and West, M. (1998). Computing nonparametric hierarchical models. In Practical nonparametric and semiparametric Bayesian statistics, New York:Springer,1-22.
    [59]Fabius, J. (1964). Asymptotic Behavior of Bayes' Estimates. The Annals of Mathematical Statistics,35, No.2,846-856.
    [60]Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics,1,209-230.
    [61]Ferguson, T.S. (1974). Prior distributions on spaces of probability measures. The Annals of Statistics,2,615-629.
    [62]Ferguson, T.S. (1983). Bayesian density estimation by mixtures of normal distributions. In Recent advances in statistics, New York:Academic Press,287-302.
    [63]Freedman, D.A. (1963). On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case. The Annals of Mathematical Statistics,34, No.4,1386-1403.
    [64]Freedman, D.A. (1965). On the Asymptotic Behavior of Bayes' Estimates in the Discrete CaseⅡ. The Annals of Mathematical Statistics,36, No.2,454-456.
    [65]Freedman, D.A. and Diaconis, P. (1983). On Inconsistent Bayes Estimates in the Discrete Case. The Annals of Statistics,11, No.4,1109-1118.
    [66]Gelfand, A.E., Guindani, M. and Petrone, S. (2008). Bayesian nonparametric modeling for spatial data analysis using Dirichlet processes (with discussion and a rejoinder). Bayesian Statistics 8, ed. J. Bernardo, J.O. Berger and A.F.M. Smith. Oxford:Oxford University Press,175-200.
    [67]Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association,85,398-409.
    [68]Ghosal, S. (1999). Asymptotic normality of posterior distributions in high-dimensional lin-ear models. Bernoulli,5, No.2,315-331.
    [69]Ghosal, S. (2000). Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity. Journal of Multivariate Analysis,74, No.1,49-68.
    [70]Ghosal, S., Ghosh, J.K. and Ramamoorthi, R.V. (1999). Posterior consistency of Dirichlet mixtures in density estimation. The Annals of Statistics,27, No.l,143-158.
    [71]Ghosal, S., Ghosh, J.K. and van der Vaart, A.W. (2000). Convergence rates of posterior distributions. The Annals of Statistics,28, No.2,500-531.
    [72]Ghosal, S., Ghosh, J.K. and Samanta, T. (1995). On convergence rate of posterior distri-butions. The Annals of Statistics,23, No.6,2145-2152.
    [73]Ghosal, S. and Roy, A. (2006). Posterior consistency of Gaussian process prior for nonpara-metric binary regression. The Annals of Statistics,34,2413-2429.
    [74]Ghosal, S. and Tang, Y. (2006). Bayesian consistency for Markov processes. Sankhya,68, 227-239.
    [75]Ghosal, S. and van der Vaart, A.W. (2001). Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixture of normal densities. The Annals of Statistics, 29,1233-1263.
    [76]Ghosal, S. and van der Vaart, A.W. (2013). Fundamentals of nonparametric Bayesian inference, Cambridge University Press.
    [77]Ghosh, J.K. and Ramamoorthi, R.V. (2003). Bayesian Nonparametrics, Springer-Verlag, New York.
    [78]Givens, G.H. and Hoeting, J.A. (2005). Computational Statistics, Hoboken, New Jersey: John Wiley & Sons, Inc..
    [79]Gnedin, A. and Pitman, J. (2005). Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.(POMI),325,83-102.
    [80]Gramacy, R.B. (2007). tgp:An R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models. Journal of Statistical Software,19, No.9.
    [81]Gramacy, R.B. and Lee, H.K.H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association,103, 1119-1130.
    [82]Griffin, J.E. and Holmes, C.C. (2007). Bayesian nonparametric calibration with applications in spatial epidemiology. Technical Report, Institute of Mathematics, Statistics and Actuarial Science, University of Kent.
    [83]Griffin, J.E. and Steel, M.F.J. (2006). Order-based dependent Dirichlet process. Journal of the American Statistical Association,101,179-194.
    [84]Griffin, J.E. and Steel, M.F.J. (2010). Bayesian nonparametric modelling with the Dirichlet process regression smoother. Statistica Sinica,20, No.4,1507-1527.
    [85]Griffiths, D.A. (1973). Maximum Likelihood Estimation for the Beta-Binomial Distribution and an Application to the Household Distribution of the Total Number of Cases of a Disease. Biometrics,29, No.4,637-648.
    [86]Griffiths, T.L. and Ghahramani, Z. (2006). Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems,18, ed. Y. Weiss, B. Scholkopt and J. Platt. Cambridge, Mass.:MIT Press.475-482
    [87]Hanson, T.E. (2006). Inference for Mixtures of Finite Polya Tree Models. Journal of the American Statistical Association,101,1548-1565.
    [88]Hanson, T.E., Branscum, A.J. and Gardner, I.A. (2008). Multivariate mixtures of Polya trees for modelling ROC data. Statistical Modelling,8, No.1,81-96.
    [89]Hanson, T.E. and Johnson, W.O. (2002). Modeling Regression Error with a Mixture of Polya Trees. Journal of the American Statistical Association, 97,1020-1033.
    [90]Hanson, T.E., Monteiro, J.V. and Jara, A. (2011). The Polya Tree Sampler:Toward Ef-ficient and Automatic Independent Metropolis-Hastings Proposals. Journal of Computa-tional and Graphical Statistics,20, No.1,41-62.
    [91]Hartigan, J.A. (1990). Partition models. Communications in Statistics:Theory and Meth-ods,19,2745-2756.
    [92]Henna, J. (1994). Examples of identifiable mixture. Journal of the Japan Statistical Society, 24,193-200.
    [93]Hjort, N.L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. The Annals of Statistics,18,1259-1294.
    [94]Hjort, N.L. (2003). Topics in nonparametric Bayesian statistics. Preprint series. Statistical Research Report.
    [95]Hjort, N.L., Holmes, C., Miiller, P. and Walker, S.G. (2010). Bayesian Nonparametrics, New York:Cambridge University Press.
    [96]Hjort, N.L. and Walker, S.G. (2009). Quantile pyramids for Bayesian nonparametrics. The Annals of Statistics,37, No.1,105-131.
    [97]Holzmann, H., Munk, A. and Gneiting, T. (2006a). Identifiability of finite mixtures of elliptical distributions. Scandinavian Journal of Statistics,33, No.4,753-763.
    [98]Holzmann, H., Munk, A. and Stratmann, B. (2004). Identifiability of finite mixtures-with application to circular distributions. Sankhya,66, No.3,1-10.
    [99]Holzmann, H., Munk, A. and Zucchini, W. (2006b). On Identifiability in Capture-Recapture Models. Biometrics,62, No.3,934-936.
    [100]Huang, T.Z. (2004). Convergence rates for posterior distribution and adaptive estimation. The Annals of Statistics,32,1556-1593.
    [101]Ibrahim, J.G., Chen, M.H. and Sinha, D. (2001). Bayesian Survival Analysis, Springer-Verlag, New York.
    [102]Ishwaran, H. and James, L.F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association,96,161-173.
    [103]Jain, S. and Neal, R.M. (2007). Splitting and merging components of a nonconjugate Dirichlet process mixture model. Bayesian Analysis,2,445-472.
    [104]James, L.F. (2003). A simple proof of the almost sure discreteness of a class of random measures. Statistics and Probability Letters,65,363-368.
    [105]James, L.F. (2006). Poisson calculus for spatial neutral to the right processes. The Annals of Statistics,34,416-440.
    [106]James, L.F., Lijoi, A. and Priinster, I. (2005). Bayesian inference via classes of normalized random measures. ArXiv math/0503394.
    [107]James, L.F., Lijoi, A. and Priinster, I. (2006). Conjugacy as a distinctive feature of the Dirichlet process. Scandinavian Journal of Statistics,33,105-120.
    [108]James, L.F., Lijoi, A. and Prunster, I. (2009). Posterior analysis for normalized random measures with independent increments. Scandinavian Journal of Statistics,36,76-97.
    [109]Jara, A. (2007). Applied Bayesian non-and semi-parametric inference using dppackage. R News,7, No.3,17-26.
    [110]Jara, A., Hanson, T.E. and Lesaffre, E. (2009). Robustifying Generalized Linear Mixed Models Using a New Class of Mixture of Multivariate Polya Trees. Journal of Computational and Graphical Statistics,18, No.8,838-860.
    [111]Jara, A., Hanson, T.E., Quintana, F., Miiller, P. and Rosner, G. (2011). DPpackage: Bayesian semi-and nonparametric modeling in R. Journal of Statistical Software,40, No.5, 1-30.
    [112]Kim, S. and Smyth, P. (2006). Hierarchical Dirichlet processes with random effects. In Advances in Neural Information Processing Systems,697-704.
    [113]Kim, S., Tadesse, M.G. and Vannucci, M. (2006). Variable selection in clustering via Dirichlet process mixture models. Biometrika,93,877-893.
    [114]Kim, Y. (1999). Nonparametric Bayesian estimators for counting processes. The Annals of Statistics,27,562-588.
    [115]Kingman, J.F.C. (1967). Completely random measures. Pacific Journal of Mathematics, 21,59-78.
    [116]Kingman, J.F.C. (1975). Random discrete distributions (with discussion). Journal of the Royal Statistical Society. Series B (Methodological),37,1-22.
    [117]Kingman, J.F.C. (1993). Poisson Processes. Oxford:Oxford University Press.
    [118]Korwar, R.M. and Hollander, M. (1973). Contributions to the theory of Dirichlet processes. The Annals of Probability,1, No.4,705-711.
    [119]Kraft, C.H. (1964). A class of distribution function possesses which have derivatives. Jour-nal of Applied Probability,1, No.2,385-388.
    [120]Kraft, C.H. and van Eeden, C. (1964). Bayesian Bio-Assay. The Annals of Mathematical Statistics,35, No.2,886-890.
    [121]Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association,73, No.364,805-811.
    [122]Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modelling. The Annals of Statistics,20,1222-1235.
    [123]Lavine, M. (1994). More aspects of Polya tree distributions for statistical modelling. The Annals of Statistics,22,1161-1176.
    [124]Lavori, P.W., Dawson, R., and Shera, D. (1995). A Multiple Imputation Strategy for Clinical Trials with Truncation of Patient Data. Statistics in Medicine,14,1913-1925.
    [125]Lenk, P.J. (1988). The logistic normal distribution for Bayesian, nonparametric, predictive densities. Journal of the American Statistical Association,83,509-516.
    [126]Leonard, T. (1978). Density estimation, stochastic processes and prior information. Jour-nal of the Royal Statistical Society. Series B (Methodological),40, No.2,113-146.
    [127]Liang, F., Liao, M., Mao, K., Mukherjee, S. and West, M. (2007). Non-parametric Bayesian kernel models. Discussion Paper,2007-10, Department of Statistics Science, Duke Univer-sity, Durham, NC.
    [128]Lijoi, A., Mena, R.H. and Priinster, I. (2005). Hierarchical mixture modelling with normal-ized inverse Gaussian priors. Journal of the American Statistical Association,100,1278-1291.
    [129]Lijoi, A., Mena, R.H. and Priinster, I. (2007a). Controlling the reinforcement in Bayesian nonparametric mixture models. Journal of the Royal Statistical Society. Series B (Method-ological),69,715-740.
    [130]Lijoi, A., Mena, R.H. and Priinster, I. (2007b). A Bayesian nonparametric method for prediction in EST analysis. BMC Bioinformatics,8:339.
    [131]Lijoi, A., Mena, R.H. and Priinster, I. (2007c). Bayesian nonparametric of the probability of discovering new species. Biometrika,94,769-786.
    [132]Lindsay, B.G. (1983a). The Geometry of mixture likelihoods:a general theory. The Annals of Statistics,11, No.l,86-94.
    [133]Lindsay, B.G. (1983b). The Geometry of mixture likelihoods, partⅡ:the exponential family. The Annals of Statistics,11, No.3,783-792.
    [134]Lindsay, B.G. (1995). Mixture Models:Theory, Geometry and Applications. IMS, Hay-ward, CA.
    [135]Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis With Missing Data,2nd Ed., Hoboken, New Jersey:John Wiley & Sons, Inc..
    [136]Lo, A.Y. (1984a). On a class of Bayesian nonparametric estimates. I. Density estimates. The Annals of Statistics,12, No.l,351-357.
    [137]Lo, A.Y. (1984b). Consistency in the location model:the undominated case. The Annals of Statistics,12, No.4,1584-1587.
    [138]Lo, A.Y. (1987). A Large Sample Study of the Bayesian Bootstrap. The Annals of Statis-tics,15, No.1,360-375.
    [139]MacEachern, S.N. (1999). Dependent nonparametric processes. In ASA Proceedings of the Section on Bayesian Statistical Science, Alexandria, Va.:American Statistical Association, 50-55.
    [140]MacEachern, S.N. and Miiller, P. (1998). Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics,7,223-238.
    [141]MacEachern, S.N. and Miiller, P. (2000). Efficient MCMC schemes for robust model exten-sions using encompassing Dirichlet process mixture models. In Robust Bayesian Analysis. Lecture Notes in Statist.152, New York:Springer,295-316.
    [142]MacLehose, R.F. and Dunson, D.B. (2009). Nonparametric Bayes kernel-based priors for functional data analysis. Statistica Sinica,19,611-629.
    [143]Mallick, B.K. and Walker, S.G. (2003). A Bayesian Semiparametric Transformation Model Incorporating Frailties. Journal of Statistical Planning and Inference,112,159-174.
    [144]Manning, C.D. and Schiitze, H. (1999). Foundations of Statistical Natural Language Pro-cessing. Cambridge, Mass.:MIT Press.
    [145]Maritz, J.S. and Lwin, T. (1989). Empirical Bayes Methods,2nd Ed., Chapman and Hall, London.
    [146]Mauldin, R.D., Sudderth, W.D. and Williams, S.C. (1992). Polya tree and random distri-butions. The Annals of Statistics,20,1203-1221.
    [147]McAuliffe, J.D., Blei, D.M. and Jordan, M. I. (2006). Nonparametric empirical Bayes for the Dirichlet process mixture model. Statistics and Computing,16,5-14.
    [148]McLachlan, G. and Basford, K. (1988). Mixture Models:Inference and Applications to Clustering. Dekker, New York.
    [149]Medvedovic. M. and Sivaganesan, S. (2002). Bayesian infinite mixture model based clus-tering of gene expression profiles. Bioinformatics,18,1194-1206.
    [150]Metivier, M. (1971). On the construction for random measures almost surely absolutely continuous with respect to a given measure (French:Sur la construction de mesures aleatoires presque surement absolument continues par rapport a une mesure donnee). Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete,20,332-334.
    [151]Minka, T.P. (2003). Estimating a Dirichlet distribution. Microsoft Technical Report.
    [152]Morris, C. (1983). Parametric empirical Bayes inference:Theory and applications. Journal of the American Statistical Association,78,47-65.
    [153]Mulherin-Engel, S.A., Eriksen, H.C., Savitz, D.A., Thorp, J., Chanock, S.J. and Olshan, A.F. (2005). Risk of spontaneous preterm birth is associated with common proinflammatory cytokine polymorphisms. Epidemiology,16,469-477.
    [154]Muller, P. Erkanli, A. and West, M. (1996). Bayesian curve fitting using multivariate normal mixtures. Biometrika,83,67-79.
    [155]Miiller, P. and Mitra, R. (2013). Bayesian Nonparametric Inference-Why and How. Bayesian Analysis,8, No.2,269-302.
    [156]Miiller, P. and Quintana, F.A. (2004). Nonparametric Bayesian Data Analysis. Statistical Science,19, No.l,95-110.
    [157]Miiller, P., Quintana, F.A., and Rosner, G. (2004). A method for combining inference across related nonparametric Bayesian models. Journal of the Royal Statistical Society. Series B (Methodological),66,735-749.
    [158]Miiller, P. and Rodriguez, A. (2013). Nonparametric Bayesian Inference, IMS-CBMS Lec-ture Notes. IMS,270.
    [159]Neal, R.M. (1999). Regression and classification using Gaussian process priors. In Bayesian Statistics 6, ed. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith. Oxford:Oxford University Press,69-95.
    [160]Neal, R.M. (2000). Markov Chain Sampling Methods for Dirichlet Process Mixture Models. Journal of Computational and Graphical Statistics,9, No.2,249-265.
    [161]Ng, K., Tian, G. and Tang, M. (2011). Dirichlet and Related distributions:Theory, Meth-ods and Applications. John Wiley & Sons.
    [162]Oakley, J. and O'Hagan, A. (2002). Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika,89,769-784.
    [163]Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene:A holistic represen-tation of the spatial envelope. International Journal of Computer Vision,42,145-175.
    [164]Paddock, S.M. (1999). Randomized Polya Trees:Bayesian Nonparametrics for Multivari-ate Data Analysis. Ph.D. Thesis, Duke University, Durham, N.C.
    [165]Paddock, S.M., Ruggeri, F., Lavine, M. and West, M. (2003). Randomised Polya tree models for nonparametric Bayesian inference. Statistica Sinica,13,443-460.
    [166]Page, G., Bhattacharya, A. and Dunson, D.B. (2013). Classification via Bayesian nonpara-metric learning of affine subspaces. Journal of the American Statistical Association,108, 187-201.
    [167]Papaspiliopoulos, O. and Roberts, G.O. (2008). Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika,95,169-186.
    [168]Patil, G.P. and Bildikar. S. (1966). Identifiability of countable mixtures of discrete prob-ability distributions using methods of infinite matrices. Mathematical Proceedings of the Cambridge Philosophical Society,62, No.3,485-494.
    [169]Petrone, S. (1999a). Bayesian Density Estimation Using Bernstein Polynomials. The Cana-dian Journal of Statistics,27, No.l,105-126.
    [170]Petrone, S. (1999b).Random Bernstein Polynomials. Scandinavian Journal of Statistics, 26, No.3,373-393.
    [171]Pillai, N.S., Wu, Q., Liang, F., Mukherjee, S. and Wolpert, R.L. (2007). Characterizing the function space for Bayesian kernel models. Journal of Machine Learning Research,8, 1769-1797.
    [172]Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statis-tics, Probability and Game Theory. Papers in Honor of David Blackwell, ed. T.S. Ferguson, L.S. Shapley and J.B. MacQueen, IMS Lecture Notes/Monographs,30, Hayward, Calif: Institute of Mathematical Statistics,245-267.
    [173]Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. The Annals of Probability,25,855-900.
    [174]Qin, Z.S. (2006). Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics,22,1988-1997.
    [175]Raats, V.M., Genugten, B.B. and Moors, J.J.A. (2005). Multivariate regression with con-secutively added dependent variables. Linear Algebra and its Applications,410, No.l,170-197.
    [176]Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian processes for Machine Learning. Cambridge, Mass.:MIT Press.
    [177]Ray, S. and Mallick, B. (2006). Functional clustering by Bayesian wavelet methods. Journal of the Royal Statistical Society. Series B (Methodological),68,305-332.
    [178]R Development Core Team (2008). R:A Language and Environment for Statistical Com-puting. Vienna:R Foundation for Statistical Computing, http://www.r-project.org/
    [179]Regazzini, E., Lijoi, A. and Priinster, I. (2003). Distributional results for means of random measures with independent increments. The Annals of Statistics,31,560-585.
    [180]Reich, B.J., Bondell, H.D. and Li, L.X. (2011). Sufficient dimension reduction via Bayesian mixture modeling. Biometrics,67,886-895.
    [181]Reiers(?)l, O. (1950). Identifiability of a linear relation between variables which are subject to error. Econometrica,18,375-389.
    [182]Robbins, H. (1956). An empirical Bayes approach to statistics. In Proc.3rd Berkeley Symp. on Math. Statist, and Prob.,1, Berkeley, CA:Univ. of California Press,157-163.
    [183]Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. The Annals of Mathematical Statistics,35,1-20.
    [184]Robbins, H. (1983). Some thoughts on empirical Bayes estimation. The Annals of Statis-tics,11,713-723.
    [185]Rodriguez, A., Dunson, D. B., and Gelfand, A. E. (2008). The nested Dirichlet process. Journal of the American Statistical Association,103, No.483,1131-1154.
    [186]Rosenbaum, P.R. and Rubin, D.B. (1983). The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika,70,41-55.
    [187]Rossi, P., Allenby, G. and McCulloch, R. (2005). Bayesian Statistics and Marketing, John Wiley & Sons, Probability and Statistics Series, http://www.perossi.org/home/bsm-1
    [188]Rubin, D.B. (1981). The Bayesian Bootstrap. The Annals of Statistics,9, No.l,130-134.
    [189]Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons, Inc., New York.
    [190]Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion and a rejoinder). Journal of the Royal Statistical Society. Series B (Methodological),71,319-372.
    [191]Schervish, M.J. (1995). Theory of Statistics, Springer-Verlag, New York.
    [192]Schwartz, L. (1965). On Bayes procedures. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete,4,10-26.
    [193]Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statisica Sinica,4, 639-650.
    [194]Shamilov, A. and Asma, S. (2009). On the identifiability of finite mixtures based on the union of logarithmic series and discrete rectangular families. Neural Processing Letters,29, 1-6.
    [195]Shen, X. (2002). Asymptotic normality of semiparametric and nonparametric posterior distributions. Journal of the American Statistical Association,97,222-235.
    [196]Shen, X. and Wasserman, L. (2001). Rates of convergence of posterior distributions. The Annals of Statistics,29, No.3,687-714.
    [197]Shenton, L.R. (1950). Maximum likelihood and the efficiency of the method moment. Biometrika,37,111-16.
    [198]Simonoff, J.S. (1996). Smoothing Methods in Statistics, Springer-Verlag, New York.
    [199]Sinha, D. and Dey, D.K. (1997). Semiparametric Bayesian analysis of survival data. Jour-nal of the American Statistical Association,92,1195-1212.
    [200]Skaug, H.J. and Fournier, D.A. (2006). Automatic approximation of the marginal likeli-hood in non-Gaussian hierarchical models. Computational Statistics and Data Analysis,5, 699-709.
    [201]Skellam, J.G. (1948). A Probability Distribution Derived from the Binomial Distribution by Regarding the Probability of Success as Variable Between the Sets of Trials. Journal of the Royal Statistical Society. Series B (Methodological),10, No.2,257-261.
    [202]Sudderth, E.B. and Jordan, M.I. (2008). Shared segmentation of natural scenes using dependent Pitman-Yor processes. In Advances in Neural Information Processing Systems, 137,1585-1582.
    [203]Sun, S., Greenwood, C.M.T. and Neal, R.M. (2007). Haplotype inference using a Bayesian hidden Markov model. Genetic Epidemiology,31,937-948.
    [204]Tallis, G.M. (1969). The Identifiability of Mixtures of Distributions. Journal of Applied Probability,6, No.2,389-398.
    [205]Tallis, G.M. and Chesson, P. (1982). Identifiability of mixtures. Journal of the Australian Mathematical Society,32, No.3,339-348.
    [206]Tang, G., Little, R.J.A. and Raghunathan, T.E. (2004). Analysis of Multivariate Mono-tone Missing Data by A Pseudolikelihood Method. In Proceedings of the Second Seattle Symposium in Biostatistics, eds. D.Y. Lin and P.J. Heagerty, New York:Springer-Verlag, 35-50.
    [207]Tang, Y. and Ghosal, S. (2007). Posterior consistency of Dirichlet mixtures for estimating a transition density. Journal of Statistical Planning and Inference,137,1711-1726.
    [208]Teicher, H. (1961). Identifiability of mixtures. The Annals of Mathematical Statistics,32, 244-248.
    [209]Teicher, H. (1963). Identifiability of finite mixtures. The Annals of Mathematical Statistics, 34,1265-1269.
    [210]Teh, Y.W. (2006). A hierarchical Bayesian language model based on Pitman-Yor pro-cesses. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Morristown, NJ:Association for Computational Linguistics,985-992.
    [211]Teh, Y.W., Jordan, M.I., Beal, M.J. and Blei, D.M. (2006). Hierarchical Dirichlet Pro-cesses. Journal of the American Statistical Association,101,1566-1581.
    [212]Thibaux, R. and Jordan, M.I. (2007). Hierarchical beta processes and the Indian buffet process. In Proceedings of the International Workshop on Artificial Intelligence and Statis-tics,11,564-571.
    [213]Thorburn. D. (1986). A Bayesian approach to density estimation. Biometrika,73, No.1, 65-75.
    [214]Tibshirani, R.J. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological),58,267-288.
    [215]Titterington, D.M. and Mill, G.M. (1983). Kernel-based Density Estimates from Incom-plete Data. Journal of the Royal Statistical Society. SeriesB (Methodological),45, No.2, 258-266.
    [216]Tokdar, S.T. (2006). Posterior consistency of Dirichlet location-scale mixture of normal density estimation and regression. Sankhya,67,90-110.
    [217]Tokdar, S.T. and Ghosh, J.K. (2007). Posterior consistency of Gaussian process priors in density estimation. Journal of Statistical Planning and Inference,137,34-42.
    [218]Tokdar, S.T., Zhu, Y.M. and Ghosh, J.K. (2010). Bayesian density regression with logistic Gaussian process and subspace projection. Bayesian Analysis,5,319-344.
    [219]Tripathi, R.C., Gupta, R.C. and Gurland, J. (1994). Estimation of parameters in the beta binomial model. Annals of the Institute of Statistical Mathematics,46, No.2,317-331.
    [220]Trippa, L., Muller, P. and Johnson, W. (2011). The multivariate beta process and an extension of the Polya tree model. Biometrika,98, No.1,17-34.
    [221]van der Vaart, A.W. and van Zanten, H. (2008). Rates of contraction of posterior distri-butions based on Gaussian process priors. The Annals of Statistics,36,1435-1463.
    [222]Walker, S.G. (2007). Sampling the Dirichlet mixture model with slices. Communications in Statistics:Simulation and Computation,36,45-54.
    [223]Walker, S.G. (2013). Issues with the non-identifiability of the mixture of Dirichlet process model. Invited presentation for the session on Structures. Identifiability, and Computing. 9th Conference on Bayesian Nonparametrics, June 10-14, Amsterdam.
    [224]Walker, S.G., Damien, P., Laud, P.W. and Smith, A.F.M. (1999). Bayesian nonparametric inference for random distributions and related functions. Journal of the Royal Statistical Society. Series B (Methodological),61, No.3,485-527.
    [225]Walker, S.G. and Hjort, N.L. (2001). On Bayesian consistency. Journal of the Royal Sta-tistical Society. Series B (Methodological),63, No.4,811-821.
    [226]Walker, S.G., Lijoi, A. and Priinster, I. (2007). On rates of convergence of posterior distributions in infinite-dimensional models. The Annals of Statistics,35,738-746.
    [227]Walker, S.G. and Mallick, B.K. (1997). Hierarchical Generalized Linear Models and Frailty Models with Bayesian Nonparametric Mixing. Journal of the Royal Statistical Society. Se-ries B (Methodological),59, No.4,845-860.
    [228]Walker, S.G. and Mallick, B.K. (1999). A Bayesian Semiparametric Accelerated Failure Time Model. Biometrics,55, No.2,477-483.
    [229]Wand, M.P. and Jones, M.C. (1994). Multivariate plug-in bandwidth selection. Computa-tional Statistics,9,97-116.
    [230]West, M. (1992). Modelling with mixtures. In Bayesian Statistics,4, New York:Oxford Univ. Press,503-524.
    [231]West, M. (1993). Approximating posterior distributions by mixtures. Journal of the Royal Statistical Society. Series B (Methodological),55, No.2,409-422.
    [232]West, M., Miiller, P. and Escobar, M.D. (1994). Hierarchical priors and mixture models, with application in regression and density estimation. In Aspects of uncertainty, Chichester: Wiley,363-386.
    [233]Wilcox, R.R. (1979). Estimating the parameters of the beta-binomial distribution. Edu-cational and Psychological Measurement,31,527-535.
    [234]Wilcox, R.R. (1981). A Review of the Beta-Binomial Model and Its Extensions. Journal of Educational Statistics,6, No.l,3-32.
    [235]Wuthrich, M.V. and Merz, M. (2008). Stochastic claims reserving methods in insurance, Chichester:John Wiley & Sons, Ltd.
    [236]Wu, X. and Zhou, X. (2006). A new characterization of distortion premiums via countable additivity for comonotonic risks. Insurance:Mathematics and Economics,38,324-334.
    [237]Xiang, Z.S., Qin, Z.H.S. and He, Y.Q. (2007). Linear Prediction Model for RBNS. Chinese Journal of Applied Probability and Statistics,27, No.2,194-209.
    [238]Xing, E.P., Jordan, M.I. and Sharan, R. (2007). Bayesian haplotype inference via the Dirichlet process. Journal of Computational Biology,14,267-284.
    [239]Xing, E.P. and Sohn, K. (2007). Hidden Markov Dirichlet process:modeling genetic re-combination in open ancestral space. Bayesian Analysis,2,501-528.
    [240]Yakowitz, S.J. and Spragins, J.D. (1968). On the identifiability of finite mixtures. The Annals of Mathematical Statistics,39,209-214.
    [241]Yang, L. and Wu, X.Y. (2013a). Estimation of Dirichlet Process Priors with Monotone Missing Data. Journal of Nonparametrics Statistics,25, No.4,787-807.
    [242]Yang, L. and Wu, X.Y. (2013b). On Parameter Estimation of Polya Tree Priors with Multigroup Data. Working paper.
    [243]Yang, Y. and Dunson, D.B. (2013). Bayesian Manifold Regression. arXiv preprint arXiv:1305.0617.
    [244]Yu, X.L. and Wu, X.Y. (2011). CRCView:a web server for analyzing and visualizing microarray gene expression data using model-based clustering. Bioinformatics,23,1843-1845.
    [245]Zehnwirth, B. (1979). Credibility and the Dirichlet process. Scandinavian Actuarial Jour-nal,1,13-23.
    [246]Zehnwirth, B. (1981). A note on the asymptotic optimality of the empirical distribution function. The Annals of Statistics,9,221-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700