用户名: 密码: 验证码:
空间自由漂浮机械臂系统的运动规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械臂在空间组装、维修等任务中有着广阔的应用前景,也是我国空间站建设的关键技术之一。本文以解决空间柔性机械臂的运动规划问题为目标,系统研究了机械臂的载体姿态最小扰动规划方法、减振运动规划方法和多目标最优的运动规划方法。主要研究成果如下:
     建立了空间自由漂浮柔性机械臂系统的动力学模型。利用ADAMS验证了动力学模型的正确性,并分析了动力学建模过程中模态截断引起的误差,以及载体自由漂浮状态对机械臂弹性变形的影响,为机械臂系统的运动规划研究奠定了基础。
     改进了点对点操作任务中对载体姿态无扰的运动规划方法。将机械臂的无扰运动规划问题离散化为参数优化问题,并结合遗传算法的全局搜索能力和序列二次规划算法的快速收敛能力,提出了一类含初值估计的串行优化策略。分别求解了平面运动及三维运动机械臂的无扰运动规划问题,对串行优化策略的全局收敛能力及有效性进行了充分的测试;提出了一类基于平推无扰曲线的运动规划方法,可有效改善采用参数优化方法求解无扰运动规划问题的收敛性;提出了基于无扰运动轨迹的速度规划方法,在考虑关节驱动力矩约束的条件下,得到了沿无扰曲线运动的速度以及最短操作时间。
     提出了点对点操任务中减振运动规划问题的混合规划策略。根据减振运动规划问题的特点,结合Gauss伪谱法的计算效率以及直接打靶法的精确性,提出了一类混合规划策略;分别求解了全程振动最小化与残余振动最小化的运动规划问题,验证了混合规划策略的有效性与鲁棒性;考虑到实际操作中机械臂初始状态的不确定性,建立了考虑残余振动鲁棒评价指标的运动规划模型,得到了鲁棒评价指标最小的关节运动。
     研究了连续路径跟踪任务的运动规划方法。提出了基于自运动的载体姿态最小扰动规划方法,将其与基于广义雅可比矩阵伪逆的运动规划方法进行对比,验证了该方法的适用性;将基于自运动的规划方法与基于Gauss伪谱法和直接打靶法的混合规划策略相结合,快速稳定地获得了连续路径跟踪任务中减振运动规划问题的解。
     发展了空间机械臂系统的多目标最优运动规划方法。提出在机械臂运动规划过程中,同时考虑载体姿态扰动、弹性振动与操作时间等设计指标;考虑到多目标最优运动规划问题的特点,利用物理规划方法将多目标最优问题处理为一个反映设计者偏好的单目标最优问题,并采用混合规划策略进行求解;利用NSGA-ΙΙ验证了物理规划解的Pareto最优性,然后求解了各种操作任务的多目标最优运动规划问题,均得到了满足设计者偏好的解。
     论文提出了空间机械臂的载体姿态最小扰动和减振运动规划方法,并探索了多目标最优运动规划的模型和算法,在理论和方法上都取得了一定的进展。论文研究紧密结合空间机械臂的应用背景,提出的各种运动规划方法对发展我国的空间机械臂具有重要的应用价值。
The space manipulator which has a broad application in space tasks such as spaceassembly and repair, is one of the critical technologies for the foundation of our spacestation. Aiming to solve the motion planning problems of space flexible manipulator,this dissertation studies the approaches of motion planning for minimum disturbance tothe carrier’s attitude, vibration reduction and optimal multiple-objective. The mainresults achieved in this dissertation are summarized as follows.
     Dynamic model of the free-floating flexible space manipulator system isestablished, and the dynamic model is validated using ADAMS software. Then, theerror brought by modal truncation and the influence of free-floating carrier on theelastic deflection are also discussed. These works provide the foundation for the motionplanning of manipulator system.
     An improved motion planning approach of zero-disturbance to the carrier’s attitudein point-to-point manipulation is proposed. The zero-disturbance motion planningproblem is transformed into a non-linear parameter optimization problem. Combiningthe global search ability of genetic algorithm and the high convergence rate ofsequential quadratic programming, a pipelining approach containing the initial guess isproposed to solve the zero-disturbance motion planning problem. The globalconvergence ability and effectiveness of the pipelining approach are testified by solvingthe zero-disturbance motion planning problem of planar and spatial manipulator. Andthen, a motion planning approach based on translational zero-disturbance curves is putforward to improve the convergence ability of non-linear parameter optimizationapproach. Another approach for planning the speed along the zero-disturbancetrajectory is proposed, by which the optimal joint speed and manipulation time areobtained under the constraints of joint torque.
     A hybrid optimal approach for motion planning of vibration reducing inpoint-to-point manipulation is proposed. Considering the specialty of motion planningproblem in vibration reducing, a hybrid optimal approach combined the computingefficiency of Gauss Pseudospectral Method (GPM) and the accuracy of Direct ShootingMethod (DSM) is proposed. The effectivity of the hybrid approach is validated bysolving the motion planning problem of global vibration reduction and residualvibration reduction. Considering the uncertainty of initial state of flexible manipulator, amotion planning model involved the robustness performance index of residual vibrationis put forward, and the optimal motion for robustness performance index is obtained.
     A motion planning approach for trajectory tracking is studied. A motion planningapproach based on self-motion to minimize the attitude disturbance is presented. Thefeasibility of the proposed approach is validated in comparison with a planning method based on the pseudoinverse of generalized Jacobian matrix. Using the planningapproach based on self-motion and the hybrid approach employing GPM and DSM, themotion planning problem of vibration reduction in trajectory tracking manipulation canbe solved quickly and stably.
     An optimal multiple-objective motion planning approach of space manipulatorsystem is developed. The motion planning is proposed to take account of thedisturbance to the carrier’s attitude, the elastic vibration, manipulation time, and so on.Considering the specialty of optimal multiple-objective problem, the physicalprogramming method is used to convert the multiple-objective problem to asingle-objective one which expresses the designer’s preference, and is solved using thehybrid approach. The Pareto optimality of the solutions obtained by physicalprogramming is testified by NSGA-ΙΙ. And then, the designer preferred solutions tomultiple-objective motion planning problems of different manipulations are obtained.
     This dissertation proposes the motion planning approaches for minimumdisturbance to carrier’s attitude and vibration reduction, and also explores the optimalmultiple-objective motion planning model and approaches. Some developments intheories and methods have been attained. This study is closed to the application of spacemanipulators, and the presented motion planning approaches have a significant potentialapplication for the development of our space manipulator.
引文
[1] Gibbs G, Sachdev S. Canada and the International Space Station program:overview and status[J]. Acta Astronautica,2002,51(1-9):591-600.
    [2]梁斌,陈建新,刘良栋.舱外自由移动机器人系统[C].全国十届空间及运动体控制技术学术会议,北京,2002.
    [3] Dubowsky S, Papadopoulos E. The kinematics, dynamics, and control offree-flying and free-floating space robotic systems[J]. IEEE Transactions onRobotics and Automation,1993,9(5):531~543.
    [4] Nenchev D, Umetani Y. Analysis of a redundant free-flyingspacecraft/manipulator system[J]. IEEE Transactions on Robotics andAutomation,1992,8(1):1~6.
    [5] Damaren C J. Modal properties and control system design for two-link flexiblemanipulators[J]. The International Journal of Robotics Research,1998,17(6):667~678.
    [6] Ge S S, Lee T H, Zhu G, et al. Variable structure control of adistributed-parameter flexible beam[J]. Journal of Robotic Systems,2001,18(1):17~27.
    [7] Siciliano B. Closed-loop inverse kinematics algorithm for constrained flexiblemanipulators under gravity[J]. Journal of Robotic Systems,1999,16(6):353~362.
    [8] Hillsley K L, Yurkovich S. Vibration control of a two-link flexible robot arm[J].Dynamics and Control,1993,3(3):261~280.
    [9] Wasfy T M, Noor A K. Computational strategies for flexible multibodysystems[J]. Applied Mechancis Reviews,2003,56(6):553~613.
    [10]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望[J].计算力学学报,2008,25(4):213~218.
    [11]宋轶民,余跃庆,张策,等.柔性机器人动力学分析与振动控制研究综述[J].机械设计,2003,20(4):1~5.
    [12]王树新,员今天,石菊荣,等.柔性机械臂建模理论与控制方法研究综述[J].机器人,2002,24(1):86~91.
    [13] Simo J C, Vu-Quoc L. On the Dynamics of Flexible Beams Under Large OverallMotions-The Plane Case: Part I[J]. Journal of Applied Mechanics1986,53(4):849~854.
    [14] Simo J C, Vu-Quoc L. A three-dimensional finite-strain rod model. part II:computational aspects[J]. Computer Methods in Applied Mechanics andEngineering,1986,58:79~116.
    [15] Avello A, de Jalon J G, Bayo E. Dynamics of flexible multibody systems usingcartesian co-ordinates and large displacement theory[J]. International Journal forNumerical Methods in Engineering,1991,32(8):1543~1563.
    [16] Kovecses J, Cleghorn W L, Fenton R G. Dynamic modeling and analysis of arobot manipulator intercepting and capturing a moving object, with theconsideration of structural flexibility [J]. Multibody System Dynamics,1999,3(2):137~162.
    [17] Yue S G, Yu Y Q, Bai S X. Flexible rotor beam element for the manipulatorswith joint and link flexibility[J]. Mechanism and Machine Theory,1997,32(2):209~219.
    [18] Theodore R J, Ghosal A. Modeling of flexible-link manipulators with prismaticjoints[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1997,27(2):296~305.
    [19] Oral S, Ider S K. Coupled rigid-elastic motion of filament-wound compositerobotic arms[J]. Computer Methods in Applied Mechanics and Engineering,1997,147(1-2):117~123.
    [20] Surdilovic D, Vukobratovic M. One method for efficient dynamic modeling offlexible manipulators[J]. Mechanism and Machine Theory,1996,31(3):297~315.
    [21] Argyris J H, Kelsey S, Kaneel H. Matrix methods for structural analysis: a precisof recent developments[M]. New York: MacMillan,1964.
    [22] Shabana A A, Christensen A P. Three-dimensional absolute nodal co-ordinateformulation: plate problem[J]. International Journal for Numerical Methods inEngineering,1997,40(15):2775~2790.
    [23] Wasfy T M, Noor A K. Modeling and sensitivity analysis of multibody systemsusing new solid, shell and beam element[J]. Computer Methods in AppliedMechanics and Engineering,1996,138(1-4):187~211.
    [24] Elkaranshawy H A, Dokainish. Corotational finite element analysis of planarflexible multibody systems[J]. Computers&Sturctures,1995,54(5):881~890.
    [25] Wasfy T M. A torsional spring-link beam element for the dynamic analysis offlexible multibody systems[J]. International Journal for Numerical Methods inEngineering,1996,39(7):1079~1096.
    [26] Garcia-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of thegeometric stiffening effect. Part1: a correction in the floating frame of referenceof formulation[J]. Journal of Multi-body Dynamics,2005,219(2):187~202.
    [27] Garcia-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of thegeometric stiffening effect. Part2: non-linear elasticity[J]. Journal of Multi-bodyDynamics,2005,219(2):203~211.
    [28]刘锦阳,李彬.做大范围空间运动柔性梁的刚-柔耦合动力学[J].力学学报,2006,38(2):276~282.
    [29]尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究[D].上海:上海交通大学,2006.
    [30]张大钧.柔性多体系统动力学理论方法与实验研究[D].天津:天津大学,1991.
    [31]蒋铁英.柔性机械臂建模、仿真及实验研究[D].天津:天津大学,1996.
    [32] Ider S K. Finite-element based recursive formulation for real time dynamicsimulation of flexible multibody systems[J]. Computers&Structures,1991,40(4):939~945.
    [33]王树国,丁希仑,蔡鹤皋.机器人柔性臂动力学有限元建模方法的研究[J].哈尔滨工业大学学报,1997,19(1):114~116.
    [34] Asada H, Ma Z D, Tokumaru H. Inverse dynamics of flexible robot arms:modeling and computation for trajectory control[J]. Journal of Dynamic Systems,Measurement, and Control1990,112(2):177~185.
    [35]苏文敬,吴立成,孙富春.空间柔性双臂机器人系统建模、控制与仿真研究[J].系统仿真学报,2003,15(8):1098~1100.
    [36]边宇枢,陆震.柔性机器人动力学建模的一种方法[J].北京航空航天大学学报,1999,25(4):486~490.
    [37]樊晓平,颜全胜,徐建闽.平面双连杆受限柔性机器人臂的动力学建模[J].控制理论与应用,1998,15(5):933~938.
    [38] Gamarra-Rosado V O, Yuhara E A O. Dynamic modeling and simulation of aflexible robotic manipulator[J]. Robotica,1999,17(5):523~528.
    [39] Fung E H K, Lee C K M. Variable structure tracking control of a single-linkflexible arm using time-varying sliding surface[J]. Journal of Robotic Systems,1999,16(12):715~726.
    [40] Ge S S, Lee T H, zhu G. A nonlinear feedback controller for a single-link flexiblemanipulator based on a finite element model[J]. Journal of Robotic Systems,1997,14(3):165~178.
    [41] Christoforou E G, Damaren C J. The control of flexible-link robots manipulatinglarge payloads: theory and experiments[J]. Journal of Robotic Systems,2000,17(5):255~271.
    [42] Fung R F, Chang H C. Dynamic modeling of a non-linearly constrained flexiblemanipulator with a tip mass by Hamilton's Principle[J]. Journal of Sound andVibration,1998,216(5):751~769.
    [43] Zohoor H, Khorsandijou S M. Dynamic model of a flying manipulator with twohighly flexible links[J]. Applied Mathematical Modelling,2008,32(10):2117~2132.
    [44] Liu W F, Gong Z B, Wang Q Q. Investigation on Kane dynamic equations basedon screw theory for open-chain manipulators[J]. Applied Mathematics andMechanics,2005,26(5):627~635.
    [45] Tanner H G, Kyriakopoulos K J. Kane's approach to modeling mobilemanipulators[J]. Advanced Robotics,2002,16(1):57~85.
    [46]顾晓勤.抓手空间机械臂的动力学与控制[D].上海:上海交通大学,1996.
    [47] Nakamura Y, Mukherjee R. Nonholonomic path planning of space robots via abidirectional approach [J]. IEEE Transactions on Robotics and Automation,1991,7(4):500~514.
    [48] Vafa Z, Dubowsky S. On the dynamics of manipulators in space using the virtualmanipulator approach[C]. IEEE International Conference on Robotics andAutomation, Raleigh, NC,1987.
    [49] Matsuno F, Tsurusaki J. Chained form transformation algorithm for a class of3-states and2-inputs nonholonomic systems and attitude control of a spacerobot[C]. IEEE Conference on Decision and Control, Phoenix, AZ,1999.
    [50] Mukherjee R, Zurowski M. Reorientation of a structure in space using athree-link rigid manipulator[J]. Journal of Guidance, Control, and Dynamics,1994,17(4):840~847.
    [51]赵晓东,王树国,严艳军,等.基于载体姿态调整的自由漂浮空间机器人路径规划方法的研究[J].高技术通讯,2003,13(3):47~51.
    [52] Nakamura Y, Mukherjee R. Exploiting nonholonomic redundancy of free-flyingspace robots[J]. IEEE Transactions on Robotics and Automation,1993,9(4):499~506.
    [53] Nakamura Y, Mukherjee R. Nonholonomic path planning of space robots[C].IEEE International Conference on Robotics and Automation, Scottsdale, AZ,1989.
    [54]郭益深,陈力.双臂空间机器人系统运动规划的双向逼近方法[J].空间科学学报,2005,25(6):564~568.
    [55] Nakamura Y, Suzuki T. Planning spiral motions of nonholonomic free-flyingspace robots[J]. Journal of Spacecraft and Rockedt,1997,34(1):137~143.
    [56] Coverstone-Carroll V L, Wilkey N M. Optimal control of a satellite-robot systemusing direct collocation with non-linear programming[J]. Acta Astronautica,1995,36(3):149~162.
    [57] Fernandes C, Gurvits L, Li Z X. Attitude control of space platform/manipulatorsystem using internal motion[J]. Space Robotics: Dynamics and Control,1992,188:131~163.
    [58] Matsuda K, Kanemitsu Y, Kijimoto S. Attitude control of a space robot using thenonholonomic structure[C]. AIAA Guidance, Navigation, and ControlConference, Boston,1998.
    [59] Papadopoulos E, Tortopidis I, Nanos K. Smooth planning for free-floating spacerobots using polynomials[C]. IEEE International Conference on Robotics andAutomation, Barcelona,2005.
    [60]戈新生,陈力,刘延柱.空间机械臂非完整运动规划的最优控制[J].应用力学学报,1998,15(4):6~11.
    [61]唐晓腾,陈力.漂浮基双臂空间机器人基于自适应遗传算法的最优非完整运动规划[J].工程力学,2008,25(2):224~230.
    [62]徐文福,詹文法,梁斌.自由飘浮空间机器人系统基座姿态调整路径规划方法的研究[J].机器人,2006,28(3):291~296.
    [63]唐晓腾,陈力.双臂空间机器人姿态调整运动的最优控制规划[J].空间科学学报,2006,26(5):403~408.
    [64]戈新生,张器志.基于遗传算法的空间机械臂运动规划的最优控制[J].空间科学学报,2000,20(2):185~191.
    [65]戈新生,陈立群,吕杰.空间机械臂非完整运动规划的遗传算法研究[J].宇航学报,2005,26(3):262~267.
    [66]戈新生,吕杰,陈立群.带空间机械臂航天器姿态运动规划的数值算法研究[J].应用力学学报,2007,24(2):227~232.
    [67]戈新生,孙鹏伟.自由漂浮空间机械臂非完整运动规划的粒子群优化算法[J].机械工程学报,2007,43(4):34~38.
    [68] Yoshida K, Kurazume R, Umetani Y. Dual arm coordination in space free-flyingrobot[C]. IEEE International Conference on Robotics and Automation,Sacramento, CA1991.
    [69]王景,刘良栋.双臂空间机器人利用内部运动的姿态控制[J].宇航学报,2000,21(1):28~35.
    [70] Vafa Z, Dubowsky S. On the dynamics of space manipulators using the virtualmanipulator, with applications to path planning[J]. Space Robotics: Dynamicsand Control,1992,188:45~76.
    [71] Dubowsky S, Torres M. Path planning for space manipulators to minimizespacecraft attitude disturbances[C]. IEEE International Conference on Roboticsand Automation, Sacramento, CA,1991.
    [72] Torres M A, Dubowsky S. Minimizing spacecraft attitude disturbances in spacemanipulator systems[J]. Journal of Guidance, Control, and Dynamics,1992,15(4):1010~1017.
    [73] Okubo H, Nagano N, Komatsu N, et al. Path planning for space manipulators toreduce attitude disturbanes[J]. Journal of Guidance, Control, and Dynamics,1997,20(3):609~611.
    [74]洪炳熔,何光彩,吴葳.基于RMDM的双臂自由飞行空间机器人姿态控制算法[J].哈尔滨工业大学学报,1999,31(2):7~10.
    [75] Legnani G, Zappa B, Adimini R, et al. A contribution to the dynamics offree-flying space manipulators[J]. Mechanism and Machine Theory,1999,34(3):359~372.
    [76] Zappa B, Adamini R, Omodci A. Dynamic singularity in free-flying spacemanipulator[C]. The10th World Congress on Theory of Machine andMechanism, Finland,1999.
    [77]高子坤,陈力.动力学奇点在漂浮基双臂空间机器人姿态无扰运动规划中的应用[J].空间科学学报,2003,23(4):306~313.
    [78]张福海,付宜利,王树国,等.载体姿态无扰的自由漂浮空间机器人运动规划[J].清华大学学报(自然科学版),2008,48(11):1911~1914.
    [79]付宜利,张福海,王树国,等.载体姿态无扰的自由漂浮空间机器人运动学特性研究[J].宇航学报,2008,29(6):1858~1864.
    [80]张福海,付宜利,王树国.一种笛卡儿空间的自由漂浮空间机器人路径规划方法[J].机器人,2009,31(2):187~192.
    [81] Fu Y L, Zhang F H, Wang S G. Dynamics and smooth trajectory planning of freefloating space robot with aero-disturbance spacecraft attitude [C]. Proceedings ofthe27th Chinese Control Conference, Kunming, Yunna,2008.
    [82] Yoshida K, Hashizume K, Abiko S. Zero reaction maneuver: flight validationwith ETS-VII space robot and extension to kinematically redundant arm[C].IEEE International Conference on Robotics and Automation, Seoul,2001.
    [83]徐文福,刘宇,强文义,等.自由漂浮空间机器人的笛卡尔连续路径规划[J].控制与决策,2008,23(3):278~282.
    [84]何光彩.自由飞行空间机器人姿态控制研究[D].哈尔滨:哈尔滨工业大学,1999.
    [85]何光彩,洪炳熔,郭恒业.基于参数辨识的冗余自由飞行空间机器人多臂协调运动规划[J].宇航学报,2000,21(1):85~89.
    [86] He G C, Hong B R, Liu C A. Coordinated motion planning algorithm for multiarm free flying space robot system[J]. Journal of Harbin Institute of Technology,1999,6(4):42~45.
    [87] Kiyota H, Sampei M. On a control for a class of nonholonomic systems with driftusing time-state control form[C]. IEEE Conference on Decision and Control,Tampa, FL,1998.
    [88]吴剑威,史士财,刘宏,等.空间机器人目标捕获过程中的载体姿态扰动优化[J].机器人,2011,33(1):16~23.
    [89]廖一寰,李道奎,唐国金.基于混合规划策略的空间机械臂运动规划研究[J].宇航学报,2011,32(1):98~103.
    [90] Liao Y H, Li D K, Tang G J. Translational zero-disturbance curve and itsapplication to zero-disturbance motion planning of space manipulator system[J].Science China Series E: Technological Sciences,2011,54(2):1234~1239.
    [91]廖一寰,李道奎,唐国金.平推无扰曲线及其在机械臂无扰运动规划中的应用[J].中国科学:技术科学,2011,41(5):573~578.
    [92] Torres M A, Dubowsky S. Path-planning for elastically constrained spacemanipulator systems[C]. IEEE International Conference on Robotics andAutomation, Atlanta, GA,1993.
    [93] Pond B, Sharf I. Motion planning for flexible manipulators[C]. IEEEInternational Conference on Systems, Man and Cybernetics, Vancouver, BC,1995.
    [94] Pond B, Sharf I. Experimental demonstration of flexible manipulator trajectoryoptimization[C]. AIAA Guidance, Navigation, and Control Conference, Portland,OR,1999.
    [95] Liu K, Kujath M R. Trajectory optimization for a two-link flexible manipulator[J].International Journal of Robotics and Automation,1996,11(2):56~61.
    [96] Zhao H C, Chen D G. Optimal motion planning for flexible space robots[C].IEEE International Conference on Robotics and Automation, Minneapolis, MN,1996.
    [97] Nguyen L A, Walker I D, DeFigueiredo R J P. Dynamic control of flexible,kinematically redundant robot manipulators[J]. IEEE Transactions on Roboticsand Automation,1992,8(6):759~767.
    [98]吴立成,孙富春,孙增圻,等.柔性空间机器人振动抑制轨迹规划算法[J].机器人,2003,25(3):250~254.
    [99]吴立成,陆震,于守谦,等.一种柔性冗余度机器人的动力学优化算法[J].机械科学与技术,2001,20(3):338~339.
    [100]吴立成,陆震,于守谦,等.一种柔性冗余度机器人振动抑制的复模态法[J].中国机械工程,2001,12(10):1186~1188.
    [101] Yue S G, Henrich D, Xu W L, et al. Point-to-point trajectory planning of flexibleredundant robot manipulators using genetic algorithms[J]. Robotica,2002,20(3):269~280.
    [102]岳士岗.冗余度柔性机器人动力学研究[D].北京:北京工业大学,1995.
    [103]杨军.柔性冗余度机器人运动规划研究[D].北京:北京工业大学,1996.
    [104]张绪平.空间柔性冗余度机器人动力学分析与综合[D].北京:北京工业大学,1999.
    [105]张绪平,余跃庆.柔性冗余度机器人运动规划的新方法——冗余位形法[J].机械工程学报,2000,36(7):57~60.
    [106]张绪平,余跃庆.冗余度柔性机器人自运动规划新方法[J].机械科学与技术,2001,20(1):39~41.
    [107]杨继运.柔性多冗余度机器人动力学综合[D].北京:北京工业大学,1999.
    [108]余跃庆,刘林涛.多冗余度柔性机器人运动规划[J].机械科学与技术,2003,22(4):588~590.
    [109]高志慧,贠超.提高柔性冗余度机器人动态性能的冗余关节运动规划方法[J].中国机械工程,2004,15(13):1132~1136.
    [110]高志慧,贠超.柔性冗余度机器人减振运动规划研究[J].机械科学与技术,2004,23(12):1515~1518.
    [111] Singer N C, Seering W P. Preshaping command inputs to reduce systemvibration[J]. Journal of Dynamic Systems, Measurements, and Control,1990,112:76~82.
    [112] Mohamed Z, Tokhi M O. Command shaping techniques for vibration control of aflexible robot manipulator[J]. Mechatronics,2004,14:69~90.
    [113] Lee K S, Park Y S. Residual vibration reduction for a flexible structure using amodified input shaping technique[J]. Robotica,2002,20(5):553~561.
    [114] Cho J K, Park Y S. Experimental evaluation of time-varying impulse shapingwith a two-link flexible manipulator[J]. Robotica,1996,14(3):339~345.
    [115] Kojima H, Morito A, Konno K, et al. Residual vibration reduction control aftercatching a falling steel sphere by a two-link catching flexible robot arm[J].International Journal of Applied Electromagnetics and Mechanics,2004,19(1-4):361~366.
    [116] Abe A. Trajectory planning for residual vibration suppression of a two-linkrigid-flexible manipulator considering large deformation[J]. Mechanism andMachine Theory,2009,44(9):1627~1639.
    [117]王兴松,朱建.用加速度波形优化方法减少柔性机械臂残余振动[J].机械工程学报,2001,37(8):10~13.
    [118] Park K J. Flexible robot manipulator path design to reduce the endpoint residualvibration under torque constraints[J]. Journal of Sound and Vibration,2004,275(3-5):1051~1068.
    [119] Park K J, Park Y S. Fourier-based optimal design of a flexible manipulator pathto reduce residual vibration of the endpoint[J]. Robotica,1993,11(3):263~272.
    [120]边宇枢.柔性冗余度机器人自运动消减余振的研究[J].机械科学与技术,1999,18(5):689~691.
    [121]边宇枢,陆震.柔性冗余度机器人残余振动的抑制研究[J].机器人,1998,20(4):247~252.
    [122]岳士岗,白师贤.冗余度柔性杆机器人自身运动消减残余振动研究[J].机械科学与技术,1998,17(2):183~186.
    [123] Park K J. Path design of redundant flexible robot manipulators to reduce residualvibration in the presence of obstacles[J]. Robotica,2003,21(3):335~340.
    [124]张洪钺,王青.最优控制理论与应用[M].北京:高等教育出版社,2005.
    [125] Benson D. A Gauss Pseudospectral Transcription for optimal control[D].Cambridge, MA: Massachusetts Institute of Technology,2005.
    [126] Liao Y H, Li D K, Tang G J. Motion planning for vibration reducing offree-floating redundant manipulators based on hybrid optimization approach[J].Chinese Journal of Aeronautics,2011,24(4):533~540.
    [127] Rao A V, Clarke K A. Performance optimization of a maneuvering reentryvehicle using a legendre pseudospectral method[C]. AIAA Atmospheric FlightMechanics Conference, Monterey, CA,2002.
    [128] Todd H G. Advancement and analysis of a Guass Pseudospectral Transcriptionfor optimal control problems[D]. Cambridge, MA: Massachusetts Institude ofTechnology,2007.
    [129]雍恩米.高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D].长沙:国防科学技术大学,2008.
    [130] Ajay V, Michael W O, David B D. On-line adaptive estimation and trajectoryreshaping[C]. AIAA Guidance, Naviation, and Control Conference, Keystone,CO,2006.
    [131] Junkins J L, Kim Y. Stability and control of robotic space manipulators[J].Teleoperation and Robotics in Space,1994,161:315~350.
    [132]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1993.
    [133] Karray F, Modi V J, Chan J K. On the nonlinear dynamics and control of flexibleorbiting manipulators[J]. Nonlinear Dynamics,1994,5(1):71~91.
    [134]崔玲丽,张建宇,高立新,等.基于能量判据的柔性机械臂模型降阶[J].系统仿真学报,2007,19(5):1011~1013.
    [135] Holland J H. Adaptation in natural and artificial systems: An introductoryanalysis with applications to biology, and artificial intelligence[M]. Ann Arbor,MI: The University of Michigan Press,1975.
    [136]罗亚中.空间最优交会路径规划策略研究[D].长沙:国防科学技术大学,2007.
    [137]陈琪峰.飞行器分布式协同进化多学科设计方法研究[D].长沙:国防科学技术大学,2003.
    [138]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科优化设计方法研究[D].长沙:国防科学技术大学,2004.
    [139] Fonseca C M. Multiobjective genetic algorithms with application to controlengineering problems[D]. Sheffield: The University of Sheffield,1995.
    [140] Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design[J].Structural and multidisciplinary optimization,1992,4(2):99~107.
    [141] Horn J, Nafpliotis N, Goldberg D E. A niched pareto genetic algorithm formultiobjective optimization[C]. IEEE Conference on Evolutionary Computation,Orlando, F L,1994.
    [142] Schaffer J D. Multiple objective optimization with vector evaluated geneticalgorithms[D]. Nashville, TN: Vanderbilt University,1985.
    [143] Srinivas N, Deb K. Multiobjective optimization using nondominates sorting ingenetic algorithms[J]. Evolutionary Computation,1994,2(3):221~248.
    [144] Zitzler E. Evolutionary algorithms for multiobjective optimization: methods andapplications[D]. Zurich: Swiss Federal Institute of technology,1999.
    [145] Ur-Rehman R, Caro S, Chablat D, et al. Multi-objective path placementoptimization of parallel kinematics machines based on energy consumption,shaking forces and maximum actuator torques: application to the orthoglide[J].Mechanism and Machine Theory,2010,45(8):1125~1141.
    [146] Deb K. Multi-objective optimization using evolutionary algorithms[M].Chichester: John Wiley&Sons, LTD,2002.
    [147] Messac A. Physical programming: effective optimization for computationaldesign[J]. AIAA Journal,1996,34(1):149~158.
    [148] Suleman A, Gonicalves M A. Multi-objective optimization of an adaptivecomposite beam using the physical programming approach[J]. Journal ofIntelligent Material Systems and Structures,1998,10(1):56~71.
    [149] Tappeta R V, Messac A, Renaud J E, et al. Interactive physical programming:tradeoff analysis and decision making in multicriteria optimization[J]. AIAAJournal,2000,38(5):917~926.
    [150] Messac A. Control-structure Integrated design with closed-form design metricsusing physical programming[J]. AIAA Journal,1998,36(5):855~864.
    [151] Messac A. From dubious construction of objective functions to the application ofphysical programming[J]. AIAA Journal,2000,38(1):155~163.
    [152] Messac A, Martinez M P, Simpson T W. Effective product family design usingphysical programming[J]. Engineering Optimization,2002,34(3):245~261.
    [153] Messac A, Wilson B H. Physical programming for computational control[J].AIAA Journal,1998,36(2):219~226.
    [154]乔心州,仇原鹰,曹鸿钧.基于物理规划的Stewart平台多目标优化[J].高技术通讯,2008,18(7):714~718.
    [155]童晓艳,蔡国飚,尘军,等.燃气发生器身部多学科设计优化[J].北京航空航天大学学报,2006,32(10):1250~1254.
    [156]王允良,李为吉.物理规划方法及其在飞机方案设计中的应用[J].航空学报,2005,26(5):562~566.
    [157] Messac A, Ismail-Yahaya A. Multiobjective robust design using physicalprogramming[J]. Structural and Multidisciplinary Optimization,2002,23(5):357~371.
    [158]黄奕勇.配点法研究[J].弹道学报,1998,10(3):40~43.
    [159]雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397~406.
    [160] Fahroo F, Ross I M. On discrete-time optimality conditions for pseudospectralmethods[C]. AIAA/AAS Astrodynamics Specialist Conference, Keystone, CO,2006.
    [161] Huyse L. Solving problems of optimization under uncertainty as statisticaldecision problems[C]. AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference, Seattle, WA,2001.
    [162]梁立波.近距离导引段交会轨迹安全性的定量评价和设计优化方法[D].长沙:国防科技大学,2011.
    [163] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective geneticalgorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2000,6(2):182~197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700