用户名: 密码: 验证码:
中华绒鳌蟹运动机理分析及其运动学、动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生多足机器人广泛应用于灾害救援、军事侦察、深空探测、交通运输等领域,研制仿生多足机器人的灵感来源于自然界中的多足动物,这也是仿生学研究的基础。中华绒螯蟹是一种具有优秀运动能力的节肢动物,可进行长距离迁徙至河口进行繁殖或洄游,因此中华绒螯蟹不仅对复杂地面环境具有良好的适应性,而且具有多栖性,对中华绒螯蟹运动特性的研究可为仿蟹机器人的研制提供仿生原型和理论基础。此外,中华绒螯蟹还具备优秀的挖掘能力,其所使用的主要工具是两只螯,对螯结构的研究可改进触土部件的切削能力并且提高其使用寿命;对中华绒螯蟹挖掘动作的研究也可为仿生挖掘机器人的研究提供仿生学依据。
     为了定量分析被试地面的不平度,研制基于激光测距仪测量地面不平度的专用装置,采集6种规格石英砂所铺设的不平地面的离散形貌样本数据,使用平均粒径作为每种规格石英砂的量度,经韦尔奇法得到每种不平地面的空间自功率谱密度函数并绘制空间自功率谱密度函数曲线。结果表明,随着石英砂平均粒径的增加,空间自功率谱密度函数曲线的峰值增加,空间自功率谱密度函数曲线与频率轴所围成的面积增加,表明不平地面所包含的能量增加。在此基础上提出了地面能量作为衡量地面不平度的一个指标,与表面不平度标准差(RMS高度)比较后表明,地面能量与RMS高度具有强相关性,说明使用地面能量定量评价地面不平度是可行的。
     提出使用相互平行直线方程拟合双对数坐标系中空间自功率谱密度曲线评价地面不平度的方法。统计结果表明,随着平均粒径的增大,拟合直线方程的截距增大。由RMS高度和平均粒径相关性结论,可以得出随着拟合直线的截距增大,地面不平度越来越大,说明在双对数坐标系中对空间自功率谱密度曲线进行直线拟合,通过分析拟合直线之间的相对位置和直线截距来评估地面不平度是可靠的。
     使用三维运动图像系统捕捉中华绒螯蟹平面运动图像,通过逐帧法对中华绒螯蟹的步态进行分析,结果表明中华绒螯蟹在平面上行走时使用交替四角步法,L-步足组的平均负荷因数大于R-步足组,表明L-步足组与地面相互作用产生拉力时间大于R-步足组与地面作用产生推力时间,跨步频率随平均速率的增加而增长。使用三维运动分析软件对所采集的运动图像进行解析,得到中华绒螯蟹质心运动学参数。对运动学参数分析结果表明随着中华绒螯蟹质量增加,平均速率呈非线性减小。中华绒螯蟹在平面运动时以跳跃步态为主;除跳跃步态外,中华绒螯蟹偶然使用倒立摆步态;恢复系数与其平均速率没有相关关系,且恢复系数较低。质心机械能比质量功率随着平均速率增加呈线性增长;在Heglund N C总结的质心机械能比质量功率与平均速率关系公式基础上,引入中华绒螯蟹质心总机械能比质量功率后对该公式再次进行总结。质心水平动能比质量功率和质心重力势能比质量功率分别是质心总动能比质量功率和总机械能比质量功率的主要组成部分,分别在加速和抬升中华绒螯蟹身体时起主要作用。
     采集中华绒螯蟹在5种地面(包括1种平面和4种不平地面)上的运动图像,使用逐帧法对图形进行分析,结果表明随着地面不平度的增加,中华绒螯蟹的步法由交替的四角步态逐渐转变为无规律步法,L-步足组的平均负荷因数大于R-步足组的平均负荷因数,表明L-步足组与地面接触的时间大于R-步足组与地面接触的时间。L-步足组在5种地面上的平均负荷因数基本相同;而对于T-步足组,在4种不平地面上的平均负荷因数大于其在平面上的平均负荷因数。对于5种地面,L-2和L-3步足的平均负荷因数分别大于T-2和T-3步足,表明L-2和L-3步足在中华绒螯蟹运动中主要产生拉力并且用于探知其运动方向的地面环境。在不平路面运动时,中华绒螯蟹平均速率均小于其在平面运动的平均速率。个体总质量小于61.99g的中华绒螯蟹,平均速率随个体总质量的增加而减小;对于个体总质量大于61.99g的中华绒螯蟹,其运动的平均速率随个体总质量增加而增加。中华绒螯蟹在5种地面上运动时使用两种基本的机械能转换形式,即跳跃步态和倒立摆步态。其中跳跃步态为主要的机械能转换形式,中华绒螯蟹为适应复杂的地面环境偶尔使用倒立摆步态。质心水平动能决定了质心总动能的波动;质心重力势能决定了质心总机械能的波动。质心总机械能比质量功率随平均速率的增加呈线性增长,并且其质心总机械能比质量功率随陈代谢比质量功率的增加而增加,表明中华绒螯蟹运动时的机械能主要来自于新陈代谢所产生的能量。
     使用形态学的方法对中华绒螯蟹的身体结构进行分析。结果表明,中华绒螯蟹身体各部分的质量、长度都随个体总质量的增加而增加。对于螯足,座节的质量最小,螯的质量最大;基节的长度最短,螯的长度最长。对于步足,指节的质量最小,长节的质量最大;基节的长度相最短,长节的长度最长。配对t检验表明中华绒螯蟹的身体结构呈双侧对称性。
     建立了螯足、步足和躯干的简化物理模型,并对螯足、步足、躯干的简化模型的转动惯量进行计算。结果表明,螯足的基节转动惯量最小,螯的转动惯量最大;L-2步足和L-3步足的长节的转动惯量明显大于L-1步足和L-4步足的长节;L-2步足和L-3步足的其他节的转动惯量与L-1步足和L-4步足其他节的转动惯量基本一致。使用D-H法建立了步足摆动相和支撑相下正逆运动学方程,使用拉格朗日法建立了步足摆动相和支撑相下正逆动力学方程。
The bionic robots are widely used in safeguard health, military reconnaissance, deepspace exploration, transportation and so on. The inspiration of manufacturing new robotscomes from natural field, which is the foundation of bionic research process. Chinese mittencrab (Eriocheir sinensis Milne-Edwards), as a topic arthropod, has excellent capability oflocomotion, because they can travel from inland to seaside for reproduction or migration.Therefore, Chinese mitten crab has a well adaption to complex terrain environment andshows triphibian features. The studies of Chinese mitten crab’s habits and characteristics canoffer the bionic prototype and theory foundation to manufacturing bionic crab-like robot ormoblile platform. Moreover, Chinese mitten crab is expert in excavating hole for habitationwith its two chelas, which can offer a new insight into the design and improvement onexcavating meachinery and bionic theories for manufacturing bionic excavating robots.
     In order to define the roughness of tested terrains quantitative, we used a distance lasersensor to measure the morphology of digital surfaces of six particle sizes of quartz sandpaved in the pint-sized soil bin flatly. And then the filtered data was converted with FFT fordrawing curves of space discrete power spectral density (PSD). The statistical results showedthat there were good correlations between the peak estimate of space discrete PSD, the areaof curves of space discrete PSD surrounded with frequency axis and the average particle sizeof quartz sand, which indicated that the energy terrains contained had good relationship withthe average quartz particle size of quartz sand. On the basis of average root mean-squaredheight RMS, we proposed terrain energy as a parameter for evaluating the terrain roughness.Experiments and analyzed results showed that terrain energy increased with the value ofRMS increasing. Therefore, it is reliable to use terrain energy to evaluate terrain energy.
     From the power function expression of space discrete PSD, we proposed another methodto evaluate terrain roughness by fitting the curves of space discrete PSD in double logarithmcoordinate system. Results showed that with the average particle size increasing, the slopesof fitting linear equations increased. From the relationship between terrain roughness andaverage root mean-squared height RMS, we can concluded that analyzing the relative positions of fitting linears and slopes for evaluating terrain roughness was dependable.
     By using a high speed3D video recording system, the video images of Chinese mittencrab moving on smooth terrain were recorded. The video images were analyzed using frameby frame method to analyze the gaits of Chinese mitten crab. The results showed thatChinese mitten crab used a metachronal wave pattern called alternating tetrapod. The dutyfactors of the rows of the leading legs were greater than those of the rows of the trailing legs,which indicated that the pulling period of the rows of the leading legs contacting with terrainwas longer than pushing period of the rows of the trailing legs. The stride frequencyincreased with the average velocity. The video images were analyzed with a3D motionanalysis system in order to obtain the kinematic parameters of the center of mass of Chinesemitten crab. The results indicated that the average velocity of Chinese mitten crab decreasedwith the mass of Chinese mitten crab increasing, and these results were consisted with ghostcrab moving on treadmill. Chinese mitten crab used a bouncing gait as the mainenergy-conserving and-releasing pattern of mechanical energy. Besides, they occasionallyused inverted pendulum gait. The percentage recovery of Chinese mitten crab was lowerthan that of ghost crab (Ocypode quadrata,55%~70%) and different from death-headcockroach (Blaberus discoidalis, the mean value is15.7%), did not vary as a function ofaverage velocity. The mass-specific rate of mechanical power increased with averagevelocity increasing linearly. On the basis of Heglund’s experimental equation, we deducedanother equation about the relationship between the mass-specific rate of total mechanicalpower and average velocity through introducing the mass-specific rate of total mechanical ofChinese mitten crab. The mass-specific rate of horizontal kinetic power was the maincomponent of the mass-specific rate of total kinetic power required to accelerate Chinesemitten crab. The mass-specific of gravitational potential power was the main component ofthe mass-specific rate of total mechanical power required to lift Chinese mitten crab.
     Motion video images of Chinese mitten crab locomotion on five types of terrains(including one smooth terrain and four kinds of rough terrains) were recorded. Frame byframe analysis indicated that Chinese mitten crab used random gaits instead of thealternating tetrapod gait with the terrain roughness increasing. The duty factors of the rowsof the leading legs were greater than those of the rows of the trailing legs, which meant thatthe pulling period of the rows of the leading legs contacting with terrain was longer than thepushing period of the rows of the trailing legs. The duty factors of the rows of the leadinglegs were almost the same for all terrains, and those of the rows of the trailing legs weregreater over the four types of rough terrains than over smooth terrain. For all five kinds ofterrains, the duty factors of L-2leg and L-3leg were greater than those of T-2leg and T-3leg, which indicated L-2leg and L-3leg produced pulling force and were used to explore thesituation of terrain. When moving on four kinds of rough terrains, the average velocity ofChinese mitten crab was less than that of moving on smooth terrain. When Chinese mittencrabs over four kinds of rough terrains, with the body mass of crabs less than about61.99g,the average velocity decreased with the body mass of crabs increasing, however, with thebody mass of crabs more than about61.99g, the average velocity increased with the bodymass of crabs increased. Chinese mitten crab used two fundamental gaits to save mechanicalenergy: the inverted pendulum gait and the bouncing gait. The bouncing gait was the mainpattern of mechanical energy conservation, however, in order to adapt to complex terrains,Chinese mitten crab occasionally used inverted pendulum gait. Horizontal kinetic energywas the major component of total kinetic energy for all terrains. Thus, horizontal kineticenergy can determine the trend of undulation in total kinetic energy. Gravitational potentialenergy was the major component of total mechanical energy, which determined the trend ofthe undulation in total mechanical energy. The mass-specific rate of total mechanical powerincreased with average velocity increasing linearly. The mass-specific rates of energyconsumption increased with the mass-specific rate of total mechanical power increasing,which indicated that the mechanical energy came from the energy metabolism produced.
     Besides, we investigated the structures of Chinese mitten crab with the methods ofmorphology. The statistical results indicated that the mass and length of segments of Chinesemitten crab had an increasing relationship with body mass. For chelas, the chiopodite masswas minimum and the chela mass was maximum. The basipodite length was minimum andthe chela length was maximum. For legs, the dactylopodite mass was minimum and themetropodite mass was maximum. The basipodite length was minimum and the metropoditelength was maximum. Paired t-test showed that the structure of Chinese mitten crab had asymmetrical structure.
     We developed the simple physical models and calculated the moment of inertia of eachsegment of chelas, legs and trunk. The calculated results of the moment of inertia showedthat the moment of inertia of basipodite of chela was minimum and chela was maximum.The moment of inertia of metropodites of L-2leg and L-3leg was greater than that of L-1leg and L-4leg respectively and there were no prominent different between the othersegments of L-2leg and L-3leg and the other segments of L-1leg and L-4leg. By referenceto the D-H method, we deduced kinematics and inverse kinematics equations. By referenceto the Lagrange method, we deduced the dynamics and inverse dynamics equations.
引文
[1]催彬.我国西部地区矿产资源优势综合评价[D].北京:中国地质大学,2006.
    [2]李建桥,张晓冬,邹猛,李豪,王洋,石睿杨.中华绒螯蟹平面运动三维观测和步态分析[J].农业机械学报.2012,43(增刊):335-338.
    [3]徐宏岩,付宜利,王树国,刘建国.仿生机器人的研究[J].机器人.2004,26(3):283-288.
    [4]张晓冬,李建桥,邹猛,王博.生物非光滑表面在松软地面行走机构上的应用[C].中国农业机械学会地面机器系统分会2011年会议论文集.2011-11-14.中国·黄石.
    [5] Vincent J F V, Bogatyreva O A, Bogatyrev N R, Bower A, Pahl A-K. Biomimetics, its practice andtheory [J]. Journal of the Royal Society Interface,2006,3:471-482.
    [6] Steele J E. How Do We Get There? Bionics Symposium: Living Prototypes-The Key to NewTechnology, WADD Technical Report60-600, Wright Air Development Division, Wright-PattersonAir Force Base, OH,1960:488-489. In: Gary C H (ed). The Cyborg Handbook [M], New York:Routledge,1995.
    [7]李保峰.仿生学的启示[J].建筑学报,2009,9:24-26.
    [8]路雨祥.仿生学的意义与发展[J].科学中国人,2004,4:22-24.
    [9] Holland J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis withApplications to Biology, Control, and Artificial Intelligence [M]. Massachusetts: The MIT Press,1992.
    [10] Allen T J, Quinn R D, Bachmann R J, Ritzmann R E. Proceeding of the2003IEEE/RSJ IntlConference on intelligent Robots and System,2003[C]. IEEE Computer Society Washington, D C:IEEE Computer Society IEEE Computer Society Washington, D C,2003.
    [11] Spenneberg D, Kirchner F, Gea J D. Proceeding of8h ESA Workshop on Advanced SpaceTechnologies for Robotics and Automation,2004[C]. IEEE Computer Society Washington, D C:IEEE Computer Society IEEE Computer Society Washington, D C,2003.
    [12] Niu X L, Xu J X, Ren Q Y, Wang Q G. Locomotion generation and motion library design for ananguilliform robotic fish [J]. Journal of Bionic Engineering,2013,10:251-264.
    [13] Liang J H, Yang X B, Wang T M, Yao G C, Zhao W D. Design and experiment of a bionic gannet forplunge-deiving [J]. Journal of Bionic Engineering,2013,10:282-291.
    [14] Sane S P, Dickinson M H. The control of flight force by a flapping wing lift and drag production [J].The journal of experimental biology,2001,204:2607-2626.
    [15] Ijspeert A J, Crespi A, Ryczko D, Cabelgen J M. From swimming to walking with a salamander robotdriven by a spinal cord model [J]. Science,2007,315(1416).
    [16] Talwar S K, Xu S H, Hawley E S, Weiss S A, Moxon K A, Chapin J K. Behavioural neuroscience:Rat navigation guided by remote control [J]. Nature,2002,417(6884):37-38.
    [17]张晓冬,李建桥,邹猛,王博.中国农业机械学会地面机器系统分会2011年会议论文集,2011[C].黄石:黄石理工学院.
    [18] Barnes W J P. Leg coordination during walking in the crab Uca pugnax [J]. J. comp. Physiol.,1975,96:237-256.
    [19] Mitchell S C, DeMont M E. Analysis of the mero-carpopodite joint of the American lobster and snowcrab.Ⅱ. Kinematics, morphometrics and moment arms [J]. J. Mar. Biol. Ass. U. K.,2003,83:1249-1259.
    [20] Collins S H, Adamczyk P G, Ferris D P, Kuo A D. A simple method for calibrating force plates andforce treadmills using and instrumented pole [J]. Gait&Posture2009,29:59-64.
    [21] Full R J. Locomotion energetic of the ghost crab Ⅰ. metabolic cost and endurance [J]. The journalof experimental biology,1987,130:137-153.
    [22] Ludwar C B, G ritz M L, Schmidt J. Intersegmental coordination of walking movements in stickinsects [J]. Journal of Neurophysiology,2005,93:1255-1265.
    [23]陈秉聪.步行车辆理论及脚踝设计[M].北京:机械工业出版社.
    [24] Herberg L M, Rushton S P, Clare A S, Bentley MG. Spread of the Chinese mitten mitten crab(Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historial data set [J].Hydrobiologia,2003,503:21-28.
    [25]徐在宽.谈谈河蟹打穴[J].水产养殖,1997,5:26.
    [26] Dickinson M H, Farley C T, Full R J, Koehl M A R, Kram Rodger, Lehman S. How animals move:an integrative view [J]. Science,288:100-106.
    [27] Weinstein R B. Locomotor behavior of nocturnal ghost crabs on the beach: focal animal samplingand instantaneous velocity from three-dimensional motion analysis [J]. The Journal of ExperimentalBiology,1995,198:989-999.
    [28] Muybridge E. Animals in motion [M]. New York: New Dover Publications Inc,.1955.
    [29] Muybridge E. Animals in motion—45Classic Photographic Sequences [M]. New York: New DoverPublications Inc,.1985.
    [30] Hughes G M. The co-ordination of insect movements. Ⅰ. The walking movement of insects [J]. TheJournal of Experimental Biology,1952,29:267-284.
    [31] Nam W, Seo T W, Kim B, Jeon D S, Cho K J, Kim J W. Kinematic analysis and experimentalverification on the locomotion of gecko [J]. Journal of Bionic Engineering,2009,6:246-254.
    [32] Kram R, Wong B, Full R J. Three-dimesional kinematics and limb kinetic energy of runningcockroaches [J]. The Journal of Experimental Biology,1997,200:1919-1929.
    [33] Autumn K, Hsieh S T, Dudek D M, Chen J, Chitaphan C, Full R J. Dynamics of geckos runningvertically [J]. The Journal of Experimental Biology,2006,209:260-272.
    [34] Full R J, Tu M S, Mechanics of a rapid running insect: two-, four-and six-legged locomotion.Journal of Experimental Biology,1991,156:215-231.
    [35] Ridgel A L, R E Ritzmann, Scheafer P L. Effects of aging on behavior and leg kinematics duringlocomotion in two species [J]. Journal of Experimental Biology,2003,206:4453-4465.
    [36].Jayne B C, Lauder G V. Red muscle motor patterns during steady swimming in largemouthbass-effects of speed and correlations with axial kinematics [J]. Journal of Experimental Biology,1995,198(7):1575-1587.
    [37] Jayne B C, Lauder G V. Are muscle-fibers within fish Myotomes activated synchronously-patterns ofrecruitment within deep Myomeric musculature during swimming in largemouth bass [J]. Journal ofExperimental Biology,1995,198(3):805-815.
    [38] Brown M R, Fisher L A, Rivier J, Spiess J, Rivier C, Vale W. Corticotropin-releasing factor: Effectson the sympathetic nervous system and oxygen consumption [J]. Life Science,1982,30(2):207-210.
    [39] Houghton F D, Thompson J G. Kennedy C J, Lesse H J. Oxygen consumption and energymetabolism of the early mouse embryo [J]. Molecular Reproduction and Development,1996,44(4):476-485.
    [40] Han L B, Wang Z Y, Ji A, Dai Z D.The mechanics and trajectory control in locust jumping [J].Journal of Bionic Engineering,2013:194-200.
    [41] Tobalske B W. Biomechanics of bird flight [J]. Journal of Experimental Biology,2007,21015:3135-3146.
    [42] Lauder G V, Anderson E J, Tangorra J, Madden P G A. Fish biorobotics: kinematics andhydrodynamics of self-propulsion [J]. Journal of Experimental Biology,2007,25:2767-2780.
    [43] Baumgartner W, Florian F, Weth A, Habbecke M, Jakob P, Butenweg C, B hme W. Investigating thelocomotion of the sandfish in desert sand using NMR-Imaging [J]. PLoS ONE,2008;3(10): e3309.
    [44] Maladen R D, Ding Y, Li C, Goldman D I. Undulatory swimming in sand: subsurface locomotion ofthe Sandfish lizard [J]. Science,2009,325:314-317.
    [45] Max F. Compiler: US,1242674[P/OL].1915-12-06[1915-12-06].http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=1242674&KC=&FT=E&locale=en_EP.
    [46] http://www.york-tech.com/product_article.php?id=131.
    [47] http://www.qualisys.com/products/software/visual3d/.
    [48] http://www.motionanalysis.com.cn/product/Kinetics.htm.
    [49] http://www.vicon.com/Software/Tracker.
    [50] http://www.simi.com/en/products/movement-analysis/simi-motion-2d3d.html.
    [51] Clarac F, Libersat F, Pflüger H J, Rathmayer W. Motor pattern analysis in the shore crab (Carcinusmaenas) walking freely inwater and on land [J]. Journal of Experimental Biology,1987,133:395-414.
    [52] Tryba A K, Ritzmann R E. Mult-joint coordination during walking and foothold search in theBlaberus cockroach. Ⅰ. kinematics and electromyograms [J]. Journal of Neurophysiology,2000,83:3323-3336.
    [53] Tryba A K, Ritzmann R E. Mult-joint coordination during walking and foothold search in theBlaberus cockroach. Ⅱ. extensor motor neuron pattern [J]. Journal of Neurophysiology,2000,83:3337-3350.
    [54] Robertson G, Caldwell G, Hamill J, Kamen G, Whittlesey S. Research methods in biomechanics [M].Champaign: Human Kinetics,2004.
    [55]李世明.肌电测量技术的应用[J].中国临床康复,2006,10(41):149-151.
    [56] Cram J R, Steger J C. EMG scanning in the diagnosis of chronic pain [J]. Biofeedback Self Regul,1983,8(2):229–241.
    [57] Logan S, Hunter I, Hopkins J T, Feland J B, Parcell C P. Ground reaction force differences betweenrunning shoes, racing flats, and distance spikes in runners [J]. Journal of Sports Science andMedicine.2010,9:147-153.
    [58] Lord M. Foot pressurement a review of methodology [J]. J Biomed. Eng,1981,3:91.
    [59] Heglund N C. A simple design for a force-plate to measure ground reaction forces [J]. Journal ofExperimental Biology,1981,93:333-338.
    [60] Full R J, Tu M S. Mechanics of six-legged runners [J]. Journal of Experimental Biology,1990,148:129-146.
    [61] Full R J, Yamauchi A, Jindrich D L. Maximum single leg force production: cockroaches righting onphotoelastic gelatin [J]. Journal of Experimental Biology,1995,198:2441-2452.
    [62] Jindrich D L, Full R J. Many-legged maneuverability: dynamics of turning in hexapods [J]. Journalof Experimental Biology,1999,202:1603-1623.
    [63]吉爱红.动物运动接触反力测试系统、实验与分析[D].南京:南京航天航空大学,2007.
    [64]陈守良.动物生理学[M].北京:北京大学出版社,1996.
    [65] Drazen J C, Bird L B, Barry J P. Development of a hyperbaric trap-respirometer for the capture andmaintenance of live deep-sea organisms. Limnology and Oceanography: Methods [J].2005,3:488-498.
    [66]戴振东,孙久荣.壁虎的运动及仿生研究进展[J].自然科学进展,2006,16(5):519-523.
    [67] Hildebrand M. Symmetrical gaits of primates [J]. Am J Phys Anthropol,1967,26:119-130.
    [68] Hildebrand M, Bramble D M, Liem K F, Wake D B. Functionality vertebrate morphology [M].Cambridge, MA: Harvard University Press,1985.
    [69] Vilensky J A, Larson S G. Primate locomotion: utilization and control of symmetrical gaits [J]. AnnuRev Anthropol,1989,18:17-35.
    [70] Strasser E, Fleagle J, Rosenberger A, McHenry H. Primate locomotion: recent advances [M]. NewYor: Plenum Press,1998.
    [71] Hildebrand M. Symmetrical gaits of horses. Science,1965,191:701-708.
    [72] Clayton H. Classification of collected trot, passage and piaffe based on temporal variables [J].Equinevelerinary Journal,1997,23(Suppl.):54-57.
    [73] Cavagna G A, Heglund N C, Taylor C R. Mechanical work in terrestrial locomotion: two basicmechanisms for minimizing energy expenditure [J]. Journal of applied physiology,1977,233:R243-R256.
    [74] Full R J, TU M S. Mechanics of six-legged runners [J]. Journal of Experimental Biology,1990,148:129-146.
    [75] Miqueleto N S M L, Rahal S C, Agostinho F S, Siqueira E G M, Araújo, El-warrak A O. Kinematicanalysis in healthy and hip-dysplastic German Shepherd dogs [J]. The Veterinary Journal,2013,195(2):210-215.
    [76]田为军.德国牧羊犬运动特性及其运动模型研究[M].吉林:吉林大学,2011.
    [77] Rosenstein M T, Collins J J, DelucaC J. A practical method for calculating largest Lyapunoveexponents from small data sets [J].Phys D,1993,65:117-134.
    [78]田为军,丛茜,金敬福.德国牧羊犬的关节角及其地反力[J].吉林大学学报(工学版),2009,39(增刊1):227-231.
    [79] Bicker G, Pearson K G. Initiation of flight by an identified wind sensitive neurone (TCG) in thelocust [J]. Journal of Experimental Biology,1983,104:289-293.
    [80] Sobel E C. The locust’s use of motion parallax to measure distance. Journal of ComparativePhysiology A,1990,167,579-588.
    [81]高吭.东方蝼蛄(Gryllotalpa orientalis Burmeister)特征、功能、力学及其仿生分析[D].长春:吉林大学,2009.
    [82]张琰.东方蝼蛄耦合特性、运动学建模及其功能仿生研究[D].长春:吉林大学,2011.
    [83] Ludwar B C, G ritz M L, Schmidt J. Intersegmental coordination of walking movements in stickinsects [J]. Journal of Neurophysiology,2005,93:1255-1265.
    [84] Biancardi C M, Fabrica C G, Polero P, Loss J F, Minetti A E. Biomechanics of octopedal locomotion:kinematic and kinetic analysis of the spider Grammostola mollicoma [J]. Journal of ExperimentalBiology,2011,214:3433-3442.
    [85] Blickhan R. Locomotion energetic of the ghost crab Ⅱ. mechanics of the center of mass duringwalking and running,1987,130:155-174.
    [86] Full R J, Weinstein R B. Integrating the Physiology, Mechanics and Behavior of Rapid RunningGhost Crabs: Slow and Steady Doesn’t Always Win the Race [J]. AMER. ZOOL.,1992,32:382-395.
    [87] Mitchell S C, DeMont M E. Analysis of the mero-carpopodite joint of the American lobster and snowcrab. Ⅱ. Kinematics, morphometrics and moment arms [J]. J. Mar. Biol. Ass. U. K.,2003,83:1249-1259.
    [88] Liston R A, Mosher R S. Preceding of1968Transportation Engineering Conference,1968[C].Washington D. C.: ASME-NYAS,1968.
    [89] McGhee R B. Proceeding of Second International Symposium on External Control of HumanExtremities,1966[C]. Dubrovnik: Yugoslavia,1972.
    [90] Frank AA. Automatic Control System for Legged Locomotion, USCEE Report No.273[R].California: University of South California,1968.
    [91] Raibert M, Chepponis M, Brown H B J. Running on four legs as though they were one [J]. IEEEJournal of Robotics and Automation1986, RA-2(2):70-82.
    [92] Menon C, Murphy M, Sitti M. Proceedings of the IEEE International Conference on Robotics andBiomimetics,2004[C]. Piscataway, N J, USA: IEEE,2004.
    [93] Mocci U, Petternella N, Solinari S. Experiments with Six Legged Walking Mechines with Fixed Gait,Report2-12[R]. Italy: Institute of Automation, Rome University,1972.
    [94] Buck J R. Design of an On-Board Electronic Joint System for a Hexapod [R]. Ohio: The Ohio StateUniversity, M S,1977.
    [95] Marc.H.Raibert. Legged Robots [J]. Communications of the ACM,1986,29:499-514.
    [96] Raibert, M.H., and Brown, H.B. Jr. Experiments in balance with a2D one-legged hopping machine.ASME I [J]. Dyn. Syst. Meas. Control,1984,106:75-81.
    [97] Hirose. S. A study of design and control of a quadruped walking vehicle [J]. Int. J. Robotics Res,1984,3:113-133.
    [98] McGhee R B. Vehicular Legged Locomotion. Advances in Automation and Robotics [M]. Greenwich,C T: Jai Press, Inc.,1985.
    [99] Bares J E, Whittaker W I. Configuration of autonomous walkers for extreme terrain [J]. TheInternational Journal of Robotics Research,1993,12(6):535-559.
    [100] Lin P C, Komsuglu H, Kodistchek D E. Proceedings of the IEEE International Conference onRobotics and Automation,2003[C]. Piscataway, N J, USA: IEEE,2003.
    [101] Altendorfer R, Moore N, Komsuoglu, Buehler M, Brown JR H B, Mcmordie D, Saranli U, FullR, Koditschek D E. RHex: a biologically inspired hexapod runner [J]. Autonomous Robots,2001,11:207-213.
    [102]王伟.浅海扫雷机器人的发展趋势浅析[J].机器人技术与应用,2002,5:2-5.
    [103] Spenneberg, Kirchner F. SCORPION: a biomimetic walking robot [J]. Robotik,2002,1679:677-682.
    [104] Voth D. Nature’s guide to robot design [J]. IEEE Intelligent: System,2002,17(6):4-7.
    [105]唐杰,袁培章,修道喜,李小凡,归彤.海底六足步行机器人[J].光学机械,1990,(3):47-50.
    [106]汪劲松,荣松年,张伯鹏.全方位三足步行机器人(Ⅰ)——步行原理、机构以及控制系统[J].清华大学学报(自然科学版),1994,34(2):102-103.
    [107]汪劲松,张伯鹏.全方位三足步行机器人(Ⅱ)——步行模式规划[J].清华大学学报(自然科学版),1994,34(5):63-71.
    [108]徐小云,颜国正,丁国清.六足微型仿生机器人及其控制系统的研究[J].计算机工程,2002,28(11):81-83.
    [109]王沫楠,杨玉春.仿生机械蟹的模型建立及优化[J].哈尔滨理工大学学报,2003,8(6):1-3.
    [110]赵波.沙漠环境下仿生六足机器人设计与动力学分析[D].长春:吉林大学,2012.
    [111]刘长胜.仿生六足机器人复杂地面力学分析与控制系统研究[D].长春:吉林大学,2012.
    [112]李宏凯.类壁虎机器人的仿生控制:从行为观测到控制实现[D].南京:南京航空航天大学,2010.
    [113] Jester W, Klik A. Soil surface roughness measurement-methods, applicability, and surfacerepresentation[J]. Catena,2005,64:174-192.
    [114] Flanagan D C, Huang C H, Norton L D, Parker S C. Laser scanner for erosion plotmeasurements [J]. Trans. ASAE.1995,38(3):703-710.
    [115]张晓冬,李建桥,王洋,邹猛,魏灿刚.基于激光测距仪的地面不平度的测量与分析[J].吉林大学学报(工学版).2013,43(5):1258-1263.
    [116] Warner W S. Mapping a three-dimensional soil surface with handheld35mm photography [J].Soil Tillage Res.1995,34:187-197.
    [117] Wegmann H, Rieke-Zapp D, Folk S. Proceedings of ASPRS2001Annual Conference,2001[C].ST.LOUIS,MO: ASPRS Distribution Center,2001.
    [118] R mkens M J M, Wang J Y. Effect of tillage on surface roughness [J]. Trans. Am. Soc. Agric.Eng.1986,29:429-433.
    [119] Robichaud P R, Molnau M. Measuring soil roughness changes with an ultrasonic profiler [J].Trans. ASAE.1990,33(6):1851-1858.
    [120] Helming K, R mkens M J M, Prasad S N. Surface roughness related processes of runoff andsoil loss: a flume study [J]. Soil Sci. Soc. Am. J.1998,62:243-250.
    [121] Darboux F, Huang C H. An instantaneous-profile laser scanner to measure soil surfacemicrotopography [J]. Soil Sci. Soc. Am. J..2003,67:92-99.
    [122] Courault J D, Bertuzzi P, Girard M C. Monitoring surface changes of bare soils due to slakingusing spectral measurement [J]. Soil Sci. Soc. Am. J..1993,57:1595-1601.
    [123] Moran M S, Vidal A, Troufleau D, Qi J, Clarke T R, Pinter P J, Mitchell T A, Inou Y.Combining multifrequency microwave and optical data for crop management [J]. Remote Sens.Environ.1997,61:96-109.
    [124] Sano E E, Heate A R, Troufleau D, Moran M S, Vidal A. Relation between ERS-1syntheticaperture radar data and measurements of surface roughness and moisture content of rocky soils in asemiarid rangeland [J]. Water Resour. Res.1998,34:1491-1498.
    [125] Helming K, Roth C R, Wolf R, Diestel H. Characterization of rainfall—Microrelief interactionswith runoff using parameters derived from digital elevation models (DEMs)[J]. Soil Technol.1993,6:273-286.
    [126]蔡祥,孙宇瑞,林剑辉,Schulze L P.基于激光反射的土壤表面粗糙度测量装置设计与试验[J].农业机械学报.2010,41(1):68-71,91.
    [127] Li J Q, Wang Y. Proceedings of12thEuropean Regional Conference of the International Societyfor Terrain-Vehicle System,2012[C]. Amsterdam: Science Press and Elsevier Limited,2012.
    [128]李建桥,王洋,党兆龙,黄晗,刘庆平.松散地面上车辙表面的非接触式激光测量[J].农业工程学报.2013,,44(7):264-268.
    [129] Kuipers H, A reliefmeter for soil cultivation studies [J].Neth. J. Agric. Sci..1957,5:255–262.
    [130] Podmore T H, Huggins L F. An automated profile meter for surface roughness measurements[J].. Trans. ASAE.1981,24(3),663–665,669.
    [131] Saleh A. Soil roughness measurement: chain method [J]. J. Soil Water Conserv..1993,48:527–529.
    [132] Merrill D. Comments on the chain method for measuring soil surface roughness: use of thechain set [J]. Soil Sci. Soc. Am. J..1998,62:1147–1149.
    [133] Chakrabarti S, Cox E, Frank E, Güting R H, Han J W, Jiang X, Kamber M, Lightstone S S,Nadeau T P, Neapolitan R E, Dorian P, Refaat M, Schneider M, Teorey T J, Ian H. Data mining:know It all [M]. SanFrancisco:Morgan Kaufmann,2008.
    [134] Vermang J, Norton L D, Baetens J M, Huang C, Cornelis W M, Gabriels. Quantification of soilsurface roughness evolution under [J]. American Society of Agricultural and Biological Engineers.2013,56:505-514.
    [135] Wong J Y. Terramechanics and off-road vehicle engineering [M].2nd ed. Oxford: Elsevier,2010.
    [136] Strahler A N, Koons D. Objective and quantitative field methods of terrain snalysis [J]. Journal ofTerramechanics.1960,1(1):128.
    [137] Schiehlen W, Hu B. Spectral simulation and shock absorber identification [J]. International Journalof Non-Linear Mechanics.2003,38:161-171.
    [138] Vapnik V. Statistical learning theor6y [M]. N Y: Springer,1998.
    [139] Jeremy J D,David M B, Robert L J. Proceedings of the ASME2009Dynamic System and ControlConference,2009[C]. U.S.: ASME,2010.
    [140]王岩松,李章明,何辉,耿艾莉.四轮车辆非平稳路面不平度时域模拟及小波分析[J].汽车工程.2004,2(1):42-47.
    [141] Mattia F, Letoan T. Backscattering properties of multiscale rough surfaces [J]. Journal ofElectromagnetic Waves and Applications,1999,13:491-526.
    [142] Andren P. Power spectral density approximations of longitudinal road profiles [J]. InternationalJournal of Vehicle Design,40(1/2/3):2-14.
    [143] James J F. A student’s guide to Fourier transforms with applications in physics and engineering [M].3rd ed. Cambridge: Cambridge University Press,2011.
    [144] Mateer T. Fast Fourier transform algorithms with applications [D]. Clemson: Clemson University,2008.
    [145] Zhang R, Tjhung T T, Hu H J, He P. Window function and interpolation algorithm for OFDMFrequency-offset correction [J]. IEEE transactions on vehicular technology,2003,52(3):644-670.
    [146] Hartmann W M. Signals, sound, and sensation [M]. New York: American Institute of Physics,1997.
    [147] Ramirez R W. The FFT. fundamentals and concepts [M]. New Jersey: Prentice-Hall,1985.
    [148] Alan V O, Alan S W, Hamid S. Signals and systems [M].2nd ed. New Jersey: Prentice-Hall,1996.
    [149] Yu D, Zhai W, Xie G, Fu D. Application of the cosine window function with the parametersoptimized by genetic algorithm in bistatic planar near-field scattering measurements [J]. Progress inElectromagnetics Research Letters,2012,29:51-64.
    [150]赵济海,王哲人,关朝雳.路面不平度的测量、分析与应用[M].北京:北京理工大学出版社.
    [151] Rao K R, Yip P C. The transform and data compression handbook [M]. New York: CRC Press,2001.
    [152] Lu Z X, Nan C, Perdok U D, Hoogmoed W B. Characterisation of soil profile roughness [J].Biosystems Engineering,2005,91(3):369-377.
    [153] Bryant R, Moran M S, Thoma D P, Holifield Cllins C D, Skirvin S, Rahman M, Slocum K,Starks P, Bosch D, González Dugo M P. Measuring surface Rroughness height to parameterize radarbackscatter models for retrieval of surface soil moisture [J]. IEEE Groscience and Remote SensingLetters.2007,4(1):137-141.
    [154] James R F B, Linda L. Proceedings of the second annual conference of GeoComputation,1997
    [C]. Leeds: University of Leeds,1997.
    [155] GB7031-86,车辆振动输入—路面平度表示方法[S],1986.
    [156] BSI:ISO/TC/WG9,DOCUMENT [S],1972.
    [157] ISO8608:1995(E): Mechanical vibration-Road surface profiles [S],1995.
    [158] Ge D Y, Xia L, L X F, Huang C M, Yang Q S, Huang J H. Methods in geometric morphometricsand their applications in ontogenetic and evolutionary biology of animals [J]. Acta ZootaxonomicaSinica.2012,37(2):296-304.
    [159] Benazzi S, Stansfield E, Milani C, Gruppioni G. Geometric morphometric methods forthree-dimensional virtual reconstruction of a fragmented cranium: the case of Angelo Poliziano [J].International Journal of Legal Medicine.2009,123(4):333-344.
    [160] Bonnan M F, Farlow J O, Master S L. Using linear and geometric morphometrics to detectintraspecific variability and sexual dimorphism in femoral shape in Alligator mississsippiensis and itsimplications for sexing fossil archosaurs [J]. Journal of Vertebrate Paleontology.2008,28(2):422-431.
    [161] Marcus L F, Hingst Z E, Zaher H. Application of landmark morphometrics of skullsrepresenting the orders of living mammals [J]. Hystrix.2000,11:27-47.
    [162] Reyment R A. Multidimensional paleobiology [M]. New York: Pergamon Press,1991.
    [163] Blackith R, Reyment R A. Multivariate morphometrics. New York: Academic Press,1971.
    [164] Adams D C, Rohlf F J, Slice D E. Geometric morphometrics: ten years of progress followingthe ‘revolution’[J]. Ital. J. Zool.2004,71:5-16.
    [165] Jolicoeur P. The generalization of the allometry equation. Biometrics.1963,19:497-499.
    [166] Bookstein F L, Chernoff B, Elder R L, Humphries J M J, Smith G R, Strauss R E.Morpohometrics in evolutionary biology. Philadelphia: Academy of Natural Sciences Press,1985.
    [167] Lu Y X. Significance and progress of bionics [J]. Journal of Bionic Engineering.2004,1(1):1-3.
    [168] Bogatyrev N R. A “Living” machine [J]. Journal of Bionic Engineering.2004,1(2):79-87.
    [169] Ren L Q, Liang Y H. Biological couplings: classification and characteristic rules [J]. Science inChina Series E: Technological Sciences.2009,52(10):2791-2800.
    [170] Ren LQ, Liang Y H. Biological coupling: function, characteristics and implementation mode[J]. Science in China Series E: Technological Sciences.2009,53(1):1-9.
    [171]张代臻,孙红英,张华彬,唐伯平.绒螯蟹的分类与中华绒螯蟹种质资源研究进展[J].广西科学院学报,2007,2(2):129-132.
    [172]李晓辉,徐志强,葛家春,朱清顺,潘建林.长江水系中华绒螯蟹种质资源研究进展[J].水产养殖,2009,30(10):42-47.
    [173] Herborg L M, Rushton S P, Clare A S, Bentley M G. Spread of the Chinese mitten crab(Eriocheir sinensis H. Miline Edwards) in Continental Europe: Analysis of a historical data set [J].Hydrobiologia,2003,503,21–28.
    [174] Peter N. Die chinesische Wollhandkrabbe (Eriocheir sinensis H. Milne-Edwards) inDeutschland. Zool Anz.(Leipzig):1933,59-155.
    [175] http://njscuba.net/biology/sw_crabs.html.
    [176] Fadem B. High-Yield behavioral and science (High-Yield series)[M].4th end. Baltimore:Lippincott Williams&Wilkins,2013.
    [177] Nolan S, Heinzen T. Essentials of statistics for the behavioral science [M]. Sec end.Gordonsville: Worth Publishers,2011.
    [178] Dabid H A, Gunnink J L. The paired t test under artificial pairing [J]. The American Statistician.1997,51(1):9-12.
    [179] Li J Q, Zhang X D, Zou M, Zhang R, Chirende B, Shi R Y, Wei C G. An experimental study onthe gait patterns and kinematics of Chinese mitten crabs [J]. Journal of Bionic Engineering.2013,10(3):305-315.
    [180] Knut S N. Locomotion: energy cost of swimming, flying, and running [J]. Science.1972,177(4045):222-228.
    [181] Quinn R D, Ritzmann R E. Construction of a hexapod robot with cockroach kinematics benefitsboth robotics and biology [J]. Connection Science.1998,10(3,4):239-254.
    [182] Enquist M. Arak A. Symmetry, beauty and evolution [J]. Nature.1994,372:169-172.
    [183] Haeckel E. Generelle Morphologie der Organismen [M]. Berlin: Verlag Von Georg Reimer,1866.
    [184] Micha l M. Early evolution of symmetry and polarity in metazoan body plans [J]. C. R.Biologies.2009,332:184-209.
    [185] Brusca R C, Brusca G J. Invertebrates,2nd edition. Suaderland: Sinauer,2003.
    [186] Crow W B. Symmetry in organisms [J]. Am. Nat.1928,62:168-174.
    [187] Holló G and Novák M. The maneuverability hypothesis to explain the maintenance of bilateralsymmetry in animal evolution [J]. Biology Direct.2012,7:22.
    [188]王成红,宋苏,贺建军.动物体形的对称性[J].复杂系统与复杂性科学.2004,1(3):41-44.
    [189] Zhang Y, Huang H, Liu X Y, Ren L Q. Kinematics of terrestrial locomotion in mole cricketGryllotalpa orientalis [J]. The Journal of Bionic Engineering.2011,8:151-157.
    [190] Miriam A A, Brett F B. Kinematics of the transition between aquatic and terrestrial locomotionin the newt Taricha torosa [J]. The Journal of Experimental Biology.2004,207:461-474.
    [191] Delcomyn F. The locomotion of the cockroach Periplaneta Americana [J]. The Journal ofExperimental Biology,1971,54,443–452.
    [192] Full R J. Locomotion energetics of the ghost crab. Metabolic cost and endurance [J]. TheJournal of Experimental Biology,1987,130,137–153.
    [193]张晓冬,李建桥,邹猛,张锐,李因武.中华绒螯蟹平面运动三维观测和动力学分析[J].农业工程学报.2013,29(17):30-37.
    [194]沈嘉瑞,戴爱云.中国动物图谱:甲壳动物[M].北京:科学出版社,1964:127.
    [195] Min B, Bien Z, Hwang S. Basic characteristics and stability properties of quadruped crab gaits[J]. Robotica.1993,11:233-243.
    [196] Martinez M M, Full R J, Koehl M A R. Underwater punting by an intertidal crab: a novel gaitrevealed by the kinematics of pedestrian locomotion in air versus water [J]. The Journal ofExperimental Biology,1998,201,2609-2623.
    [197] Chabot C C, Watson W H. Circatidal rhythms of locomotion in the American horseshoe carbLimulus polyphemus: Underlying mechanisms and cues that influence them [J]. Current Zoology,2010,56(5):499-517.
    [198]王刚.仿蟹机器人步态规划及复杂地貌行走方法研究[D].哈尔滨:哈尔滨工程大学,2010.
    [199]王立权,刘德峰,陈东良,等.两栖多足机器人水下步态分析[J].机器人,2008,30(4):333-339.
    [200]袁鹏.仿生机器蟹步行机理分析及控制系统研究[D].哈尔滨:哈尔滨工程大学,2003.
    [201] Biancardi C M, Fabrica C G, Polero P, Loss J F, Minetti A E. Biomechanics of oceopedallocomotion: kinematic and kinetic analysis of the spider Grammostola mollicoma [J]. The Journal ofExperimential Biology.2011,214:3433-3442.
    [202] Hutchinson J R, Schwerda D, Famini D J, Dale R H I, Fischer M S, Kram R. The locomotorkinematics of Asian and African elephants: changes with speed and size [J]. The Journal ofExperimental Biology.2006,209:3812-3827.
    [203] Ren L, Hutchinson J R. The three-dimensional locomotor dynamics of African (Loxodontaafricana) and Asian (Elephas maximus) elephants reveal a smooth gait transition at moderate speed[J]. Journal of the royal society interface.2007,5:195-211.
    [204] Taylor W R, Ehrig R M, Heller M O, Schell H, Seebeck Petra, Duda N. Tibio-femoral jointcontact forces in sheep [J]. Journal of Biomechanics.2006,39:791-798.
    [205] TianW J, Cong q, Menon C. Investigation on the gait stability of German Shepherd Dogs fordifferent locomotion [J]. Journal of Bionic Engineering,2011,8(1):18-24.
    [206] http://www.simi.com/en/products/movement-analysis/simi-motion-2d3d.html.
    [207] http://www.cgtimes.com.cn/show.aspx?id=10782.
    [208] http://www.sanjack.com.cn/learning/VICON%20MX.pdf.
    [209] http://www.86vr.com/ware/hardware/200506/5970.html.
    [210] Bender J A, Simpson E M, Tietz B R, Daltorio K A, Quinn R D, Ritzmann R E. Kinematic andbehavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberusdiscoidalis [J]. The Journal of Experimental Biology.2011,214:2057-2064.
    [211] Abourachid A. A new way of analyzing symmetrical and asymmetrical gaits in quadrupeds [J].C. R. Biol.326:625-630.
    [212] Tomovic R, Karplus W J. Proceedings Third International Analogue Computation Meeting,1961[C]. London: Gordon&Breach Science Publishers, Ltd.,1962.
    [213] Hildebrand M. Symetrical gaits of horses. Science.1965,15:701-708.
    [214] Hildebrand M. Symetrical gaits of dogs in relation to body build [J]. J. Morph,1968,124:353-360.
    [215] Hildebrand M. Analysis of tetrapod gaits: general considerations and symmetrical gaits. InNeural Control of Locomotion [M]. New York: Plenum,1976.
    [216] McGhee R B. Some finite state aspects of legged locomotion [J]. Mathematical Bioscience.1968,2:67-84.
    [217] McGhee R B, Frank A A. On the stability properties of quadruped creeping gait [J].Mathematical Bioscience.1968,3:331-351.
    [218] Fedak M A, Heglund N C, Taylor C R. Energetics and mechanics of terrestrial locomotion Ⅱ.kinetic energy changes of the limbs and body as a function of speed and body size in birds andmammals [J]. The Journal of Experimental Biology.1982,79:23-40.
    [219] Blickhan R, Full R J. Mechanical work in terreatrial locomotion. In Biomehanics: Structuresand Systems [M]. New York: Oxford University Press,1993.
    [220] Cavagna G A. Force platforms as ergometers [J]. J. Appl. Physiol.1975,39:174-179.
    [221] Willems P A, Cavagna G A, Heglund N C. External, internal and total work in humanlocomotion [J]. The Journal of Experimental Biology.1995,198:379-393.
    [222] Heglund N C, Cavagna G A, Taylor C R. Energetics and mechanics of terrestrial locomotion.Ⅲ. energy changes of the center of mass as a function of speed and body size in birds and mammals[J]. The Journal of Experimental Biology.1982,97:41-56.
    [223] Minetti A E, Ardigo L P, Reinach E, Saibene F. The relationship between mechanical work andenergy expenditure of locomotion in horses [J]. The Journal of Experimental Biology.1999,202:2329-2338.
    [224] Farley C T, Ko T C. Mechanics of locomotion in lizards [J]. The Journal of ExperimentalBiology.1997,200:2177-2188.
    [225] Griffin T M, Main R P, Farley C T. Biomechanics of quadrupedal walking: how do four-leggedanimals achieve inverted pendulum-like movements [J]. The Journal of Experimental Biology.2004,207:3545-3558.
    [226] Cavagna G A, Thys H, Zamboni A. The sources of external work in level walking and running[J]. The Journal of Phsiology.1976,262:639-657.
    [227] Taylor C R, Heglunb N C, Maloiy G M O. E. Energetics and mechanics of terrestriallocomotion Ⅰ. metabolic energy consumption as a fuction of speed and body size in birds andmammals [J]. The Journal of Experimental Biology.1982,97:1-21.
    [228] Heglunb N C, Fedak M A, Taylor C R, Cavagna G A. Energetics and mechanics of terrestriallocomotion Ⅳ. total mechanical energy changes as function of speed and body size in birds andmammals [J]. The Journal of Experimental Biology.1982,97:57-66.
    [229] Wilson D M. Insect walking [J]. A. Rev. Ent.1966a,11:103-122.
    [230] Delcomyn F. The locomotion of the cockroach Periplaneta Americana [J]. The Journal ofExperimental Biology.1971a,54:443-452.
    [231] Goldman D I, Chen T S, Dudek D M, Full R J. Dynamics of rapid vertical climbing incockroaches reveals a template [J]. Journal of Experimental Biology,2006,209:2990-3000.
    [232] Collins J J, Stewart I N. Coupled nonlinear oscillators and the symmetries of animal gaits [J]. J.Nonlinear Sci.,1993,3:349-392.
    [233] Beklemishev W N. Principles of comparative anatomy of invertebrates [M]. Promorphology.Edinburgh: Oliver and Boyd,1969.
    [234] Hui C A. Walking of the shore crab Pachygrapsus crassipes in its two natural environments [J].The Journal of Experimental Biology.1992,165:213-227.
    [235] Alexander R M. Elastic mechanisms in animal movement [M]. Cambridge: CambridgeUniversity Press,1988.
    [236] Alexander R M. Energy-saving mechanisms in walking and running [J]. The Journal ofExperimental Biology.1991,160:55-69.
    [237] McMahon T A, Cheng G C. The mechanics of running: how does stiffness couple with speed?[J]. J. Biomech.1990, Suppl.1:65-78.
    [238] McMahon T A, Valiant G, Frederick E C. Groucho running [J]. J. appl. Physiol.1987,62:2326-2337.
    [239] Blickhan R. The spring-mass model for running and hopping [J]. J. Biomech,1989,22:1217-1227.
    [240] Farley C T, Glasheen J, McMahon T A. Running springs: speed and animal size [J]. The Journalof Experimental Biology.1993,185:71-86.
    [241] Farley C T, Taylor C R. A mechanical trigger for the trot-gallop transition in horses [J]. Science.1991,253:306-308.
    [242] He J, Kram R, McMahon T A. Mechanics of running under simulated reduced gravity [J]. J.appl. Physiol.1991,71,863-870.
    [243] Alexander R M. A model of bipedal locomotion on compliant legs [J]. Phil. Trans. R. Soc. B.1992,338:189-198.
    [244] Blickhan R, Full R J. Similarity in multilegged locomotion: bouncing like a monopode [J]. J.comp. Physiol. A.1993,173:509-517.
    [245] Farley C T, Emshwiller M. Efficiency of uphill locomotion in nocturnal and diurnal lizards [J].The Journal of Experimental Biology.1996,199:587-592.
    [246] Ferris D P, Farley C T. Interaction of leg stiffness and surface stiffness during human hopping[J]. J. appl. Physiol.1997,82:15-22.
    [247] Cavagna G A, Saibene F P, Margaria R. Mechanical work in running [J]. J. appl. Physiol.1964,19:249-256.
    [248] Schmitt J, Holmes P. Mechanical models for insect locomotion, dynamics and stability in thehorizontal plane theory [J]. Biological Cybernetics,2000,83:501-515.
    [249] Ritzmann R E, Quinn R D, Fischer M S. Convergent evolution and locomotion throughcomplex terrain by insects, vertebrates and robots [J]. Arthropod Structure&Development,2004,33,361-379.
    [250] McGill R., Tukey J W, Larsen, W A. Variations of Box Plots [J]. The American Statistician,1978,32:12–16.
    [251] Taylor C R, Schmidt N K, Raab J L. Scaling of energetic cost of running to body size inmammals [J]. Am. J. Physiol.219(4):1104-1107.
    [252] Fedak M A, Seeherman H J. Peappraisa of energetic of locomotion shows identical cost inbipeds and quadrupeds including ostrich and horse [J]. Nature,1979,282:713-716.
    [253] Hill A V. The dimensions of animals and their muscular dynamics [J]. Sci. Prog., Lond,1950,38:209-210.
    [254] McMahon T A. Using body size to understand the structural design of animals: quadrupedallocomotion [J]. J. appl. Physiol.1975,39:619-627.
    [255] Alexander R M. Terrestrial locomotion. In Mechanics and Energetics of Animal Locomotion
    [M]. London: Chapman&Hall,1977.
    [256] Alexander R M, Jayes A S, Ker R F. Estimates of energy cost for quadrupedal running gaits [J].J. Zool., Lond,1980,190:155-192.
    [257] Alexander R M, Jayes A S, Ker R F. Optimum walking techniques for quadrupeds and bipeds[J]. J. Zool., Lond,1980,192:97-117.
    [258] Spenko M J, Koditschek D E. Biologically inspired climbing with a hexapedal robot [J]. J. FieldRobot,25(4-5):223-242.
    [259] Beer R D, Roger D Q, Hillel J C, Roy E R. Biologically inspired approaches to robotics [J].Communications of the ACM,1997:30-38.
    [260]王庭树.机器人运动学及动力学[M].西安:西安电子科技大学出版社,1990.
    [261] Kram R, Wong B, Full R J. Three-dimensional kinematics and limb kinetic energy of runningcockroaches [J]. The Journal of Experimental Biology.1997,200:1919-1929.
    [262] Grübler M. Allgemeine eigenschaften der zwangl ufigen ebenen kinematische kette: Ⅰ,Civilingenieur [J]. Civilingenieur.1883,29:167-200.
    [263] Grübler M. Allgemeine eigenschaften derzwangl ufigen ebenen kinematische kette: Ⅱ, vereinzur beforderung des gewerbefleisses [J]. Verhandlungen.1885,64:179-223.
    [264] Kutzbach K. Einzelfragen aus dem genbiet der maschinenteile [J]. Zeitschrift der VereinDeutscher Ingenieur.1933,77:1168.
    [265] Koren Y. Robotics for engineers [M]. New York: McGraw-Hill Book Co.,1995.
    [266] Frantsevich L, Wang W Y. Gimbals in the insect leg [J]. Arthropod Structure&Development,2009,38:16-30.
    [267]殷际英,何广平.关节型机器人[M].北京:化学工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700