用户名: 密码: 验证码:
干涉逆合成孔径雷达(InISAR)三维成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干涉逆合成孔径雷达(Interferometric Inverse Synthetic Aperture Radar,InISAR)可以实现对远距离运动目标的三维成像。相比于传统ISAR成像技术,InISAR可以获得目标的三维结构信息,且对目标姿态的变化不敏感,能够为目标识别提供更加全面、更加稳定的目标形状与结构信息,具有重要的理论意义和工程应用价值。本文深入研究了InISAR三维成像的回波建模、系统特性及成像方法等问题,研究成果对InISAR成像系统的设计、配置和成像处理具有重要的指导意义。
     第一章阐述了论文的研究背景及意义,回顾了InISAR成像系统的发展概况,综述了InISAR成像技术的研究现状,指出了InISAR成像的发展趋势,并介绍了论文的主要工作。
     第二章研究InISAR三维成像的回波建模和图像配准方法。建立了L型三天线InISAR成像系统回波模型,阐述了InISAR三维成像的基本原理。针对同一基线上两天线之间干涉图像失配的问题,深入研究了二维图像失配量及其对后续干涉处理的影响,并提出了基于相位校正的图像配准新方法。该方法从参考距离选取的角度出发,对辅助接收天线的回波信号进行相位校正,补偿了由干涉天线位置差异引起的两幅ISAR图像之间的失配量,实现了两幅图像间的精确配准。所提方法同时适用于多天线配置,与传统方法相比具有精度高、可推广性强的优点。提出了InISAR参考距离选择方式中“分别聚焦”和“统一聚焦”的概念。针对实际存在的测距误差问题,建立了InISAR参考距离测量误差模型,并对存在测距误差时分别聚焦和统一聚焦两种方法对应的InISAR成像性能进行了比较,发现分别聚焦方法在解决图像失配和相位模糊等问题方面更具有优势,从而为后续参考距离的选择提供了依据。
     第三章研究斜视背景下的InISAR三维成像问题。从理论上揭示了斜视对InISAR成像性能的影响:一方面,斜视附加相位与待求参量存在耦合,增加了目标方位向和高度向坐标值求解的难度。另一方面,斜视角的存在引起目标纵向坐标的估计误差和三维像的扭曲。针对上述两个难点问题,提出了基于非线性最小二乘-坐标变换联合估计目标散射点坐标的新方法。该方法首先利用非线性最小二乘解决斜视附加项与待求参量的耦合问题,而后通过坐标变换校正得到真实的目标纵向坐标值,有效解决了斜视情况下运动目标的InISAR三维成像问题。针对三维成像结果中的“散射点簇”现象,提出了ISAR像的“峰值检测”预处理方法,该方法可以有效剔除虚假散射点,得到的InISAR三维成像结果更加清晰且更接近于目标真实模型,从而显著提高了三维成像质量。
     第四章研究单天线InISAR三维成像问题。提出利用单部天线实现InISAR成像的设想:基于时间孔径和空间孔径的等效原理,以时间上的累积来获得空间上的天线孔径和等效基线。针对单天线InISAR系统无法准确测量“等效基线”的问题,提出基于坐标变换-方程联立的单天线InISAR三维成像新方法,实现了从不同时间段ISAR像的干涉相位中联立求解目标散射中心的位置信息。从理论上分析了所提单天线InISAR成像算法的适用条件和成像性能,并从工程实用的角度,指出了该算法存在的问题和难点,为进一步研究奠定了理论基础。
     第五章研究舰船InISAR三维成像问题。针对高海情下的舰船目标三维成像问题,建立了机载雷达对舰船的观测模型,在此基础上提出了一种新的舰船InISAR三维成像方法。所提方法更符合实际场景,利用三天线结构避免了方位向定标,且具有不需要舰船目标的先验位置信息等优点。针对舰船InISAR成像中的最优时间选择问题,提出了基于多策略融合估计的最优成像时间选择新方法。该方法首先根据雷达系统参数估计初始时间窗,而后基于信息融合的思想,综合利用图像对比度、图像熵、散射点个数以及多普勒展宽等ISAR图像聚焦质量的定量评价指标完成最优成像时段选择,避免了单个评价指标的局限性,有效提高了InISAR三维成像的质量。
     第六章研究InISAR三维成像中的角闪烁抑制问题。从矢量叠加的角度分析了InISAR成像中角闪烁的产生机理,揭示了合成矢量相位对应的等效散射中心位置与真实多散射点的位置关系,为角闪烁的判别和抑制提供了理论依据。为了提高成像分辨率,针对多频带雷达信号融合成像中的相干配准问题,提出了基于雷达测量数据相关的多频段雷达信号融合成像相干配准新方法。相对传统方法,该方法不仅降低了算法复杂度,消除了建模误差,还有效提高了相位参数估计的精度。为了利用天线阵列的空间分割能力,针对斜视背景下L型天线阵列三维成像存在的问题,提出了基于AMOD-PD-ERVP的L型阵列三维成像新方法,克服角闪烁影响,实现了真正意义上的三维分辨。
     第七章总结全文,并指出了需要进一步研究的问题。
     本文的研究成果丰富了非合作运动目标的高分辨雷达三维成像理论,对InISAR三维成像技术的发展具有较强的理论意义与应用价值。
Interferometric inverse synthetic aperture radar (InISAR) is able to carry outthree-dimensional (3-D) image of far-field moving targets. Compared with traditionalISAR imaging, InISAR reflects3-D construction of the target which is not sensitive totarget orientation, and is capable of providing a more reliable description of targetfeatures, resulting in great advantage to target identification. Therefore, InISAR3-Dimaging has become a promising technique in the radar signal processing community.This dissertation investigates problems such as theory model, system characteristics andimaging methods, which can be applied to practical system design and configuration.
     Chapter1illustrates the background and significance of this research, and reviewsthe development of InISAR imaging system. Then the current signal processingtechniques in InISAR imaging are summarized, and the development trend of InISARimaging is analyzed, followed with the introduction of main content in this dissertation.
     Chapter2investigates the InISAR3-D imaging model and image registrationmethod. We develop an L-shape three-antenna InISAR imaging model and detail theimaging principles. With regard to the image mismatching problem in InISAR system, aquantitative analysis of the offset and its influence on the following interferometricprocessing was studied. From the view of reference range selection, a novel imageregistration method based on phase correction is proposed to solve the mismatchingproblem in InISAR imaging. The proposed method is suitable for both three-antennaand multi-antenna configuration. We introduce “respective focusing (RF)” and “uniformfocusing (UF)” for reference range selection process of InISAR. An InISAR referencerange error model is built and a comparison of interferometric imaging capability forboth reference range selection methods is performed. It is concluded that RF is a betterchoice in conquering problems such as image mismatching and phase ambiguity, whichcan be seen as a theoretical reference for practical reference range selection.
     Chapter3focuses on the squint-mode InISAR3-D imaging algorithm. Theinfluence of squint on InISAR imaging is theoretically investigated. First, coupling ofthe squint additive phase and the target azimuth/altitude coordinates to be solved maymake the solution more difficult. Second, the squint angle may lead to estimation errorof the vertical coordinates and distortion of the ultimate image. Aiming at the above twoproblems, we propose a new method combining nonlinear least square (NLS) andcoordinates transform (CT) to estimate the target coordinates, which overcomesdeficiencies of traditional methods, and effectively solves the squint-mode InISAR3-Dimaging problem. We also suggest a “peak detection” method for ISAR pretreatment,which eliminates the illusive scatterers and restrains the scatterer clusters problem,resulting in improvement of the3-D image quality.
     Chapter4studies the one-antenna InISAR3-D imaging method. We propose theassumption of InISAR imaging with only one antenna: to acquire the equivalentaperture and baseline based on the equivalent relationship between the time and thespace. Aiming at the difficulty of measuring equivalent baseline for one-antennaInISAR system, we propose a one-antenna InISAR3-D imaging method based oncoordinate transform and equation union, where the target scatterer position informationis estimated from the interferometric phases between ISAR images obtained fromdifferent measurement intervals. The applicability and performance of the proposedone-antenna InISAR imaging method is analyzed. At last, the practical difficulties of theproposed method are pointed out and can be seen as the direction of further study.
     Chapter5discusses the ship InISAR3-D imaging problem. For the sake of solvingthe3-D imaging problem of ship target in heavy sea-state, we establish a practicalairborne observation model using three antennas for ship targets, and propose a novelship InISAR3-D imaging method based on the model. Three-antenna configuration ismore suitable to the interferometric imaging of non-cooperative moving target and canavoid the cross-range scaling problem. Moreover, the prior knowledge of ship positionis not necessary in the proposed method. A multi-strategy-fusion based optimum timeselection algorithm for ship InISAR imaging is given. The proposed scheme estimatesthe initial time window from the radar system parameters, and then utilizes themeasurements of ISAR image focus, such as the image contrast, the image entropy, thescatterer number and the Doppler spread, to finish the InISAR imaging optimum timeselection. The proposed method avoids the deficiency of single measure, and improvesthe quality of InISAR3-D image.
     Chapter6concentrates on the glint restraint problem of InISAR imaging. We studythe mechanism of glint in virtue of vector addition, and show the location of synthesisscatterer relative to the multiple true scatterers, which provides a theoretical referencefor detecting and restraining the glint phenomenon. To increase the resolution, wepropose a new data-based coherent compensation method of multiband radar signalfusion imaging, compensating for lack of mutual coherence among different radars.Compared with the existing model-based coherent compensation method, the proposedmethod is simpler and the precision of phase parameters estimation is higher becausethe modeling error is eliminated. Moreover, it has better anti-noise capability. In orderto exploit the space separation capability of antenna array, we present anAMOD-PD-ERVP based L-shape antenna array3-D imaging method in the presence ofsquint. The proposed method overcomes the glint problem, and a3-D resolution isindeed realized.
     Chapter7summarizes this dissertation and discusses the future work.
     The research results achieved in this paper enrich the high-resolution radar3-Dimaging techniques of non-cooperative targets, and will be valuable for development of InISAR3-D imaging both in theory and in practice.
引文
[1] Wehner D R. High-Resolution Radar, Second Edition[M]. Boston: Artech House,1994.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [3]刘永坦等.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [4] Brown W M. Synthetic Aperture Radar[J]. IEEE Transcations on Aerospace andElectronic Systems,1967,3(2):217-229.
    [5] Wiley C A. Synthetic Aperture Radar[J]. IEEE Transcations on Aerospace andElectronic Systems,1985,21(3):440-443.
    [6] Chen C C, Andrews H C. Target-Motion-Induced Radar Imaging[J]. IEEETransactions on Aerospace and Electronic Systems,1980,16(1):2-14.
    [7] Walker J L. Range-Doppler Imaging of Rotating Objects[J]. IEEE Transactions onAerospace and Electronic Systems,1980, AES-16(1):23-52.
    [8] Chen V C, Qian S. Joint Time-Frequency Transform for Radar Range-DopplerImaging[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):486-499.
    [9]张冬晨. InISAR三维成像的关键技术研究[D].合肥:中国科学技术大学,2009.
    [10]刘承兰,高勋章,黎湘.干涉式逆合成孔径雷达成像技术综述[J].信号处理,2011,27(5):737-748.
    [11]马长征.雷达目标三维成像技术研究[D].西安:西安电子科技大学,1999.
    [12] Ausherman D A, Kozma A, Walker J L, et al. Developments in Radar Imaging[J].IEEE Transactions on Aerospace and Electronic Systems,1984,20(4):363-400.
    [13] Bhalla R, Ling H. Three-Dimensional Scattering Center Extraction Using theShooting and Bouncing Ray Technique[J]. IEEE Transactions on Antennas andPropagation,1996,44(11):1445-1453.
    [14] Mayhan J T, Burrows M L, Cuomo K M, et al. High Resolution3D "Snapshot"ISAR Imaging and Feature Extraction[J]. IEEE Transactions on Aerospace andElectronic Systems,2001,37(2):630-641.
    [15]任双桥,刘永祥,黎湘等.基于多姿态角下一维距离像的雷达目标三维成像[J].电子学报,2005,33(6).
    [16]马长征,张守宏.舰船目标单脉冲雷达三维成像技术[J].电子科学学刊,2000,22(3):385-391.
    [17]马长征,张守宏.超分辨在单脉冲雷达三维成像中的应用[J].西安电子科技大学学报,1999,26(3):379-382.
    [18]张涛,马长征,张群等.步进跟踪模式下的单脉冲雷达三维成像技术研究[J].电子与信息学报,2001,23(9):912-918.
    [19]李强.单脉冲雷达目标三维成像与识别研究[D].西安:西安电子科技大学,2007.
    [20]李军,全英汇,邢孟道等.基于和差波束的三维ISAR成像技术[J].电波科学学报,2010,25(02):281-286.
    [21]张明友,汪学刚.雷达系统[M].北京:电子工业出版社,2006.
    [22] Wang Q, Xing M, Lu G, et al. High-Resolution Three-Dimensional Radar Imagingfor Rapidly Spinning Targets[J]. IEEE Transactions on Geoscience and RemoteSensing,2008,46(1):22-30.
    [23] Bai X, Xing M, Zhou F, et al. High-Resolution Three-Dimensional Imaging ofSpinning Space Debris[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2352-2362.
    [24] Xing M, Wang Q, Wang G, et al. A Matched-Filter-Bank-Based3-D ImagingAlgorithm for Rapidly Spinning Targets[J]. IEEE Transactions on Geoscience andRemote Sensing,2009,47(7):2106-2113.
    [25] Zhang L, Xing M, Qiu C W, et al. Two-Dimensional Spectrum Matched FilterBanks for High-Speed Spinning-Target Three-Dimensional ISAR Imaging[J].IEEE Geoscience and Remote Sensing Letters,2009,6(3):368-372.
    [26] Soumekh M. Automatic Aircraft Landing Using Interferometric Inverse SyntheticAperture Radar Imaging[J]. IEEE Transactions on Image Processing,1996,5(9):1335-1345.
    [27] Sorensen K W. Coherent Change Detection and Interferometric ISARMeasurements in the Folded Compact Range [R]. Albuquerque, NM United States:Sandia National Labs,1996.
    [28] Sorensen K W, H Z D, H L J. Development of a Folded Compact Range and itsApplication in Performing Coherent Change Detection and Interferometric ISARMeasurements[R]. Albuquerque, NM United States: Sandia National Labs,1996.
    [29]肖志河,戴朝明,巢增明等.旋转目标干涉逆合成孔径三维成像技术[J].电子学报,1999,27(12):19-22.
    [30] Xu X J, Luo H, Huang P K.3-D Interferometric ISAR Images for ScatteringDiagnosis of Complex Radar Targets[C]. IEEE National Radar Conference,Boston,1999:237-241.
    [31]张群,马长征,张涛等.干涉式逆合成孔径雷达三维成像技术研究[J].电子与信息学报,2001,23(9):890-898.
    [32] Xu X J, Narayanan R M. Three-Dimensional Interferometric ISAR Imaging forTarget Scattering Diagnosis and Modeling[J]. IEEE Transactions on ImageProcessing,2001,10(7):1094-1102.
    [33] Wang G Y, Xia X G, Chen V C. Three-Dimensional ISAR Imaging ofManeuvering Targets Using Three Receivers[J]. IEEE Transactions on ImageProcessing,2001,10(3):436-447.
    [34]罗斌凤,张群,袁涛等. InISAR三维成像中的ISAR像失配准分析及其补偿方法[J].西安电子科技大学学报,2003,30(6):739-743.
    [35] Zhang Q, Yeo T S. Novel Registration Technique for InISAR and InSAR[C].IEEE International Symposium on Geoscience and Remote Sensing (IGARSS),Toulouse, France,2003:206-208.
    [36] Xu X J, Narayanan R M. Enhanced Resolution in3-D Interferometric ISARImaging Using an Iterative SVA Procedure[C]. IEEE International Symposium onGeoscience and Remote Sensing,2003:935-937.
    [37] Smith B J, Rock J C, Mcfarlin S. A Synthetic Interferometric ISAR Technique forDeveloping3-D Signatures[C]. IEEE Aerospace Conference Proceedings,2003:1055-1065.
    [38] Zhang Q, Yeo T S, Du G, et al. Estimation of Three-Dimensional MotionParameters in Interferometric ISAR Imaging[J]. IEEE Transactions on Geoscienceand Remote Sensing,2004,42(2):292-300.
    [39] Zhang Q, Yeo T S. Three-Dimensional SAR Imaging of a Ground Moving TargetUsing the InISAR Technique[J]. IEEE Transactions on Geoscience and RemoteSensing,2004,42(9):1818-1828.
    [40] Given J A, Schmidt W R. Generalized ISAR-Part II: Interferometric Techniquesfor Three-Dimensional Location of Scatterers[J]. IEEE Transactions on ImageProcessing,2005,14(11):1792-1797.
    [41]张群,金亚秋.强背景杂波下的地面运动目标干涉式三维成像[J].电子与信息学报,2007,29(1):1-5.
    [42] Zhang D C, Li P, Wang D J, et al. A New Interferometric ISAR Image ProcessingMethod for3-D Image Reconstruction[C]. IEEE1st Asian-Pacific Conferenceon Synthetic Aperture Radar, Hangzhou,2007:555-558.
    [43] Yuan W M. Baseline De-Correlation and Image Matching in InISAR[C]. IEEE1stAsian-Pacific Conference on Synthetic Aperture Radar, Hangzhou,2007:397-400.
    [44] Li L Y, Yuan W M, Liu H W, et al. Radar Automatic Target Recognition Basedon InISAR Images[C]. IEEE1st Asian-Pacific Conference on Synthetic ApertureRadar, Hangzhou,2007:497-502.
    [45] Cao X H, Su F L, Sun H D, et al. Three-Dimensional in-ISAR Imaging Via theEmulated Bistatic Radar[C]. Second IEEE Conference on Industrial Electronicsand Applications,2007:2826-2830.
    [46]李丽亚,刘宏伟,纠博等.基于多特显点的干涉ISAR横向定标技术[J].系统工程与电子技术,2008,30(09):1653-1656.
    [47]李丽亚,刘宏伟,纠博等.斜视干涉逆合成孔径雷达成像算法[J].西安交通大学学报,2008,42(10):1290-1294.
    [48]李丽亚,刘宏伟,曹向海等.基于InISAR像的目标识别方法[J].电子与信息学报,2008,30(9):2089-2093.
    [49]高昭昭,邢孟道,张守宏.基于InISAR技术的三维成像[J].西安电子科技大学学报,2008,35(5):883-888.
    [50] Ma C Z, Yeo T S, Tan H S, et al. Interferometric ISAR Imaging on SquintModel[C]. Progress in Electromagnetics Research Symposium, Hangzhou,2008:278-283.
    [51] Liang H Q, He M Y, Li N J, et al. The Research of Near-Field InISAR ImagingDiagnosis[C]. International Conference on Microwave and Millimeter WaveTechnology,2008:1773-1775.
    [52]张冬晨,王东进,陈卫东.基于联合互时频分布的InISAR三维成像方法[J].电子学报,2009,37(4):833-838.
    [53] Shen N, Yin Z P, Chen W D. A Compensation Method for Baseline LengthVariation in InISAR Imaging[C]. IEEE2nd Asian-Pacific Conference onSynthetic Aperture Radar, Xi'an,2009:1034-1038.
    [54] Mu L, Yuan W M, Xing W G. Cross-Range Calibration of Interferometric ISARUnder a Condition of Phase Ambiguity[C]. IEEE2nd Asian-Pacific Conferenceon Synthetic Aperture Radar, Xi'an,2009:903-906.
    [55]曹星慧,宋庆雷,姜岩等.低轨卫星目标干涉ISAR三维成像方法[J].雷达科学与技术,2007,5(3):204-208.
    [56] Graham L C. Synthetic Interferometer Radar for Topographic Mapping[J].Proceedings of the IEEE,1974,62(6):763-768.
    [57] Sorensen K W. Folded Compact Range Development and Coherent ChangeDetection Measurement Project[R]. Albuquerque, NM United States: SandiaNational Labs,1995.
    [58] Given J A, Schmidt W R. Generalized ISAR-Part I: An Optimal Method forImaging Large Naval Vessels [J]. IEEE Transactions on Image Processing,2005,14(11):1792-1797.
    [59] Kostis T G, Galanis K G, Katsikas S K. Angular Glint Effects Generation forFalse Naval Target Verisimility Requirements[J]. Measurement Science andTechnology,2009,20:1-13.
    [60] Kostis T G. Simulator Implementation of an Inverse Synthetic Aperture RadarSystem for an Extended Naval Target in a Three Dimensional SyntheticEnvironment[C]. Tenth International Conference on Computer Modeling andSimulation (uksim2008),2008:366-371.
    [61] Kostis T G. Proof of Concept for the Extensibility Attribute of an ISAR Simulatorfor Studies in Target Glint[C].2008IEEE International Workshop on ImagingSystems and Techniques,2008:198-203.
    [62] Kostis T G, Galanis K G, Katsikas S K. Simulator Implementation of an IF-ISARSystem for Studies in Target Glint[C].2008Panhellenic Conference onInformatics,2008:140-144.
    [63] Kostis T G, Katsikas S K. Three-Dimensional Multiple Layer Extended TargetModeling for Inverse Synthetic Aperture Radar Studies in Target Identification[C].11th Panhellenic Conference in Informatics, Patras, Greece,2007:353-360.
    [64] Kostis T G, Baker C J, Griffiths H D. An Interferometric ISAR System Model forAutomatic Target Identification[C]. European Synthetic Aperture Radar Conf.(EUSAR), Dresden, Germany,2006.
    [65] Kostis T G, Baker C J, Griffiths H D. Interferometric Inverse Synthetic ApertureRadar[C]. London Communications Symp.(LCS),2005.
    [66] Beguhn S M. Interferometric Imaging in a Compact Radar Range[D]. Lowell:University of Massachusetts Lowell,2008.
    [67] Felguera-Martin D, Gonzalez-Partida J T, Almorox-Gonzalez P, et al.Interferometric Inverse Synthetic Aperture Radar Experiment Using anInterferometric Linear Frequency Modulated Continuous Wave Millimetre-WaveRadar[J]. IET Radar, Sonar Navigation,2011,5(1):39-47.
    [68]沈楠. InISAR三维成像的基线构型研究[D].合肥:中国科学技术大学,2010.
    [69]徐国栋,曹星慧,宿富林.绕环天线的干涉ISAR测高算法[J].数据采集与处理,2010(03):273-277.
    [70]李亚楠.空间目标ISAR成像技术研究[D].长沙:国防科学技术大学,2010.
    [71] Soumekh M. Automatic Aircraft Landing Using Interferometric Inverse SyntheticAperture Radar Imaging[C]. International Conference on Image Processing,1995:23-26.
    [72] Xu X, Narayanan R M. Enhanced Resolution in SAR/ISAR Imaging UsingIterative Sidelobe Apodization[J]. IEEE Transactions on Image Processing,2005,14(4):537-547.
    [73] Palmer J, H J, Longstaff I D, et al. ISAR Imaging Using an Emulated MultistaticRadar System[J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(4):1464-1472.
    [74]索志勇.垂直航迹/沿航迹干涉合成孔径雷达信号处理技术研究[D].西安:西安电子科技大学,2008.
    [75] Ma C, Yeo T S, Tan C S, et al. Sparse Array3-D ISAR Imaging Based onMaximum Likelihood Estimation and Clean Technique[J]. IEEE Transactions onImage Processing,2010,19(8):2127-2142.
    [76]云日升.多基站ISAR三维转动转台目标成像研究[J].电子与信息学报,2010,32(07):1692-1696.
    [77]高昭昭.高分辨ISAR成像新技术研究[D].西安:西安电子科技大学,2009.
    [78]李丽亚.宽带雷达目标识别技术研究[D].西安:西安电子科技大学,2009.
    [79]伏思华.电子散斑与合成孔径雷达干涉测量中的等值线相关干涉法[D].长沙:国防科学技术大学,2006.
    [80]汪鲁才.星载合成孔径雷达干涉成像的信息处理方法研究[D].湖南:湖南大学,2006.
    [81]孙造宇.星载分布式InSAR信号仿真与处理研究[D].长沙:国防科学技术大学,2007.
    [82]刘宝泉.干涉合成孔径雷达测量关键技术研究[D].西安:西安电子科技大学,2008.
    [83]王青松.星载干涉合成孔径雷达高效高精度处理技术研究[D].长沙:国防科学技术大学,2011.
    [84]李欣.双基地SAR穿墙成像技术研究[D].长沙:国防科学技术大学,2011.
    [85] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient Subpixel ImageRegistration Algorithms[J]. Optics Letters,2008,33(2):156-158.
    [86] Shao G, Yao F, Malkani M J. Aerial Image Registration Based on JointFeature-Spatial Spaces, Curve and Template Matching[C]. IEEE InternationalConference on Information and Automation, Zhangjiajie, China,2008.
    [87] Zitova B, Flusser J. Image Registration Methods: A Survey[J]. Image and VisionComputing,2003,21:977-1000.
    [88]刘子龙.星载InSAR信号处理方法研究[D].长沙:国防科学技术大学,2009.
    [89] Cuomo K M, Pion J E, Mayhan J T. Ultrawide-Band Coherent Processing[J].IEEE Transactions on Antennas and Propagation,1999,47(6):1094-1107.
    [90]梁福来.多频段合成成像技术研究[D].长沙:国防科学技术大学,2008.
    [91]付耀文,张琛,黎湘等.多波段雷达融合一维超分辨成像技术研究[J].自然科学进展,2006,16(10):1310-1316.
    [92]徐少坤,李亚楠,贾宇平等.基于矩阵束算法的多雷达信号融合超分辨成像[J].信号处理,2008,24(5):859-862.
    [93] Ma C, Yeo T S, Zhang Q, et al. Three-Dimensional ISAR Imaging Based onAntenna Array[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(2):504-515.
    [94] Ma C, Yeo T S, Tan H S, et al. Three-Dimensional ISAR Imaging Using aTwo-Dimensional Sparse Antenna Array[J]. IEEE Geoscience and RemoteSensing Letters,2008,5(3):378-382.
    [95]黎海林.干涉ISAR三维成像试验研究[J].现代雷达,2010,32(05):22-25.
    [96]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [97]刘承兰,高勋章,贺峰等.一种基于相位校正的InISAR图像配准新方法[J].国防科技大学学报,2011,33(5):116-122.
    [98] Ma C Z, Yeo T S, Tan H S, et al. Interferometric ISAR Imaging on SquintModel[J]. Progress In Electromagnetics Research Letters,2008,2:125-133.
    [99]刘承兰,贺峰,高勋章等.基于非线性最小二乘估计-坐标变换的斜视InISAR成像[J].中国科学E辑:技术科学,2012,42(1):38-46.
    [100]Liu C, Gao X, Jiang W, et al. Interferometric ISAR Three-Dimensional ImagingUsing One Antenna[J]. Progress In Electromagnetics Research M,2011,21:33-45.
    [101]Rihaczek A W, Hershkowitz S J. Choosing Imaging Intervals for Small Ships[C].Proceedings of SPIE,1999:139-148.
    [102]Hajduch G, Garello R, Lecaillec J, et al. High Resolution Snapshot SAR/ISARImaging of Ship Targets at Sea[C]. Proceedings of SPIE,2003:39-47.
    [103]Li J, Ling H, Chen V. An Algorithm to Detect the Presence of3D Target MotionFrom ISAR Data[J]. Multidimensional Systems and Signal Processing,2003,14:223-240.
    [104]Pastina D, Montanari A, Aprile A. Motion Estimation and Optimum TimeSelection for Ship ISAR Imaging[J]. Proceedings of the2003IEEE RadarConference,2003:7-14.
    [105]Hajduch G, Caillec J M L, Garello R. Airborne High-Resolution ISAR Imaging ofShip Targets at Sea[J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(1):378-384.
    [106]Martorella M, Berizzi F. Time Windowing for Highly Focused ISAR ImageReconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(3):992-1007.
    [107]Pastina D, Spina C. Slope-Based Frame Selection and Scaling Technique for ShipISAR Imaging[J]. IET Signal Processing,2008,2(3):265-276.
    [108]Munoz-Ferreras J M, Perez-Martinez F. Pitch Estimation for Non-CooperativeMaritime Targets in ISAR Scenarios[J]. IET Radar, Sonar and Navigation,2009,3(5):521-529.
    [109]韩兴斌,胡卫东,郁文贤.基于散射点信号特性的ISAR成像时间选择算法[J].信号处理,2007,23(5):704-709.
    [110]汪玲,朱兆达,朱岱寅.机载ISAR舰船侧视和俯视成像时间段选择[J].电子与信息学报,2008,30(12):2835-2839.
    [111]王冉,姜义成. ISAR舰船目标成像时间段选取[J].哈尔滨工业大学学报,2011,43(7):57-60.
    [112]Berizzi F, Dalle M E, Diani M, et al. High-Resolution ISAR Imaging ofManeuvering Targets by Means of the Range Instantaneous Doppler Technique:Modeling and Performance Analysis[J]. IEEE Transactions on Image Processing,2001,10(12):1880-1890.
    [113]Gao Z, Li Y, Xing M, et al. ISAR Imaging of Manoeuvring Targets with theRange Instantaneous Chirp Rate Technique[J]. IET Radar, Sonar and Navigation,2009,3(5):449-460.
    [114]Xing M, Wu R, Li Y, et al. New ISAR Imaging Algorithm Based on ModifiedWigner–Ville Distribution[J]. IET Radar, Sonar and Navigation,2009,3(1):70-80.
    [115]邢孟道,保铮.外场实测数据的舰船目标ISAR成像[J].电子与信息学报,2001,23(12):1271-1277.
    [116]Li Y, Wu R, Xing M, et al. Inverse Synthetic Aperture Radar Imaging of ShipTarget with Complex Motion[J]. IET Radar, Sonar and Navigation,2008,2(6):395-403.
    [117]Wang Y, Jiang Y. ISAR Imaging of a Ship Target Using Product High-OrderMatched-Phase Transform[J]. IEEE Geoscience and Remote Sensing Letters,2009,6(4):658-661.
    [118]Wang Y, Jiang Y. New Approach for ISAR Imaging of Ship Target with3DRotation[J]. Multidim Syst Sign Process,2010,21:301-318.
    [119]邓彬.合成孔径雷达微动目标指示(SAR/MMTI)研究[D].长沙:国防科学技术大学,2011.
    [120]汤立波,李道京,洪文等.基于顺轨-交轨InSAR技术的运动舰船目标三维成像[J].系统工程与电子技术,2008,30(9):1669-1673.
    [121]汤立波.高分辨率机载SAR地面/海面运动目标成像技术研究[D].北京:中国科学院研究生院,2006.
    [122]Kostis T G. Interferometric Inverse Synthetic Aperture Radar[D]. London:University College London,2001.
    [123]Doerry A W. Ship Dynamics for Maritime ISAR Imaging[R]. Albuquerque:Sandia National Laboratories,2008.
    [124]汪玲.逆合成孔径雷达成像关键技术研究[D].南京:南京航空航天大学,2006.
    [125]杨洁.机载ISAR对舰船成像研究[D].南京:南京航空航天大学,2005.
    [126]Martorella M, Haywood B, Berizzi F, et al. Performance Analysis of an ISARContrast-Based Autofocusing Algorithm Using Real Data[J]. Radar Conference,2003. Proceedings of the International,2003:30-35.
    [127]Berizzi F, Dalle M E, Martorella M. Performance Analysis of a Contrast-BasedISAR Autofocusing Algorithm[J]. Radar Conference,2002. Proceedings of theIEEE,2002:200-205.
    [128]Berizzi F, Corsini G. Autofocusing of Inverse Synthetic Aperture Radar ImagesUsing Contrast Optimization[J]. IEEE Transactions on Aerospace and ElectronicSystems,1996,32(3):1185-1191.
    [129]Martorella M, Martorella M, Berizzi F, et al. Contrast Maximisation BasedTechnique for2-D ISAR Autofocusing[J]. IEE Proceedings Radar, Sonar andNavigation,2005,152(4):253-262.
    [130]Li X, Liu G, Ni J. Autofocusing of ISAR Images Based on EntropyMinimization[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(4):1240-1252.
    [131]邱晓晖, Alice Heng Wang Cheng, Yam Yeo Siew. ISAR成像快速最小熵相位补偿方法[J].电子与信息学报,2004(10).
    [132]邱晓晖,赵阳, Cheng Alice Heng Wang等. ISAR成像最小熵自聚焦与相位补偿的一致性分析[J].电子与信息学报,2007(08).
    [133]Xu X J, Feng X B. SAR/ISAR Imagery From Gapped Data: Maximum OrMinimum Entropy?[C]. IEEE Antennas and Propagation Society InternationalSymposium,2005:668-671.
    [134]Cuomo K M, Piou J E, Mayhan J T. Ultra-Wideband Sensor Fusion for BMDDiscrimination[J]. The Record of the IEEE2000International Radar Conference,2000:31-34.
    [135]Vann L D, Cuomo K M, Piou J E, et al. Multisensor Fusion Processing forEnhanced Radar Imaging[R]. Lincoln Laboratory, Massachusetts Institute ofTechnology,2000.
    [136]刘承兰,贺峰,魏玺章等.基于数据相关的多雷达融合成像相干配准研究[J].系统工程与电子技术,2010,32(6):1266-1271.
    [137]杜小勇,胡卫东,郁文贤.基于稀疏成份分析的几何绕射模型参数估计[J].电子与信息学报,2006,28(02):362-366.
    [138]Wang C, Hu W, Du X, et al. A New Method of HRR Profile Formation Based onMultiple Radars LFM Signal Fusion[J]. Proceedings of the Fifth IEEEInternational Symposium on Signal Processing and Information Technology,2005:131-135.
    [139]王成,胡卫东,杜小勇等.稀疏子带的多频段雷达信号融合超分辨距离成像[J].电子学报,2006,34(06):985-990.
    [140]Liang F, Huang X, Li X, et al. HRR Profile Imaging of Fast Moving Target Basedon Multiple Radars Using Wide-Band LFM Signals[J]. IEEE radarcon2008.2008:518-522.
    [141]Akaike H. A New Look at the Statistical Model Identification[J]. IEEETransactions on Automatic Control,1974,19(6):716-723.
    [142]Rissanen J. Modeling by Shortest Data Description[J]. Automatica,1978,14(5):465-471.
    [143]Wax M, Kailath T. Detection of Signals by Information Theoretic Criteria[J].IEEE Transactions on Acoustics, Speech, and Signal Processing,1985,33(2):387-392.
    [144]Wax M, Ziskind I. Detection of the Number of Coherent Signals by the MDLPrinciple[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(8):1190-1196.
    [145]Williams D B. Comparison of AIC and MDL to the Minimum Probability of ErrorCriterion[J]. IEEE Sixth SP Workshop on Statistical Signal and Array Processing,1992:114-117.
    [146]Zarowski C J. The MDL Criterion for Rank Determination Via Effective SingularValues[J]. IEEE Transactions on Signal Processing,1998,46(6):1741-1744.
    [147]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700