用户名: 密码: 验证码:
高速机动平台SAR成像算法及运动补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SyntheticAperture Radar,SAR)是一种全天时、全天候的微波遥感技术。高速机动平台下的SAR成像由于其特殊的实际价值,已成为近年来的研究热点。一方面,SAR系统可有效提高高速机动飞行器的全天时、全天候的探测能力;另一方面,在复杂环境下,装载SAR系统的飞行器具有更强的自主性:在高速机动飞行条件下,SAR系统通过获取包含特征地貌的微波图像,将其与数据库中存储的基准图像进行匹配,从而由几何关系解算出飞行器自身的位置坐标,达到修正惯性导航系统(Inertial Navigation System,INS)的累积误差、提高定位精度的目的;另外,装载在高速机动飞行器上的SAR系统还可直接获得重要区域的二维高分辨图像和散射信息,并由此对该区域的目标进行特征提取、分类和识别。
     然而,与传统星载SAR和机载SAR不同,高速机动平台的飞行轨迹更为复杂,这使得传统星载SAR和机载SAR的成像方法往往不能直接应用于高速机动平台SAR。本文主要针对高速机动平台SAR成像中的方位聚焦深度限制的问题、高分辨成像算法问题、调频连续波体制下的成像算法问题展开了研究。此外,为了进一步提高飞行器自身的隐蔽性、反隐身能力以及散射信息获取能力,将双站SAR的构想移植到高速机动平台SAR成像已成为新的发展趋势。因此,本文也针对双站构型下的高速机动平台SAR的运动补偿问题展开了研究。取得的主要研究成果如下:
     1.针对高速机动平台SAR下降段成像中的方位聚焦深度限制的问题,提出了一种有效的解决方法。在俯冲阶段,机动飞行器自身较大的俯冲下降速度和加速度导致SAR回波信号方位不变性的假设不再成立,给SAR成像处理带来困难。针对该问题,提出了一种基于方位非线性变标的高速机动平台SAR下降段成像算法:在完成距离徙动校正和距离脉冲压缩之后,通过方位向上的非线性变标操作,校正沿方位向变化的多普勒调频率,从而较为有效地改善了SAR图像的方位聚焦深度和聚焦质量。
     2.研究了高速机动平台SAR全孔径成像方法。在俯冲阶段,机动飞行器较大的俯冲下降速度和加速度使得SAR回波信号的二维频谱表达式难以有效获得,给频域成像算法的设计带来困难。针对该问题,提出了一种基于双曲线性修正斜距模型的高速机动平台SAR成像方法。该方法通过构造双曲函数形式的斜距表达式并引入线性修正因子,对全孔径SAR斜距历程进行合理近似;并以修正后的斜距式为基础,采用驻相点原理直接求解SAR回波信号的二维频谱,并基于该频谱设计了高效的频域成像算法。该方法下的频谱推导较为简洁,所获得频谱的数学表达式清晰直观,利于成像分析和后续处理。最后通过点目标成像仿真验证了方法的可行性和有效性。
     3.研究了高速机动平台条件下的调频连续波SAR(FMCW-SAR)成像算法。针对俯冲阶段的高速机动平台FMCW-SAR的特点,建立了回波信号模型;通过分析可知,与常规机载FMCW-SAR不同,在高速机动平台这一特定的条件下,雷达相对较高的运动速度使得差频输出信号中的二次耦合相位不能忽略,并且影响距离向的聚焦;针对该问题,提出了一种FMCW-SAR成像处理方法。在成像处理中,通过在二维频域构造相应的二次耦合相位补偿函数,较好地改善了距离向的聚焦质量。最后通过点目标成像仿真对方法的可行性和有效性进行了验证。
     4.针对双站构型的高速机动平台SAR成像的运动补偿问题进行了研究。在双站构型下的高速机动平台SAR成像中,高速机动飞行器的运动误差和双站几何构型信息的不准确均会引入额外的相位误差,该相位误差将导致双站SAR(BiSAR)图像的聚焦质量显著下降。针对该问题,文中详细分析了运动误差和几何构型偏差对成像的影响,并提出了一种有效的运动补偿方法。该方法利用多普勒调频率估计,同时补偿由运动误差和几何构型偏差所引入的相位误差,从而较为有效地改善了BiSAR图像的聚焦质量。最后通过对机载BiSAR实测数据的处理与分析验证了所述方法的可行性和有效性。
     5.研究了在双基角较大、信号特性沿方位变化较剧烈的情况下,双站构型的高速机动平台SAR成像的运动补偿方法。在双站构型下的高速机动平台SAR成像中,回波信号方位不变性的假设不再成立;完成距离徙动校正和距离脉冲压缩之后,同一距离单元处信号的多普勒调频率具有沿方位向变化的特性。该信号特性导致了传统的PGA方法对相位误差的估计精度显著下降。针对该问题,提出了一种改进的PGA方法。与传统PGA方法相比,该方法通过增加对样本信号的剩余二次相位补偿,有效减小了变化的多普勒调频率对相位误差估计的影响,从而提高了对相位误差的估计精度。最后通过对机载BiSAR实测数据的处理和分析,验证了所述方法能够获得更高聚焦质量的BiSAR图像。
Synthetic Aperture Radar (SAR) is a microwave remote sensing technology withthe capability of working all day and all weather. Due to the special advantages ofhigh-speed maneuvering-platform SAR, it has got growing interests in recent years. Onone hand, the detective ability of all day and all weather for the maneuvering-platformcan be improved by SAR system; on the other hand, the maneuvering-platform hasmore freedom with SAR system equipped in complex environments. The highresolution images with physiognomy embedded in are obtained by SAR, and they arethen matched with the reference images stored in the database, the real time position ofitself is subsquently calculated by the geometry relationship to correct the INScurriculum errors in order to improve the precision of orientation. Besides, thetwo-dimensional high-resolution image and the scattering information of importantregions can be directly obtained by SAR equipped on the platform, based on which thefollowing feature extraction, classification and recognition process procedures can becarried on.
     However, unlike traditional airborne SAR or spaceborne SAR, the movingtrajectory of the high-speed maneuvering platform is more complicated, which isleading to difficulties in directly applying available imaging algorithms for traditionalSAR into it. Thus, this paper mainly focuses on the problems of restriction of azimuthfocusing depth, high-resolution imaging algorithms and also the imaging algorithm forFMCW. Moreover, to further improve ability of concealment, counter-concealment andscattering information capture, accommodating the bistatic configuration into thehigh-speed maneuvering-platform SAR has been a new trend. Hence, motioncompensation for bistatic SAR has also been studied. The main research achievementsare given as follows.
     1. The issue of restriction of azimuth focusing depth in high-speedmaneuvering-platform SAR is studied. Owing to the downward movement ofmaneuvering platform with high vertical velocity and high acceleration, the assumptionof translational invariance in azimuth is no longer valid, which makes it difficult forSAR imaging processing. To address this problem, an imaging algorithm based onazimuth nonLinear chirp scaling (NLCS) for high-speed maneuvering-platform SAR isproposed. After range cell migration correction and range compression, the Dopplerrates of echo signal are equalized via the operation of azimuth NLCS, and the focusing depth and the focusing quality are effectively improved.
     2. A full-aperture based imaging algorithm for high-speed maneuvering-platformSAR is studied. Owing to the large diving velocity and acceleration in the downwardmovement of maneuvering platform, the accurate expression of2-dimensional (2-D)spectrum of SAR echoes is difficult to be derived, which makes it difficult for SARimaging processing. To solve this problem, an imaging algorithm for high-speedmaneuvering-platform SAR based on the model of hyperbolic range equation withlinear modifying is proposed. By simplifying the range history with a hyperbolic rangeexpression and incorporating a linear modifying component, the2-D spectrum for SARechoes can be readily derived via the principle of stationary phase (POSP), based onwhich the high-efficient frequency-domain SAR algorithm can be well designed. In theproposed algorithm, the derivation of2-D spectrum can be simplified and theexpression of the2-D spectrum is brief and concise with clearer meanings, which isconvenient for signal analyses and imaging process procedures. Results from pointtargets simulation are provided to validate the effectiveness of the proposal.
     3. The imaging process procedures for high-speed maneuvering-platformFMCW-SAR are studied. According to the downward movement of high-speed andmaneuvering platform, the signal model of FMCW-SAR is established. Based on thesignal model analyses, it can be found that the effects of quadratic coupling phase arepeculiarly introduced by the continuous motion under the condition of high-speed andmaneuvering platform, which is distinguished from traditional airborne FMCW-SARand adversely affects the focusing in range direction. To address this problem, anFMCW-SAR imaging approach is proposed, in which the quadratic coupling phase termare appropriately compensated in2-D frequency domain and the focusing quality issubsequently improved. Simulation results of point targets are provided to validate theeffectiveness of the proposal.
     4. Motion compensation for bistatic SAR (BiSAR) with high-speed maneuveringplatform is studied. In BiSAR imaging processing, not only motion error of movingplatform, but also inaccuracy of data acquisition geometry will introduce additionalphase error that seriously degrades focusing quality of the final image. Based on thesignal model established according to the BiSAR configuration, the influence of theinaccurate geometry information is analyzed in detail and an applicable motion compensation approach is proposed. By using Doppler rates estimation, the phase errorsfrom both motion error and inaccurate geometry are appropriately compensated, and thefocusing quality of the final image is consequently improved. Analyses of acquired rawdata are presented to verify the effectiveness of the proposal.
     5. In the configuration of large bistatic angle and the condition of signal propertieswith intense variance in azimuth, motion compensation for bistatic high-speedmaneuvering-platform SAR is studied. In bistatic SAR with high-speed maneuveringplatform, the assumption of translational invariance is no longer valid. After the rangecell migration correction (RCMC), range compressed signal in the same range gateexhibits azimuth-variant Doppler rates that make it difficult for the phase error to beestimated from the echoes by using the available phase gradient autofocus (PGA)algorithms. To deal with this problem, a modified PGA algorithm is proposed.Comparing with the traditional PGA, the residual quadratic phase (RQP) caused by theazimuth-variant Doppler rates is additionally estimated and compensated. As theinfluence of the azimuth-variant Doppler rates is greatly reduced, a phase gradientestimator is subsequently applied for accurate phase error retrieval. Analyses ofacquired raw data are presented to verify the advantages of the proposal.
引文
[1] M. I. Skolnik. Introduction to Radar System [M]. McGraw-Hill, New York,2001.
    [2] M. I. Skolnik. Radar Handbook [M]. McGraw-Hill, New York,2nd,1990.
    [3]丁鹭飞,耿富录.雷达原理[M].第三版,西安电子科技大学出版社,2006.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [5]刘永坦等.雷达成像技术[M],哈尔滨:哈尔滨工业大学出版社,1999.
    [6]袁孝康.星载合成孔径雷达导论[M],北京:国防工业出版社,2003.
    [7]杨士中.合成孔径雷达[M],北京:国防工业出版社,1981.
    [8]张澄波.综合孔径雷达原理-系统分析与应用[M],北京:科学出版社,1989.
    [9]张直中.机载和星载合成孔径雷达导论[M],北京:电子工业出版社,2004.
    [10]魏钟铨.合成孔径雷达卫星[M],北京:科学出版社,2001.
    [11] W. G. Carrara, R. S. Goodman, R. M. Majewski, Spotlight Synthetic ApertureRadar: Signal ProcessingAlgorithms,Artech House, Boston,1995.
    [12] Cumming I. G. and Wong F. H., Digital Processing of Synthetic Aperture RadarData:Algorithms and Implementation [M]. Norwood, MA:Artech House,2004.
    [13] John. C. Curlander, Robert. N. McDonough, Synthetic Aperture Radar: System andSignal Processing. New York: John Wiley&Sons. Inc.,1991.
    [14] W. M. Brown, Synthetic Aperature Radar [J], IEEE Transactions on Aerospace andElectronic Systems,1967, Vol.3, No.2, pp.217-229.
    [15] Wiley. C. A., Synthetic Aperture radar [J], IEEE Transactions on Aerospace andElectronic Systems,1985, Vo1.21, No.3, pp.440-443.
    [16]秦玉亮,王建涛,王宏强,等.弹载合成孔径雷达技术研究综述[J].信号处理.2009,4月, vol.25, no.4, pp.630-634.
    [17]尹德成.弹载合成孔径雷达制导技术发展综述[J].现代雷达.2009, vol.31,no.11, pp.20-24.
    [18]姚秀娟,彭晓乐,张永科.几种精确制导技术简述[J].激光与红外.2006,vol.36, no.5,pp.338-340.
    [19]黄世奇,禹春来,刘代志,等.成像精确制导技术分析与研究[J].导弹与航天运载技术.2005, no.5, pp.20-25.
    [20]张纯学.复合制导技术的进展[J].飞航导弹.2004, no.9, pp.50-59.
    [21]高烽.合成孔径雷达导引头技术[J].制导与引信.2004, vol.25, no.1, pp.1-4.
    [22]张纯学.国外飞航导弹导引头中采用的新技术[J].飞航导弹.2000, No.5,pp.11-16.
    [23]陈宇新,安东,任思聪.地形辅助的INS/SAR组合导航系统[J],西北工业大学学报,1997, Vol.15, No.4, pp.598-602.
    [24]安东,董光明,任思聪, INS/SAR组合导航系统的原理及其性能研究[J],西北工业大学学报,1997, Vol.15, No.4, pp.586-591.
    [25]高社生,邹维宝,任思聪, INS/SAR组合系统对捷联惯性元件的要求及系统性能分析[J],西北工业大学学报,2000, Vol.18, No.1, pp.147-151.
    [26]于秋则.合成孔径雷达(SAR)图像匹配导航技术研究[D],华中科技大学,2004.
    [27]周鹏.弹载SAR多种工作模式的成像算法研究[D],西安电子科技大学,2011.
    [28]常青.巡航导弹制导系统关键技术研究[D],西北工业大学.2003.
    [29]李悦丽.弹载合成孔径雷达成像技术研究[D],国防科技大学.2008.
    [30]王建涛.机动航迹弹载SAR成像研究[D],国防科技大学,2008.
    [31]易予生.弹载合成孔径雷达成像算法[D],西安电子科技大学.2010.
    [32]秦玉亮,弹载SAR制导技术研究[D].国防科技大学,2009.
    [33] C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe. Some Early Developments in SyntheticAperture Radar Systems. IRE Transactions on military electronics,1962,6(2):111-115.
    [34] L. J. Cutrona et al. AHigh Resolution Radar Combat-Surveillance Systems [J]. IRETransactions on military electronics,1961,5(2):127-131.
    [35] L. J. Cutrona, et al. A Comparison of Techniques for Achieving Fine AzimuthResolution [J]. IRE Transactions on military electronics,1962,6(2):129-131.
    [36] D. A. Ausherman, A. Kozma, J LWalker, H M Jones, E C Poggio. Developments inRadar Imaging [J], IEEE Transactions on Aerospace and Electronic Systems,1984,20(4):.363-400.
    [37] W. M. Brown, L. J. Porcello. An Introduction to Synthetic Aperture Radar.[J] IEEETransactions on Geoscience and Remote Sensing,1969September,52-62.
    [38] Kirk J. C., Digital synthetic aperture radar technology [C]. IEEE InternationalRadar Conference,1975.
    [39] Elahci C., Bicknell T, Jordan R L, and Wu C. Spaceborne synthetic apertureimaging radars: application, techniques, and technology [J]. Proc. of IEEE,1982,70(10):1174-1209.
    [40] J. F. McCauley, et al.. Subsurface valleys and geoarchaeology of the eastern sahararevealed by shuttle radar [J]. Science218,1982,1004-1020.
    [41]郭华东,王长林.全天候全天时三维航天遥感技术-介绍航天飞机雷达地形测图计划[J],遥感信息,2000,(1):47-48.
    [42] Werninghaus R. and Buckreuss S., The TerraSAR-X Mission and System Design[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(2),606-615.
    [43] Wolfgang P. and David M., The TerraSAR-X Satellite [J]. IEEE Transactions onGeoscience and Remote Sensing,2010,48(2),615-623.
    [44] Helko B., Thomas F., Ulrich B., Marie L., Andreas N. and Martin V., TerraSAR-XSAR Processing and Products [J]. IEEE Transactions on Geoscience and RemoteSensing,2010,48(2),727-741.
    [45] Krieger G., Fiedler H., Zink M. etc. The TanDEM-X Mission: ASatellite Formationfor High-Resolution SAR Interferometry [J]. Proceedings of the4th EuropeanRadar Conference, IEEE Transactions on Geoscience and Remote Sensing,2007,45(5),101-109.
    [46] Horn R., E-SAR—The experiment airborne L/C band SAR system of DLR [C].Proc. of IGARSS’88, pp.1025-1026,1988.
    [47] Ender J. H. G., and Brenner A. R., PAMIR-a wideband phased array SAR_MTIsystem [J]. IEE Proc. Radar Sonar Navigation,2003,150(3):165-172.
    [48] Hensley W. H., Doerry A. W., Walker B. C., Lynx: A High-resolution SyntheticAperture Radar [J]. SPIEAerosense,1999,3704.
    [49] Sheen D. R., Lewis T. B.. The P-3UWB-SAR [J]. SPIE, Vol.2747,1996, pp.20-24.
    [50] Maden S. N., Christensen E. L., et al. The Danish SAR System: Design and InitialTests [J]. IEEE Transactions on Geoscience and Remote Sensing,1991,29(3):417-426.
    [51] Franssoni J. M., Walterii F. and Ulanderiii L., Estimation of forest parameters usingCARABAS-II VHF SAR data [J], IEEE Transactions on Geoscience and RemoteSensing,38(2),2000:720-727.
    [52] A. R. Brenner, L. Roessing. Radar Imaging of Urban Areas by Means of VeryHigh-Resolution SAR amd Interferometric SAR [J]. IEEE Transactions onGeoscience and Remote Sensing,46(10):2971-2982,2008.
    [53] L. J. Cutrona et al. On the Application of Coherent Optical Processing Techniquesto SyntheticAperture Radar [J]. PIEEE,1966,54(8),1026-1032.
    [54] Xixing Z, Minhui Z. The development of on-board imaging processor for airborneSAR in China [C]. EUSAR'96, Germany.
    [55] http://www.gov.cn/jrzg/2010-08/10/content_1675289.htmH.
    [56]《CSAR-2003会议》论文集.第一届中国合成孔径雷达会议[C],合肥:2003年12月1日至4日.
    [57]《CSAR-2005会议》论文集.第二届中国合成孔径雷达会议[C],南京:2005年11月2日至5日.
    [58]《20071st Asian and Pacific Conference on Synthetic Aperture RadarProceedings》[C]. Huangshan, China,2007.5-9.
    [59]《20092st Asian and Pacific Conference on Synthetic Aperture RadarProceedings》[C]. Xi’an, China,2009,21-25.
    [60]陈国范,胡仕友,周国军.合成孔径在弹上导引头的应用[J].飞航导弹.1995,No.7, pp.43-47.
    [61] Smith B J, Garner W, Cannon R. Precision dynamic SAR testbed for tacticalmissiles [C]. IEEE Aerospace Conference Proceedings. Big Sky, MT, United States,2004, pp:2220-2223.
    [62]黄世奇,郑健,刘代志,等. SAR/红外双模成像制导系统研究与设计[J].飞航导弹.2004, No.6, pp.38-43.
    [63] Polge R, Green A H, Mullins J H, Extension of Synthetic Aperture Radar Imagilagto Nonlinear Trajectories [C], New Orleans, LA, USA,1990,161-166.
    [64] Mahafza B. R., Knight D. L., Audeh N. F., Three-dimensional SAR ImagingTechnique for MMW Seekers [J], IEEE Aerospace Applications ConferenceProceedings, Vail, CO, USA,1994, pp:185-198.
    [65] J. Balke, Bistatic Forward-looking Synthetic Aperture Radar [C], in SEE Radar2004, Toulouse, France, October2004, CD-ROM.
    [66] J. Balke, Field Test of Bistatic Forward-looking Synthetic Aperture Radar [C], inIEEE International Radar Conference,Arlington, USA, May2005, pp.424–429.
    [67] J. Balke, SAR Image Formation for Forward-Looking Radar Receivers in BistaticGeometry by Airborne Illumination [C], IEEE Radar Conference, Rome, Italy,2008,pp:15.
    [68]李道京,张麟兮,俞卞章.主动雷达成像导引头几个问题的研究[J].现代雷达,2003, vol.25. no.5, pp:12-15.
    [69]秦玉亮,王建涛,王宏强,等.基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像[J].电子与信息学报.2009, vol.31, no.11:2563-2568
    [70]秦玉亮,王建涛,王宏强,等.基于RD算法的横向规避弹道弹载SAR成像[J].系统工程与电子技术.2010, vol.32, no.4:731-733.
    [71]俞根苗,尚勇,邓海涛,等.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报,2005, vol.33, no.5, pp:778-782.
    [72]俞根苗,邓海涛,吴顺君.弹载SAR图像几何失真校正方法[J].西安电子科技大学学报,2006, vol.33, no.3, pp:387-389.
    [73]俞根苗,邓海涛,张长耀,等.弹载侧视SAR成像及几何校正研究[J].系统工程与电子技术,2006, vol.28, no.7, pp:997-1001.
    [74]俞根苗,邓海涛,吴顺君.弹载SAR图像几何失真校正误差分析[J].电子与信息学报,2007, vol.29, no.2, pp:383-386.
    [75]孙兵,周荫清,陈杰,等.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报.2006, vol.34, no.9:1595-1599.
    [76]肖忠源,徐华平,李春升.弹载斜视SAR成像的改进波数域算法[J].电子与信息学报,2011,33(6):1453-1458.
    [77]房丽丽,王岩飞.俯冲加速运动状态下的SAR信号分析及运动补偿[J].电子与信息学报,2008, vol.30, no.6:1316-1320.
    [78]周鹏,李亚超,邢孟道,弹载扫描SAR宽测绘带模式成像方法研究[J],西安电子科技大学学报.2011, vol.38, no.1, pp:96-103
    [79] Neo Y L, Wong F H, Cumming I G. A two-dimensional spectrum for bistatic SARprocessing using series reversion [J]. IEEE Geoscience and Remote Sensing Letters,2007,4(1):93-96.
    [80] Neo Y L, Wong F H, Cumming I G. Processing of azimuth-invariant bistatic SARdata using the range Doppler algorithm [J]. IEEE Transactions on Geoscience andRemote Sensing.2008,46(1):14-21.
    [81]易予生,张林让,刘楠,等.基于级数反演的俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术.2009,31no.12:2863-2866.
    [82]易予生,张林让,刘昕,等.一种弹载侧视SAR大场景成像算法[J].电子与信息学报.2010,32(3):587-592.
    [83]刘高高,张林让,刘昕,等.一种曲线轨迹下的大场景前斜视成像算法[J].电子与信息学报,2011,33(3):628-633.
    [84]刘高高,张林让,易予生,等.一种曲线轨迹下的弹载前斜视成像算法[J].西安电子科技大学学报,2011,38(1):123-130.
    [85] Wenchao Li, Yulin Huang, et al.. Jianyu Yang, An ImprovedRadon-Transform-Based Scheme of Doppler Centroid Estimation for BistaticForward-Looking SAR [J]
    [86] Junjie Wu, Jianyu Yang, Haiguang Yang, et al.. Optimal Geometry Configuration ofBistatic Forward-Looking SAR [C]. IEEE International Conference on ICASSP,April,2009, pp:1117–1120.
    [87] Shi Jun, Zhang Xiaoling, Yang Jianyu, et al. A New Bi-SAR T/R Relative SpeedEstimation Method Using Nadir Echo [C].//APSAR2007.1st Asian and PacificConference on SyntheticAperture Radar, Huang Shan, China:207-210.
    [88] Zengliang Li, Di Yao, Teng Long, SPECAN Algorithm for Forward-LookingBistatic SAR [C], ICSP2008Proceedings, pp:2517:2520
    [89] Xiaolan Qiu, Donghui Hu, Chibiao Ding. Some Reflections on Bistatic SAR ofForward-Looking Configuration [J]. IEEE Geoscience and Remote Sensing Letters,2008,5(4):735-739.
    [1]俞根苗,尚勇,邓海涛等.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报,2005,33(5):778-782.
    [2]房丽丽,王岩飞.俯冲加速运动状态下的SAR信号分析及运动补偿.[J].电子与信息学报,2008,30(6):1316-1320.
    [3]孙兵,周荫清,陈杰等.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报.2006,34(9):1595-1599.
    [4]秦玉亮,王建涛,王宏强等.基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像[J].电子与信息学报.2009,31(11):2563-2568.
    [5]易予生,张林让,刘昕等.一种弹载侧视SAR大场景成像算法[J].电子与信息学报.2010,32(3):587-592.
    [6]易予生,张林让,刘楠,等.基于级数反演的俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术,2009,31(12):2863-2866.
    [7]刘高高,张林让,易予生,等.一种曲线轨迹下的弹载前斜视成像算法[J].西安电子科技大学学报,2011,38(1):123-130.
    [8] Davidson G W, Cumming I G, Ito M R. A chirp scaling approach for processingsquint mode SAR data [J]. IEEE Transactions on Aerospace and Electronic Systems,1996,32(1):121-133.
    [9] Wong F H, Cumming I G, Neo Y L. Focusing bistatic SAR data using the nonlinearchirp scaling algorithm [J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(9):2493-2505.
    [10] Wong H, and Yeo T. New Applications of Nonlinear Chirp Scaling in SAR DataProcessing [J]. IEEE Trans on Geoscience and Remote Sensing,2001,39(5):946-953.
    [11] Qiu Xiaolan, Hu Donghui, and Ding Chibiao. An Improved NLCS Algorithm withCapability Analysis for One-stationary BiSAR [J]. IEEE Trans on Geoscience andRemote Sensing,2008,46(10):3179-3186.
    [12] Zhou P, Xing M D, Xiong T, et al.. A variable-decoupling and MSR-based imagingalgorithm for a SAR of curvilinear orbit [J]. IEEE Geoscience and Remote SensingLetters,2011,8(6):1145-1149.
    [13] Neo Y L, Wong F H, Cumming I G. A two-dimensional spectrum for bistatic SARprocessing using series reversion [J]. IEEE Geoscience and Remote Sensing Letters,2007,4(1):93-96.
    [14] Neo Y L, Wong F H, Cumming I G. Processing of azimuth-invariant bistatic SARdata using the range Doppler algorithm [J]. IEEE Transactions on Geoscience andRemote Sensing.2008,46(1):14-21.
    [15] Cumming I G and Wong F H, Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005, chapter11.
    [1]秦玉亮,王建涛,王宏强等.弹载合成孔径雷达技术研究综述[J].信号处理.2009,4月, vol.25, no.4, pp.630-634.
    [2]周鹏,弹载SAR多种工作模式的成像算法研究,西安电子科技大学[D].2011.
    [3]易予生,弹载合成孔径雷达成像算法,西安电子科技大学[D].2010.
    [4] Lijia Huang, Xiaolan Qiu, Donghui Hu, et al.. Focusing of Medium-Earth-OrbitSAR With Advanced Nonlinear Chirp Scaling Algorithm [J]. IEEE Transactions onGeoscience and Remote Sensing,2011,49(1):500-508.
    [5] Bao M, Xing M D, Li Y C. Chirp scaling algorithm for GEO SAR based onfourth-order range equation [J]. Electronics Letters,2012,48(1):41-42.
    [6] Ian G. Cumming, Shu Li. Improved Slope Estimation for SAR Doppler AmbiguityResolution [J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):707-718.
    [7] Wenchao Li, Yulin Huang, Jianyu Yang, et al.. An ImprovedRadon-Transform-Based Scheme of Doppler Centroid Estimation for BistaticForward-Looking SAR. IEEE Geoscience and Remote Sensing Letters,2011,8(2):379-383.
    [8]孙兵,周荫清,陈杰,等.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报,2006,34(9):1595-1599.
    [9] Peng Zhou, Meng-dao Xing, Tao Xiong, et al.. A Variable-Decoupling andMSR-Based Imaging Algorithm for a SAR of Curvilinear Orbit [J]. IEEEGeoscience and Remote Sensing Letters,2011,8(6):1145-1149.
    [10] Cumming I G and Wong F H, Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA:Artech House,2004.
    [11] R. Bamler. A Systematic Comparison of SAR Focusing Algorithms. In Proc. Int.Geoscience and Remote Sensing Symp., IGARSS’91, Vol.2, pp.1005-1009, Espoo,Finland, June1991.
    [12] C. Cafforio, C. Prati, and F. Rocca. In Proc.8th EARSel Workshop, pp.336-355,Capri, Italy, May17-20,1988.
    [13] W. G. Carrara, R. S. Goodman, and R. M. Majewski. Spotlight Synthetic ApertureRadar: Signal ProcessingAlgorithms.Artech House, Norwood, MA,1995.
    [1]董勇伟,梁兴东,丁赤飚.一种调频连续波SAR的非线性距离-多普勒算法[J].系统工程与电子技术,2010,32(7):1394-1398.
    [2] Meta A, Hoogeboom P, Ligthart L P. Signal Processing for FMCW SAR [J]. IEEETrans.on Geoscience and Remote Sensing.2007,45(11):3519-3532.
    [3] Wang R, Loffeld O, Nies H, et al.. Analysis and Compensation for Motion errors inFMCW SAR Data[C]//Geoscience and Remote Sensing Symposium (IGARSS),Honolulu:2010IEEE International:4075-4078.
    [4] Jiang Z H, Cheng Z, Wan J W, et al.. Improved nonlinear frequency scalingalgorithm for squint FMCW SAR. IET Electronics Letters,2007,43(18):996–998.
    [5]梁毅,高昭昭,邢孟道等.调频连续波(FMCW)聚束式SAR成像研究[J].西安电子科技大学学报,2009,36(6):972-978.
    [6]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [7] Deng B, Li X, Wang H Q, et al.. Fast Raw-Signal Simulation of Extended Scenesfor Missile-Borne SAR With Constant Acceleration. IEEE Geoscience and RemoteSensing Letters,2011,8(1):44-48.
    [8] Wang J T, Qin Y L, Deng B, et all.. A Modified Omega-K Algorithm forMissile-borne SAR Imaging with the Dive Trajectory[C]//Synthetic Aperture Radar,2009. Xian,APSAR2009.2ndAsian-Pacific Conference:71-74.
    [9] Walterscheid I, Espeter T, Brenner A R, et al.. Bistatic SAR Experiments WithPAMIR and TerraSAR-X—Setup, Processing, and Image Results. IEEE Trans onGeoscience and Remote Sensing,2010,48(8):3519-3532.
    [10] Rodriguez-Cassola M, Baumgartner S V, Krieger G, et al.. BistaticTerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, DataProcessing, and Results [J]. IEEE Trans on Geoscience and Remote Sensing,2010,48(2):781-794.
    [11] Sun G C, Xing M D, Liu Y, et al.. Extended NCS Based on Method of SeriesReversion for Imaging of Highly Squinted SAR [J]. IEEE Geoscience and RemoteSensing Letters,2011,8(3):446-450.
    [12] Jiang Z H, Fu K H. Squint LFMCW SAR Data Processing UsingDoppler-Centroid-Dependent Frequency Scaling Algorithm[J]. IEEE Trans onGeoscience and Remote Sensing.2008,46(11):3535-3543.
    [13] Zaugg E C, Long D G. Theory and Application of Motion Compensation forLFM-CW SAR[J]. IEEE Trans on Geoscience and Remote Sensing.2008,46(10):2990-2998.
    [14] Ribalta A. Time-Domain Reconstruction Algorithms for FMCW-SAR[J]. IEEEGeoscience and Remote Sensing Letters,2011,8(3):396-400.
    [15] Wit J J, Meta A, Hoogeboom P. Modified Range-Doppler Processing for FM-CWSynthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters,2006,3(1):83-87.
    [16] Wang R., Loffeld O., Nies H., et al.. Focus FMCW SAR Data Using theWavenumber Domain Algorithm [J]. IEEE Trans on Geoscience and RemoteSensing,2010,48(4):2109-2118.
    [17]俞根苗,尚勇,邓海涛等.弹载侧视合成孔径雷达信号分析及成像研究[J].电子学报,2005,33(5):778-782.
    [18]孙兵,周荫清,陈杰等.基于恒加速度模型的斜视SAR成像CA-ECS算法[J].电子学报.2006,34(9):1595-1599.
    [19] Neo Y L, Wong F H, Cumming I G. A two-dimensional spectrum for bistatic SARprocessing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters,2007,4(1):93-96.
    [20] Neo Y L, Wong F H, Cumming I G. Processing of azimuth-invariant bistatic SARdata using the range Doppler algorithm[J]. IEEE Trans on Geoscience and RemoteSensing.2008,46(1):14-21.
    [21] Wong F H, Cumming I G, Neo Y L. Focusing Bistatic SAR Data Using theNonlinear Chirp Scaling Algorithm [J]. IEEE Trans on Geoscience and RemoteSensing,2008,46(9):2493-2505.
    [22] Cumming I G and Wong F H, Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005, chapter11.
    [1]秦玉亮,弹载SAR制导技术研究[D].国防科技大学,2009.
    [2]彭岁阳,弹载合成孔径雷达成像关键技术研究[D].国防科技大学,2011.
    [3] Walterscheid I, Espeter T, Brenner A, et al. Bistatic SAR Experiments with PAMIRand TerraSAR-X—Setup, Processing, Image Results [J]. IEEE Trans on Geoscienceand Remote Sensing,2010,48(8):3268–3279.
    [4] Z. Zhang, M. Xing, J. Ding, and Z. Bao,“Focusing Parallel Bistatic SAR DataUsing the Analytic Transfer Function in the Wavenumber Domain,” IEEE Trans.Geosci. Remote Sens., vol.45, no.11, pp.3633-3645, Nov,2007.
    [5] Rodriguez-Cassola M, Baumgartner S, Krieger G, et al. BistaticTerraSAR-X/F-SAR Spaceborne/Airborne SAR Experiment: Description, DataProcessing, and Results [J]. IEEE Trans on Geoscience and Remote Sensing,2010,48(2):781–794.
    [6] Chen Shichao, Wu Qisong, Zhou Peng, et al.“A new look at the Loffeld’s bistaticformula in tandem configuration”, IEEE Geoscience and Remote Sensing Letters.9(1),710-714,2012.
    [7] Rodriguez-Cassola M, Prats P., Krieger G., et al. Efficient Time-domain ImageFormation with Precise Topography Accommodation for General Bistatic SARConfigurations [J]. IEEE Trans on Aerospace and Electronic Systems,2011,47(4):2949–2966.
    [8] Wong H, and Yeo T. New Applications of Nonlinear Chirp Scaling in SAR DataProcessing [J]. IEEE Trans on Geoscience and Remote Sensing,2001,39(5):946-953.
    [9] Qiu Xiaolan, Hu Donghui, and Ding Chibiao. An Improved NLCS Algorithm withCapability Analysis for One-stationary BiSAR [J]. IEEE Trans on Geoscience andRemote Sensing,2008,46(10):3179-3186.
    [10] Shi Jun, Zhang Xiaoling, Yang Jianyu, et al. A New Bi-SAR T/R Relative SpeedEstimation Method Using Nadir Echo [C].//APSAR2007.1st Asian and PacificConference on SyntheticAperture Radar, Huang Shan, China:207-210.
    [11]李燕平,张振华,邢孟道等.机载双站SAR运动补偿研究[J].电子学报,2008,36(3):421-427.
    [12] Wahl D, Eichel P, Ghiglia D, et al.. Phase Gradient Autofocus-A Robust Tool forHigh Resolution SAR Phase Correction [J]. IEEE Trans on Aerospace AndElectronic Systems,2007,30(3):827-835.
    [13] Yang Lei, Xing Meng-dao, Wang Yong, et al.“Compensation for the NsRCM andPhase Error After Polar Format Resampling for Airborne Spotlight SAR,” IEEEGeoscience and Remote Sensing Letters,201310(1):165-169.
    [14] G. Y. Wang and Z. Bao. The minimum entropy criterion of range alignment in ISARmotion compensation [C]. In Proc. IEE Conf. Radar, Edinburgh, U.K.,1997, no.10,pp.14–16.
    [15]李燕平,邢孟道,保铮.一种改进的相位梯度自聚焦算法[J].西安电子科技大学学报,2007,34(3):386-391.
    [16] Xing Meng-dao, Jiang Xiuwei, Wu Renbiao, et al. Motion Compensation for UAVSAR Based On Raw Radar Data [J]. IEEE Trans on Geoscience and RemoteSensing,2009,47(8):2870-2883.
    [17] Cumming I and Wong F, Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005, chapter8.
    [18] Carrara W, Goodman R, and Majewski R, Spotlight Synthetic Aperture Radar:Signal ProcessingAlgorithms [M], Boston:Artech House,1995.
    [1] Rodriguez-Cassola M, Prats P, Krieger G, et al.. Efficient time-domain imageformation with precise topography accommodation for general bistatic SARconfigurations[J]. IEEE Transactions on Aerospace And Electronic Systems,2011,47(4):2949–2966.
    [2] Chen Shi-chao, Wu Qi-song, Zhou Peng, et al.. A new look at the Loffeld’s bistaticformula in tandem configuration[J], IEEE Geoscience and Remote Sensing Letters,2012,9(4):710-714.
    [3] Liu Zhe, Yang Jianyu, and Zhang Xiaoling. Nonlinear RCMC method forspaceborne/airborne forward-looking bistatic SAR[J]. Journal of SystemsEngineering and Electronics,2012,23(2):201-207.
    [4]徐海胜,宋红军,邓云凯,等.星/机双基SAR成像技术研究[J].电子与信息学报,2011,33(10):2438-2444.
    [5] Wang Rui, Li Feng and Zeng Tao. Bistatic SAR experiment, processing and resultsin spaceborne/stationary configuration[C]. Proceedings of2011IEEE CIEInternational Conference on Radar, Chengdu,2011:393–397.
    [6]彭岁阳,张军,沈振康.基于斜飞模式的双基地SAR成像算法[J].电子学报,2011,39(9):1967-1974.
    [7] Zengliang Li, Di Yao, Teng Long, SPECAN Algorithm for Forward-LookingBistatic SAR [C], ICSP2008Proceedings, pp:2517:2520
    [8] Wahl D, Eichel P, Ghiglia D, et al.. Phase Gradient Autofocus-A Robust Tool forHigh Resolution SAR Phase Correction [J]. IEEE Transactions on Aerospace andElectronic Systems,1994,30(3):827-835.
    [9] Yang Lei, Xing Mengdao, Wang Yong, et al.. Compensation for the NsRCM andPhase Error After Polar Format Resampling for Airborne Spotlight SAR[J]. IEEEGeoscience and Remote Sensing Letters,2013,10(1):165-169.
    [10]李燕平,邢孟道,保铮.一种改进的相位梯度自聚焦算法[J].西安电子科技大学学报,2007,34(3):386-391.
    [11] Wong F H, and Yeo T. New Applications of Nonlinear Chirp Scaling in SAR DataProcessing [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(5):946-953.
    [12] Qiu Xiaolan, Hu Donghui, and Ding Chibiao. An Improved NLCS Algorithm withCapability Analysis for One-stationary BiSAR[J]. IEEE Transactions onGeoscience and Remote Sensing,2008,46(10):3179-3186.
    [13] Wang R, Loffeld O, Neo Y, et al. Focusing Bistatic SAR Data inAirborne/Stationary Configuration [J]. IEEE Transactions on Geoscience andRemote Sensing,2010,48(1):452–465.
    [14] Thompson D, Bates J, Arnold D, et al.. Extending the Phase Gradient AutofocusAlgorithm for Low-altitude Stripmap Mode SAR[C]. In Proc IGARSS, Hamburg,Germany, Jul.1999, pp.564-566.
    [15]保铮,邢孟道,王彤.雷达成像技术[M],第三章.北京:电子工业出版社,2005.
    [16] Ye Wei, Yeo T, and Bao Zheng. Weighted least-squares estimation of phase errorsfor SAR/ISAR autofocus [J]. IEEE Transactions on Geoscience and RemoteSensing,1999,37(5):2487-2494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700