用户名: 密码: 验证码:
战场监视雷达广域GMTI模式关键信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载远程战场监视雷达可以对地面和海面的广阔区域进行实时侦察、监视,是现代战场最重要的传感器之一。它们采用SAR-GMTI模式和广域GMTI模式获得对战场动目标的探测能力,其中广域模式可以对运动目标进行检测、定位和跟踪,在现代战场中发挥越来越重要的作用。目前许多军事强国都在大力发展机载战场监视雷达,一些高校和科研单位正在积极研究先进的广域GMTI理论和技术,努力寻求各种高效、实用的目标检测技术。
     在分析国内外广域GMTI技术的研究进展基础上,本文以提高动目标检测定位性能为宗旨,对广域GMTI信号处理进行了深入研究。具体而言,本文主要包括四个方面的内容。首先,建立了广域GMTI模式的基本信号模型。在此基础上,提出了一种相控阵雷达通道误差估计算法、两种多普勒波束锐化(Doppler beamsharpening, DBS)图像拼接算法和两种运动目标定位方法,并通过实测数据处理对这些方法进行了验证。本文主要工作概括如下:
     1.第二章给出了广域GMTI模式的观测模型和数学基础。本章定义了本领域的重要概念和基本符号体系,建立了机载多通道广域GMTI系统的几何模型,同时对基本信号处理流程进行描述,这些内容是后面几章的理论基础。
     2.雷达的通道相位误差会影响杂波抑制效果和运动目标参数估计性能。在分析系统通道幅相误差来源的基础上,第三章提出了一种基于多波位杂波的通道相位误差估计方法。首先对不同接收通道的杂波数据进行干涉处理,然后结合扫描角来求解通道相位误差。为了减小系统噪声影响、提高估计精度,本文提出两种估计策略,一方面选取主杂波内独立同分布的距离样本单元进行估计,另一方面利用多个波位杂波求平均以进一步降低通道估计误差。机载雷达实测数据处理结果表明该方法可以较好地补偿通道相位误差,并且显著提高系统的目标定位能力。
     3.在上述工作的基础上,论文研究了相控阵雷达体制和机械扫描体制下的多普勒波束锐化(DBS)波位图像拼接算法。第四章研究相控阵雷达的DBS图像拼接问题。通过将所有扫描波位获得的主瓣DBS图像进行拼接,可得到大范围的地面场景图像。然而实际中雷达平台的非理想运动(载机速度矢量和姿态的变化)会造成DBS图像拼接困难。为解决此问题,本文提出了一种有效的DBS图像拼接方法。首先利用惯导信息估计载机瞬时位置和雷达波束指向,然后将它们转化到初始时刻定义的参考坐标系下,得到图像校正参数。最后利用这些参数,完成图像拼接。实测数据的处理结果表明该方法不仅较好地补偿了载机运动误差,而且与传统方法相比可以更好地改善DBS数据的拼接性能。
     4.第五章主要研究机械扫描雷达的高分辨DBS图像拼接方法。电子扫描阵列(electronically steered array, ESA)是机载雷达的主流模式,目前的多普勒波束锐化图像拼接算法主要用于ESA的数据处理。本文首先讨论传统机械扫描雷达(mechanical scanning antenna, MSA)与ESA的不同点,然后在ESA图像拼接算法基础上提出一种有效的专门针对MSA的图像拼接算法。对通过机械转动实现波束扫描的MSA而言,其相邻多个波位接收的脉冲信号具有很强相干性,将这些脉冲回波按照一定几何关系进行相干处理,便可获得高分辨率的DBS图像。该方法最突出的特点是根据MSA的几何构型进行多波位联合,保证了DBS图像获得尽可能高的分辨率,且通过多普勒域图像取大处理实现有效拼接。实测数据的处理结果表明本文方法运算量小,且图像拼接性能显著优于传统方法。
     5.由于运动目标定位性能会受到通道一致性和基线误差等系统非理想因素的影响,论文深入研究了广域GMTI系统的运动目标精确定位方法。第六章提出了用误差等效基线来描述以上误差,并在此基础上提出了一种新的广域GMTI运动目标定位方法。该方法的主要步骤包括测量不同误差等效基线对应的杂波抑制锐化比,确定最优误差等效基线及运动目标定位。本方法的关键步骤是通过令杂波抑制比最大化来估计最优误差等效基线,这确保了估计的最优误差等效基线与数据真实误差特性相吻合。因而,其定位性能明显优于采用名义基线的定位结果。实测数据处理结果验证了本文方法的性能。
     6.第七章研究了一种双通道广域GMTI系统中的运动目标间接定位方法。由于广域GMTI系统中存在通道失配、沿航向基线误差、垂直基线等,要实现目标精确定位非常困难。为解决此问题,本文提出了一种目标定位新方法。该方法的核心思想是基于这样一个简单的事实,即运动目标与其邻近杂波(在观测场景中,与目标处于相同的距离单元和方位单元)拥有相同的干涉相位。这个新的间接定位办法,不依赖于传统的目标定位公式,因而可以免受大多数干涉相位误差的影响。实测数据处理结果表明本文算法可以获得较高的目标定位精度。
The airborne long-range battlefield surveillance radar system can provide real timereconnaissance and surveillance over a vast area on the ground or the sea, and hence isone of the most important sensors that are used for modern military applications. Theradar’s two working modes, i.e., synthetic aperture radar (SAR) ground moving targetindication (GMTI) mode or wide-area surveillance (WAS) GMTI mode, offer thedetection of moving targets in the battlefield. The WAS-GMTI mode, especially turnsout to be a particularly effective way to detect, locate and track moving targets, and thusis becoming more and more important in modern warfare. Recently, most militarypowers in the world have been engaging in developing airborne battlefield surveillanceradar systems, and a great number of universities and research institutes are developingpractical GMTI techniques and exploring novel moving target detection and locationalgorithms with high efficiency.
     Based on the airborne WAS-GMTI research development of home and abroad, thisdissertation aims to improve moving target detection and location, and additionally togive in-depth discussion on WAS-GMTI signal processing method. More specifically,there were four key areas that we wished to address. First, this dissertation containssome basic materials on signal model of WAS-GMTI mode. Then, more importantly,this dissertation consists of a channel phase error estimation method, two imagestitching algorithms for ESA mode and MSA mode, and two moving target relocationalgorithms, all verified through real data processing. The main content of thisdissertation is summarized as follows.
     1. Chapter2provides the reader with the observation models and mathematicalpreliminaries required to understand the WAS-GMTI mode. The purposes of Chapter2are to define important concepts and notations in WAS-GMTI, to describe WAS-GMTIdata acquisition geometry, and to represent more specially signal processing techniqueswhich form the basis for the proposed algorithms carried out in the subsequent chapters.
     2. The channel phase error presented in radar will affect clutter suppression anddecline the parameter estimation accuracy as well. To deal with this problem, anestimation method of channel phase error is proposed in Chapter3for the phased arrayantenna. First the clutter of different channels is processed using the interferometrictechnique, after which the channel errors are estimated with the known scan angles. Toreduce the influence of noise and enhance the estimation accuracy, two strategies areintroduced for phase error estimation. On one hand, the independent and identically distributed (i. i. d.) range cells are proposed to be chosen as estimation samples. On theother hand, clutter of multiple wave positions is employed to further average theestimation error. Processing results with measured data validate that the proposedmethod can compensate the channel phase error very well and enhance the ability ofmoving target relocation significantly.
     3. Based on the discussion about observation models and mathematicalpreliminaries, this dissertation contains descriptions and analyses of the image stitchingalgorithms of Doppler beam sharpening (DBS) image for ESA system and MSA system,respectively. Chapter4is concerned with image stitching in ESA. By stitching Dopplerbeam sharpening (DBS) images together the main-lobe DBS images obtained from allthe beam positions, a wide swath ground image is obtained. In practice, however, thereare some difficulties in stitching the DBS images due to the nonideal movement(variation of the velocity vector and the attitude) of the radar platform. To deal withthese problems, a novel method is proposed, which can stitch the DBS imageseffectively. The inertial navigation system (INS) information is employed to estimatethe instantaneous position of the aircraft and the radar beam direction, both of which arethen transformed to the original reference coordinate so that the corrected parameters ofthe image can be obtained. Finally, by using these parameters, the image stitching isachieved. Processing results of measured data show that the proposed method not onlycompensates the motion error excellently, but also significantly outperforms thetraditional algorithm in stitching performance.
     4. Chapter5deals primarily with high resolution image stitching algorithm forDBS images in MSA system. The current image stitching algorithms are primarilysuited to process electronically steered array (ESA) data. However, these algorithmswill give rise to degradation of the performance for mechanical scanning antenna(MSA). In this paper, we develop an effective mulitsubbeam combination algorithm thatapplies to the MSA. For MSA whose beam is steered with physical antenna motion, thesuccessive pulses of adjacent subbeams are temporally correlated, and thus can becoherently integrated to generate a DBS image. The most prominent contributions of theproposed method are mulitsubbeam combination according to MSA geometry, whichguarantees that a high resolution DBS image can be obtained, and good data selection inthe way of Doppler spectrum combination. Results from real data show that theproposed method is computationally quite efficient for high-resolution imaging andsignificantly outperforms the traditional algorithm.
     5. The system factors that affect the performance of moving targets relocation can be examined through channel imbalance and antenna array misalignment etc. Thisdissertation derivates and developes two algorithms by which a moving target can beaccurately relocated in the SCAN-GMTI system. In Chapter6, we introduce a conceptcalled error equivalent baseline (EEB) to describe the influence of these factors anddevelop a novel method of moving targets location for the scan-ground moving targetindication (SCAN-GMTI) system. The proposed method involves measuring the cluttersuppression sharpness ratio (CSSR) corresponding to the potential EEBs, determiningthe optimal EEB, and locating the moving targets. The key procedure of estimating theoptimal EEB that maximizes the CSSR virtually provides a good fit for the errorcharacteristic of the measured data. Therefore, the location performance of the obtainedoptimal EEB is superior to that of the nominal baseline. Processing results of measureddata validate the effectiveness of the proposed method.
     6. Chapter7deals with the issue of moving target relocation for wide-area groundmoving target indication (GMTI) using dual-channel radar systems. Due to channelmismatch, along-track baseline error, the existence of across-track baseline, and etc, it isdifficult to accurately relocate the detected targets. In this letter, we propose a newknowledge-based (KB) method for target relocation. The key idea of the proposedmethod is to use such a fact that a moving target and its neighboring clutter which issituated at the same azimuth angular position and the same range cell as this target inthe observed scene, have the same interferometric phase. This new KB method, as anindirect one, does not employ the conventional relocation formula, and therefore is notinfluenced by most of (if not all) interferometric-phase errors. Experimental results forreal radar data demonstrate a fairly high degree of target-relocation accuracy.
引文
[1] Skolnik M. I..雷达手册[M].北京:电子工业出版社,2003.
    [2] Skolnik M. I..雷达系统导论[M].北京:国防工业出版社.1992.
    [3] Barton D. K..雷达系统分析与建模[M].南京:南京电子技术研究所译.北京:电子工业出版社,2007.
    [4]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社.2002.
    [5]向敬成,张明友.雷达系统[M].北京:电子工业出版社,2001.
    [6] John A.. The strategic implications of information dominance[J]. Strategic Review,1994, pp.24-30.
    [7] Miller, D.. Information dominance: The philosophy of total propaganda control[M].New York: Rowman&Littlefield Publishers,2004, pp.7–16.
    [8]戚世权.论制信息权[M].北京:军事科学出版社,2003.
    [9]阳曙光,张林,王东祁.国外机载地面监视系统的现状及发展趋势[J].飞航导弹,2006,(12): pp.13-16.
    [10]Entzminger J. N., Fowler C. A., Kenneally W. J. JointSTARS and GMTI: past,present and future. IEEE Trans. on Aerosp. Electron. Syst.,1999,35(2),pp.748-761.
    [11]Corcoran K. Higher eyes in the sky: the feasibility of moving AWACS andJSTARS functions into space[J]. ADA391375,1998.
    [12]赵玉洁. JSTARS联合监视目标攻击雷达系统[J].航空电子技术,1992,第4期,pp.11-16.
    [13]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [14]Curlander J. C., McDonoughm R. N.. Synthetic aperture radar: system and signalprocessing[M]. John Wiley&Sons Inc,1991.
    [15]Carrara W. G., Goodman R. S., Majewski R. M.. Spotlight synthetic aperture radar:signal processing algorithms[M]. Boston: Artech House,1995.
    [16]Soumekh M.. Synthetic aperture radar signal processing with MATLABalgorithms[M]. John Wiley&Sons Inc,1999.
    [17]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [18]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [19]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003.
    [20]吕孝雷.机载多通道SAR-GMTI处理方法的研究[D].博士学位论文,西安电子科技大学,2008.
    [21]周上元.机载战场监视雷达系统现状及趋势的市场分析[J].信息化研究,2010,36(3), pp.4-8.
    [22]Streetly M.. Airborne standoff radar (ASTOR) programme[R]15January1999,Jane's Electronic Mission Aircraft02.
    [23]唐臻富.可与JSTARS争雄的ASTOR飞机[J].电子对抗技术,2000,15(1), pp.1-3.
    [24]Zei D., Delogu A., Montanari A., et al. SOSTAR-X program: SELEX GALILEOcontributions[C]. Proc. of the38th Euro. Micro. Conf.,2008, Amsterdam, TheNetherlands, pp.1659-1662.
    [25]Angenoorth P., Chabod L., Hoogeboom P.. The SOSTAR-X programachievements[C]. Proc. of the38th Euro. Micro. Conf.,2008, Amsterdam, TheNetherlands, pp.1648-1650.
    [26]鲁赣.法国战场监视直升机的研制[J].直升机技术,2004,第3期, pp.50-54.
    [27]梁德文.北约国家新型机载远程战场监视雷达系统发展概况[J].电讯技术,1988,28(4), pp.16-22.
    [28]石星.机载远程战场侦察雷达发展评述[J].电讯技术,2000,(4), pp.104-108.
    [29]吴顺君,梅晓春等编著.雷达信号处理和数据处理技术[M].北京:电子工业出版社,2008.
    [30]保铮,邢孟道,王彤.雷达成像技术[M],北京:电子工业出版社,2005.
    [31]Sullivan R. J.. Radar foundations for imaging and advanced concepts[M]. SciTechPublishing,2004.
    [32]Raney R. K.. Synthetic Aperture imaging radar and moving targets[J]. IEEE Trans.on Aerosp. Electron. Syst.,1971,3: pp.499-505.
    [33]Barbarossa S., Farina A.. Detection and imaging of moving objects with syntheticaperture radar, part2: Joint time-frequency analysis by Wigner-Ville distribution,IEE Proc.-f,1992,39(1), pp.89-97.
    [34]Perry R. P., Dipietro R. C., et al. SAR imaging of moving targets[J]. IEEE Trans. onAerosp. Electron. Syst.,1999,35(1), pp.188-200.
    [35]Kirkland D.. Imaging moving targets using the second-order keystone transform[J].IET Radar Sonar Navig.,2007,5(8), pp.902-910.
    [36]Sun G., Xing M., Xia X., et al. Robust ground moving-target imaging usingderamp–Keystone processing[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(10):pp.3753–3764.
    [37]Dias J., Marques P.. Moving targets detection and trajectory parameters estimationusing a single SAR sensor[J]. IEEE Trans. on Aerosp. Electron. Syst.,2003,39(2),pp.604-624.
    [38]Xu R., Zhang D., Hu D., et al. A novel motion parameter estimation algorithm offast moving targets via single-antenna airborne SAR system[J]. IEEE Geosci.Remote Sens. Lett., Sep.2012,9(5), pp.920–924.
    [39]Yadin E.. A performance evaluation mode for a two port interferometerSAR-MTI[C]. in Proc. IEEE Nat. Radar Conf.,1996, Michigan, pp.261-266.
    [40]Gierull C. H. Statistical analysis of multilook SAR interferograms for CFARdetection of ground moving targets[J]. IEEE Trans. Geosci. Remote Sens.,2004,42(4): pp.691-701.
    [41]Wang G., Xia X., Chen V. C.. Dual-speed SAR imaging of moving targets[J]. IEEETrans. on Aerosp. Electron. Syst.,2006,42(1), pp.368-379.
    [42]Rüegg. M., Erich M., and Nüesch. D.. Capabilities of dual-frequency millimeterwave SAR with monopulse processing for ground moving target indication[J].IEEE Trans. on Geosc. Remote Sens.,2007,45(3), pp.539-553.
    [43]Ender J. H. G.. Space-time adaptive processing for synthetic apertureradar[C]. IEE Conoquium on, London,1998: pp.611—618.
    [44]Soumekh M., Himed B.. Moving target detection and imaging using an X-bandalong-track monopulse SAR[J]. IEEE Trans. Aerosp. Electron. Syst.,2002,38(1),pp.315-333.
    [45]Li Z., Bao Z., Li H., et al. Image auto-coregistration and InSAR interferogramestimation using joint subspace projection[J]. IEEE Trans. on Geosc. Remote Sens.,2006,44(2), pp.288-297.
    [46]Friedlander B., Porat B.. VSAR: a high resolution radar system for detection ofmoving targets[J]. IEE Proc. Radar Sonar Navig.,1997,144(4), pp.205-218.
    [47]杨垒.多通道SAR-GMTI方法研究[D].博士学位论文,西安电子科技大学,2009.
    [48]朱升祺.高速运动平台雷达GMTI关键技术研究[D].博士学位论文,西安电子科技大学,2009.
    [49]Davis M. E., Himed B.. L-band wide area surveillance radar design alternatives[C].Inter. Radar Conf.,2003, Australia, pp.554-559.
    [50]贲德,韦传安,林幼权编著.机载雷达技术[M].北京:电子工业出版社,2006.
    [51]Walterscheid I., Espeter T., Brenner A. R., et al. Bistatic SAR experiments withPAMIR and TerraSAR-X—setup, processing, and image results[J]. IEEE Trans.Geosci. Remote Sens.,2010,48(8): pp.3268–3279.
    [52]Wang R., Loffeld O, Nies H., et al. Focusing results and analysis of advancedbistatic SAR experiments in spaceborne or airborne/airborne or stationaryconfigurations[C]. in Proc. EUSAR,2010, pp.1042–1045.
    [53]Li X W, Xia X G. Location and imaging of elevated moving target usingmulti-frequency velocity SAR with cross-track interferometry [J]. IEEE Trans. onAerosp. Electron. Syst.,2011,47(2), pp.1203-1212.
    [54]Xu J., Yu Z., et al. Ground moving target signal analysis in complex image domainfor multi-channel SAR[J]. IEEE Trans. Geosci. Remote Sens.,2012,50(2), pp.538-552.
    [55]Zhu S., Liao G., Qu Y., et al. A new slant-range velocity ambiguity resolvingapproach of fast moving targets for SAR system[J]. IEEE Trans. Geosci. RemoteSens.,,2010,48(1): pp.432–451.
    [56]Lv X., Xing M., Zhang S., et al. Coherence improving algorithm for airbornemultichannel SAR-GMTI[J]. IET Radar Sonar Navig.,2010,4(3): pp.336–347.
    [57]Wang T., Bao Z., Zhang Z., et al. Improving coherence of complex image pairsobtained by along-track bistatic SARs using range-azimuth prefiltering[J]. IEEETrans. Geosci. Remote Sens.,2008,46(1): pp.3-13.
    [58]Yan H., Li F., Deng Y., et al. Ground moving target extraction in a multichannelwide-area surveillance SAR/GMTI system via the relaxed PCP[J]. IEEE Geosc.Remote Sens. Lett.,2013,10(3): pp.617-621.
    [59]Ender J. H. G., Gierull C. H., Cerutti-Maori D.. Improved spacebased moving targetindication via alternate transmission and receiver switching[J]. IEEE Trans. Geosci.Remote Sens.,2008,46(12), pp.3960-3974.
    [60]Chiu S., Drago evi M. V..―Moving target indication via RADARSAT-2multichannel synthetic aperture radar processing[J]. EURASIP J. Adv. SignalProcess.,2010, pp.1-19.
    [61]Sikaneta I. C., Gierull C. H.. Adaptive CFAR for space-based multichannelSAR-GMTI[J]. IEEE Trans. Geosci. Remote Sens.,2012,50(12), pp.5004-5013.
    [62]Gierull C. H., Sikaneta I. C., Cerutti-Maori D.. Two-step detector forRADARSAT-2’s experimental GMTI mode[J]. IEEE Trans. Geosci. Remote Sens.,2013,51(1), pp.436-454.
    [63]Cerutti-Maori D., Sikaneta I., Gierull C. H.. Optimum SAR/GMTI processing andits application to the radar satellite RADARSAT-2for traffic monitoring[J]. IEEETrans. Geosci. Remote Sens.,2012,50(10), pp.3868-3881.
    [64]Drago evi M. V., Burwash W., Chiu S.. Detection and estimation withRADARSAT-2moving-object detection experiment modes[J]. IEEE Trans. Geosci.Remote Sens.,2012,50(9), pp.3527-3543.
    [65]Baumgartner S. V., Krieger G.. Large along-track baseline SAR-GMTI: first resultswith the TerraSAR-X/TanDEM-X satellite constellation[C]. in Proc. IGARSS,Vancouver, BC, Canada,2011, pp.1319–1322.
    [66]Guttrich G. L., Sievers W. E.. Wide area surveillance concepts based ongeosynchronous illumination and bistatic UAV or satellite reception[C]. IEEEAerosp. Conf. Proc., Aspen, CO,1997, pp.171-180.
    [67]Zou B., Zhen D., Liang D.. Research on Scan-GMTI technology of airborne MIMOradar based on STAP[C]. ICSP2010Proc., Beijing,2010, pp.1973-1976.
    [68]Cerutti-Maori D., Skupin U.. First experimental SCAN/MTI results achieved withthe multi-channel SAR-system PAMIR[C]. Proc. of EUSAR2004, Ulm Germany,2004, pp.1-4.
    [69]Cerutti-Maori D., Klare J., W. Burger, et al. Wide area traffic monitoring with thePAMIR system[C]. Proc. of the IEEE IGARSS2007, Barcelona,2007, pp.3567-3570.
    [70]Cerutti-Maori D., Klare J., Brenner A. R., et al. Wide area traffic monitoring withthe SAR/GMTI system PAMIR[J]. IEEE Trans. Geosc. Remote Sens.,2008,46(10),pp.3019-3030.
    [71]胡瑞贤,王彤,保铮.扫描GMTI系统运动目标精确定位方法[J]系统工程与电子技术,已录用待发表.
    [72]Hu R., Liu B., Wang T., et al. A knowledge-based target relocation method forwide-area GMTI mode[J]. IEEE Geosc. Remote Sens. Lett., Accepted to bepublished after minor revision.
    [73]包敏,郭睿,李亚超等.基于实测数据的广域三通道SCANSAR-GMTI算法[J].系统工程与电子技术,2011,33(9): pp.1963-1969.
    [74]雷鹏正.机载SCAN-GMTI技术研究[D].长沙:国防科技大学,2009.
    [1]贲德,韦传安,林幼权编著.机载雷达技术[M].北京:电子工业出版社,2006.
    [2]吴顺君,梅晓春等编著.雷达信号处理和数据处理技术[M].北京:电子工业出版社,2008.
    [3]张光义,赵玉洁.相控阵雷达技术[M].北京:电子工业出版社,2007.
    [4] Stimson G. W.. Introduction to airborne radar[M]. Rayleigh, NC: SciTechPublishing,1998.
    [5] Ward J.. Space-time adaptive processing for airborne radar[R]. Technical report1015of Lincoln Lab,1994.
    [6]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理[J].现代雷达,1994,16(1), pp.38-48.
    [7]王永良,彭应宁.空时自适应信号处理[M].清华大学出版社.2000.
    [8] Klemm R.. Principles of space-time adaptive processing[M]. London: IEE Press,2002.
    [9] Klemm R.. Applications of space-time adaptive processing[M]. The Institution ofElectrical Engineers, London.2004.
    [10]Guerci J. R.. Space-time adaptive processing for radar[M]. Norwood, MA: ArtechHouse,2006.
    [11]Melvin W. L., Guerci J. R.. Knowledge-aided signal processing: a new paradigmfor radar and other advanced sensors[J]. IEEE Trans. Aerosp. Electron. Syst.,2006,42(3), pp.983-996.
    [12]胡瑞贤,王彤,保铮等.一种基于惯导信息的多普勒波束锐化图像拼接算法[J].电子与信息学报,2012,34(6), pp.1337-1343.
    [13]Sullivan R. J.. Radar foundations for imaging and advanced concepts[J]. SciTechPublishing,2004.
    [14]Richards M. A.. Fundamentals of radar signal processing[M]. New York:McGraw-Hill,2005.
    [15]权太范著.目标跟踪新理论与技术[M].北京:国防工业出版社,2009.
    [16]Bar-Shalom Y.. Tracking and data association[M]. Oolando, FL: Academic Press,1988.
    [17]Bar-Shalom Y, et al.. Multi target-multisensor tracking: advanced applications [M].vol.1, Dedham. MA: Artech House,1990.
    [18]Bar-Shalom Y, et al. Multi target-multisensor tracking: advanced applications [M].vol.2, Dedham. MA: Artech House,1992.
    [19]Bar-Shalom Y and Blair W D, et al. Multi target-multisensor tracking: advancedapplications [M]. vol.2, Dedham. MA: Artech House,2000.
    [20]Bar-Shalom Y and Li X R. Multitarget multisensory tracking: principles andtechniques [M]. Storrs, CT:YBS Publishing,1995.
    [21]Blackman S.. Multiple-target tracking with radar applications[M]. Boston: ArtechHouse,1986.
    [22]Blackman S., Popoli R.. Design and analysis of modern tracking system[M].Boston: Artech House,1999.
    [23]Farina A., Studer F. A.. Radar data processing[M]. Advanced topics andapplications [vol.2]. New York:1986.
    [1] Klemm R.. Principles of space-time adaptive processing[M]. London: IEE Press,2002.
    [2] Ward J.. Space-time adaptive processing for airborne radar[R]. Technical report1015of Lincoln Lab,1994.
    [3] Guerci J. R.. Space-time adaptive processing for radar[M]. Norwood, MA: ArtechHouse,2006.
    [4] L. E. Brennan, J. D. Mallett, et al. Theory of adaptive radar[J]. IEEE Trans. onAerosp. Electron. Syst.,1973,9(2), pp.237-251.
    [5] I. S. Reed, J. D. mallet, L. E. Brennan. Rapid convergence rate in adaptive arrays[J].IEEE Trans. on Aerosp. Electron. Syst.,1974,10(6), pp.853-863.
    [6]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理[J].现代雷达,1994,16(1), pp.38-48.
    [7] Cerutti-Maori D., Klare J., Brenner A. R., et al. Wide area traffic monitoring withthe SAR/GMTI system PAMIR[J]. IEEE Trans. Geosc. Remote Sens.,2008,46(10),pp.3019-3030.
    [8] Migliore M. D., Soldovieri F., Pierri R.. Far-field antenna pattern estimation fromnear-field data using a low-cost amplitude-only measurement setup[J]. IEEE Trans.on Instru. and Measu.,2000,49(1), pp.71-76.
    [9] Shimada M.,Freeman A.. A technique for measurement of spaceborne SARantenna patterns using distributed targets[J]. IEEE Trans. Geosc. Remote Sens.,1995,33(1), pp.100-114.
    [10]Bachmann M., Schwerdt M., Br utigam B.. Accurate antenna pattern modeling forphased array antennas in SAR applications-demonstration on TerraSAR-X[J]. Inter.J. Antennas and Propag.,2009.
    [11]王永良,丁前军,李荣峰.自适应阵列处理[M].北京:清华大学出版社,2009.
    [12]Wu S, Li Y. Adaptive channel equalization for space-time adaptive processing[C].Proc. of IEEE Inter. Radar Conf.. Alexandria,1995, pp.624-628.
    [13]Ender J. H. G.. Experimental results achieved with the airborne multi-channel SARsystem AER-II[C]. Proc. of Euro. Conf. on SAR. Friedrichshafen,1998,pp.315–318.
    [14]Bernhard, Bickert. Estimation of Doppler centroid in DBS processing and itsapplication in real-time SW on forward looking airborne radar[C]. in Proc. onEuSAR2012–9th Euro. Conf. on SAR,2012, Nurnberg, Germany, pp.372-375.
    [15]Lv X. L., Xing M. D., Zhang S. H., et al. New coherence improving algorithm forairborne multichannel SAR-GMTI[J]. IET Radar Sonar Navig.,2010,4(3),pp.336-347.
    [16]杨垒,王彤,保铮.机载多通道SAR-GMTI杂波抑制方法[J].电子与信息学报,2008,30(12), pp.2831-2834.
    [17]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法[J].自然科学进展,2008,18(12), pp.1484-1490.
    [18]Mendelson H.. An alternative approach to multichannel radar detection andlocation[C]. Proc of IEEE Aerosp. Conf. Big Sky, MT,2005, pp.2212–2221.
    [19]Madsen S. N.. Estimating the Doppler centroid of SAR data[J]. IEEE Trans. onAerosp. Electron. Syst.,1989,25(2), pp.134-140.
    [20]Cafforio C., Guccione P., Guarnieri A. M.. Doppler centroid estimation forScanSAR data[J]. IEEE Trans. Geosci. Remote Sens.,2004,42(1), pp.14-23.
    [21]Cumming I. G., Wong F. H.. Digital processing of synthetic aperture radar data:algorithms and implementation[M]. Norwood, MA: Artech House,2004.
    [22]Liu B., Wang T., Bao Z.. Doppler ambiguity resolving in compressed azimuth timeand range frequency domain[J]. IEEE Trans. Geosc. Remote Sens.,2008,46(11),pp.3444-3458.
    [23]Long T., Lu Z., Ding Z. G., et al.. A DBS Doppler centroid estimation algorithmbased on entropy minimization[J]. IEEE Trans. Geosc. Remote Sens.,2011,49(10),pp.3703-3712.
    [24]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [25]DiPietro R C.. Extended factored space-time processing for airborne radar[C]. Procof26th Asilomar Conf., Pacific Grove, CA,1992, pp.425-430.
    [26]Maori D. C., Gierull C. H., Ender J. H. G.. Experimental verification ofSAR-GMTI improvement antenna switching[J]. IEEE Trans. Geosc. Remote Sens.,2010,48(4), pp.2066-2075.
    [1] Guttrich G. L., Sievers W. E.. Wide area surveillance concepts based ongeosynchronous illumination and bistatic UAV or satellite reception[C]. IEEEAerosp. Conf. Proc., Aspen, CO,1997, pp.171-180.
    [2] Cerutti-Maori D., Klare J., Brenner A. R., et al. Wide area traffic monitoring withthe SAR/GMTI system PAMIR[J]. IEEE Trans. Geosc. Remote Sens.,2008,46(10),pp.3019-3030.
    [3] Zou B., Zhen D., Liang D.. Research on Scan-GMTI technology of airborne MIMOradar based on STAP[C]. ICSP2010Proc., Beijing,2010, pp.1973-1976.
    [4]胡瑞贤,王彤,保铮.扫描GMTI系统运动目标精确定位方法[J].系统工程与电子技术,2013,已录用待发表.
    [5]包敏,郭睿,李亚超等.基于实测数据的广域三通道SCANSAR-GMTI算法[J].系统工程与电子技术,2011,33(9), pp.1963-1969.
    [6] Entzminger J. N., Fowler C. A., Kenneally W. J. JointSTARS and GMTI: past,present and future. IEEE Trans. on Aerosp. Electron. Syst.,1999,35(2),pp.748-761.
    [7] Dyer G. R.. Airborne reconnaissance into the21-st Century[C]. In Proc. of SPIE,Airborne Reconnaissance XXII,(3431),1998, pp.26-34.
    [8] Angenoorth P., Chabod L., Hoogeboom P.. The SOSTAR-X programachievements[C]. Proc. of the38th Euro. Micro. Conf.,2008, Amsterdam, TheNetherlands, pp.1648-1650.
    [9]赵宏钟,谢华英,周建雄等.匀加速运动平台下的大斜视DBS成像方法[J].电子学报,2010,38(6), pp.1280-1286.
    [10]刘凡,赵凤军,邓云凯等.一种基于最小二乘直线拟合的高分辨率DBS成像算法[J].电子与信息学报,2011,33(4), pp.787-791.
    [11]Long T., Lu Z., Ding Z. G., et al. A DBS Doppler centroid estimation algorithmbased on entropy minimization[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(10):pp.3703-3712.
    [12]Cumming I. G., Wong F. H.. Digital processing of synthetic aperture radar data:algorithms and implementation[M]. Norwood, MA: Artech House,2004.
    [13]刘寅.扫描方式下DBS子图像拼接算法[J].雷达科学与技术,2005,3(2),pp.91-95.
    [14]万红进,李辉. DBS多普勒质心估计算法研究[J].火控雷达技术,2010,39(2),pp.37-40.
    [15]Zhu S. Q., Liao G. S., Liu B. C., et al. New approach for SAR Doppler ambiguityResolution in Compressed Range Time and Scaled Azimuth[J]. IEEE Trans. onAerosp. Electron. Syst.,2011,47(4), pp.3026-3039.
    [16]Bernhard, Bickert. Estimation of Doppler centroid in DBS processing and itsapplication in real-time SW on forward looking airborne radar[C]. in Proc. onEuSAR2012–9th Euro. Conf. on SAR,2012, Nurnberg, Germany, pp.372-375.
    [17]Farrell J., Barth M.. The global positioning system and inertial navigation[M]. NY:McGraw Hill,1999.
    [18]李跃.导航与定位-信息化战争的北斗星[M].北京:国防工业出版社,2008.
    [19]Curlander J. C., McDonoughm R. N.. Synthetic aperture radar: system and signalprocessing[M]. John Wiley&Sons Inc,1991.
    [20]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [1] Cerutti-Maori D., Klare J., Brenner A. R., et al. Wide area traffic monitoring withthe SAR/GMTI system PAMIR[J]. IEEE Trans. Geosc. Remote Sens.,2008,46(10),pp.3019-3030.
    [2] Zou B., Zhen D., Liang D.. Research on Scan-GMTI technology of airborne MIMOradar based on STAP[C]. ICSP2010Proc., Beijing,2010, pp.1973-1976.
    [3]刘凡,赵凤军,邓云凯等.一种基于最小二乘直线拟合的高分辨率DBS成像算法[J].电子与信息学报,2011,33(4), pp.787-791.
    [4] Stimson G. W.. Introduction to airborne radar[M]. Rayleigh, NC: SciTechPublishing,1998.
    [5] Cumming I. G., Wong F. H.. Digital processing of synthetic aperture radar data:algorithms and implementation[M]. Norwood, MA: Artech House,2004.
    [6]刘寅.扫描方式下DBS子图像拼接算法[J].雷达科学与技术,2005,3(2),pp.91-95.
    [7]胡瑞贤,王彤,保铮等.一种基于惯导信息的多普勒波束锐化图像拼接算法[J].电子与信息学报,2012,34(6), pp.1337-1343.
    [8]李燕平,邢孟道,保铮.宽带机载扫描雷达的DBS成像和动目标检测[J].西安电子科技大学学报,2006,33(1), pp.116-120,128.
    [9] Long T., Lu Z., Ding Z. G., et al. A DBS Doppler centroid estimation algorithmbased on entropy minimization[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(10):pp.3703-3712.
    [10]Zhu S., Liao G. S., Qu Y., et al.. Unambiguous Doppler centroid estimationapproach for synthetic aperture radar data based upon compressed signalmagnitude[J]. IET Radar Sonar Navig.2011,5(3), pp.341-348.
    [11]Li X., Liu G. S., Ni J. L.. Autofocusing of ISAR imaging based on entropyminimization[J]. IEEE Trans. Aerosp. Electron. Syst.,1999,35(4), pp.1240-1251.
    [1] Cerutti-Maori D., Klare J., Brenner A. R., et al. Wide area traffic monitoring withthe SAR/GMTI system PAMIR[J]. IEEE Trans. Geosc. Remote Sens.,2008,46(10),pp.3019-3030.
    [2] Goulding M. M., Stonehouse A., Nejman A.. AESA based dual channel GMTI:mode design&flight trials[C]. in Proc. of2011IEEE CIE Inter. Conf. On Radar,2011, Xi’an, China, pp.917-921.
    [3]李燕平,邢孟道,保铮.宽带机载扫描雷达的DBS成像和动目标检测[J].西安电子科技大学学报,2006,33(1), pp.116-120,128.
    [4] Yadin E.. A performance evaluation mode for a two port interferometerSAR-MTI[C]. in Proc.1996IEEE National Radar Conf., Michigan,1998,pp.261-266.
    [5]包敏,郭睿,李亚超等.基于实测数据的广域三通道SCANSAR-GMTI算法[J].系统工程与电子技术,2011,33(9), pp.1963-1969.
    [6] Cerutti-Maori D., Sikaneta I., Gierull C. H.. Optimum SAR/GMTI processing andits application to the radar satellite RADARSAT-2for traffic monitoring[J]. IEEETrans. Geosci. Remote Sens.,2012,50(10), pp.3868-3881.
    [7] Xing M., Jiang X., Wu R., et al. Motion compensation for UAV SAR based on rawradar data[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(8), pp.2870-2883.
    [8] Zhang L., Qiao Z., Xing M., et al. A robust motion compensation approach forUAV SAR imagery[J]. IEEE Trans. Geosci. Remote Sens.,2012,50(8), pp.3202-3218.
    [9]胡瑞贤,王彤,保铮.基于多波位杂波的通道相位误差估计方法[J].系统工程与电子技术,2012,34(9), pp.35-42.
    [10]Wang X., Hong J., Hu J. W., et al. Analysis and modeling of baseline errors ofairborne ATI-SAR[C]. in Proc. on EuSAR2012–9th Euro. Conf. on SAR,2012,Nurnberg, Germany, pp.543-546.
    [11]Bernhard, Bickert. Estimation of Doppler centroid in DBS processing and itsapplication in real-time SW on forward looking airborne radar[C]. in Proc. onEuSAR2012–9th Euro. Conf. on SAR,2012, Nurnberg, Germany, pp.372-375.
    [12]Long T., Lu Z., Ding Z. G., et al. A DBS Doppler centroid estimation algorithmbased on entropy minimization[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(10):pp.3703-3712.
    [13]胡瑞贤,王彤,保铮等.一种基于惯导信息的多普勒波束锐化图像拼接算法[J].电子与信息学报,2012,34(6), pp.1337-1343.
    [14]刘凡,赵凤军,邓云凯等.一种基于最小二乘直线拟合的高分辨率DBS成像算法[J].电子与信息学报,2011,33(4), pp.787-791.
    [15]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [16]贲德,韦传安,林幼权.机载雷达技术[M].北京:电子工业出版社,2006.
    [17]Guerci J. R.. Space-time adaptive processing for radar[M]. Norwood, MA: ArtechHouse,2006.
    [18]Fienup J. R.. Detection moving targets in SAR imagery by focusing[J]. IEEE Trans.Aerosp. Electron. Syst.,2001,37(3), pp.794-809.
    [1] Davis M. E., Himed B.. L-band wide area surveillance radar design alternatives[C].Inter. Radar Conf.,2003, Australia, pp.554-559.
    [2] Cerutti-Maori D., Klare J., Brenner A. R., et al. Wide area traffic monitoring withthe SAR/GMTI system PAMIR[J]. IEEE Trans. Geosc. Remote Sens.,2008,46(10),pp.3019-3030.
    [3]胡瑞贤,王彤,保铮.扫描GMTI运动目标精确定位方法[J].系统工程与电子技术,已录用,待发表.
    [4] Yan H., Li F., Deng Y., et al. Ground moving target extraction in a multichannelwide-area surveillance SAR/GMTI system via the relaxed PCP[J]. IEEE Geosc.Remote Sens. Lett.,2013,10(3): pp.617-621.
    [5] Yadin E.. A performance evaluation mode for a two port interferometerSAR-MTI[C]. in Proc. IEEE Nat. Radar Conf.,1996, Michigan, pp.261-266.
    [6] Guerci J. R., Space-time adaptive processing for radar[M]. Norwood, MA: ArtechHouse,2006.
    [7] Gierull C. H.. Statistical analysis of multilook SAR interferograms for CFARdetection of ground moving targets[J]. IEEE Trans. Geosci Remote Sens.,2004,42(4), pp.691-701.
    [8] Wang G., Xia X., Chen V. C.. Dual-speed SAR imaging of moving targets[J]. IEEETrans. Aerosp. Electron. Syst.,2006,42(1), pp.368-379.
    [9] Drago evi M. V., Chiu S.. Space-based motion estimators—evaluation with thefirst RADARSAT-2MODEX data[J]. IEEE Geosci Remote Sens. Lett.,2009,6(3),pp.438-442.
    [10]Baumgartner S. V., Krieger G.. Fast GMTI algorithm for traffic monitoring basedon a priori knowledge[J]. IEEE Trans. Geosci Remote Sens.,2012,50(11), pp.4626-4641.
    [11]Ender. J. H. G.. The airborne experimental multi-channel SAR system AER-II[C].in Proc. EUSAR Conf., K nigswinter, Germany,1996, pp.49-52.
    [12]A. Moccia, and G. Rufino.. Spaceborne along-track SAR interferometry:performance analysis and mission scenarios[J]. IEEE Trans. Aerosp. Electron. Syst.,2001,37(1), pp.199-213.
    [13]Gierull C. H., Sikaneta I. C., Cerutti-Maori D.. Two-step detector forRADARSAT-2’s experimental GMTI mode[J]. IEEE Trans. Geosci. Remote Sens.,2013,51(1), pp.436-454.
    [14]Chen C. W.. Performance assessment of along-track interferometry for detectingground moving targets[C]. in Proc. of IEEE National Radar Conf.,2004, pp.99-104.
    [15]Seymour M. S., Cumming I. G.. Maximum likelihood estimation for SARinterferometry[C]. in Proc. IGARSS, Pasadena, CA,1994, pp.2272-2257.
    [16]Richards M. A.. Fundamentals of radar signal processing[M]. New York:McGraw-Hill,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700