用户名: 密码: 验证码:
分布式导航系统容错机制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为使分布式导航系统在GPS故障或信号中断时能够继续完成导航任务并完成作战计划,有必要提高分布式导航系统的容灾容错性能,即研究分布式容错导航仿真平台,导航信息存储数据结构、导航节点间通信协议、分布式导航系统的容错算法四个方面的容错关键技术。由于容错机制的本质是在系统出现故障时各功能单元继续执行所要求功能的能力,在分布式导航系统中以通过GPS得到的定位数据为基础进行导航,因此对系统中GPS定位数据进行有效管理和合理利用,能够完成在GPS信号中断状况下快速恢复分布式导航系统各节点的通信功能和导航功能,论文都是围绕如何运用分布式导航系统中各节点既有的GPS“残迹”交互信息和寻路导航展开论述。本文主要从分布式导航系统容错机制中容错系统仿真平台和容错算法两个方面进行深入研究和改进,以满足分布式导航系统的容错要求。论文主要研究内容如下:
     1.运用兵棋推演系统进行分布式导航系统容错算法仿真。由于传统的兵棋推演系统采用人工驱动方式,即对象间的信息交互完全由人工交互实现,需要完成的工作量巨大,导致系统中的若干干扰因素都被忽略,在对容错导航算法进行仿真验证时将严重失真,因此将消息驱动机制引入兵棋推演系统的系统结构与功能模块中,解决兵棋系统驱动的自动化问题和对象间的通信问题,通过设计人机接口模块、消息驱动模块、棋盘和棋子的结构,在单位棋子节点中引入导航数据结构和属性,可以加载本文提出的基于GPS“残迹”的容错导航算法;同时,添加大量的仿真测试接口,以便测试不同的导航算法。经与传统兵棋系统仿真测试进行比较,完成相似任务的时耗降低50%左右,人工干预次数仅是传统系统的25%,CPU负载率降低了15%。
     2.研究移动自组织网络中的对等节点容错导航算法(GVDN)。在故障时系统中各节点将脱离GPS信号,因无法继续完成导航,造成迷航等问题,而移动自组织网络能够在不依托固定通讯设施的基础上,支持节点动态的通信,并能较好控制流量,因此提出一种基于移动自组织网络的对等节点容错导航算法,以解决分布式导航系统中的容错问题。该算法以故障前的GPS“残迹”数据为基础,设计“残迹”存储的数据结构、系容错通信协议、电子地图接口、人机接口和对等节点交互协议和算法的流程。在“残迹”采集与处理模块应用朴素贝叶斯分类法对已获得“残迹”和关键点进行分类、在道路预测与评估模块中采用智能曲线识别算法对道路或可行路径的相似性进行判断。经兵棋推演系统仿真试验,协议具有较强的抗死锁能力,平均通信信道占用率均未达到峰值,平均内存占用量控制在10M以内,容错过程中时耗和CPU占用率均有所降低。
     3.研究群组分布式容错导航算法(GFTN)。由于对等节点容错导航算法在节点数量多的大规模分布式导航系统中,虽然算法精度较高,但容易耗尽系统资源,因此,采用群体智能理论来解决系统的全局优化问题,以适应广域分布的群组节点容错导航。针对算法的体系结构、功能模块与数据结构、交互协议、数据包结构等方面进行了设计,本文提出了按地理位置进行残迹存储,改进滑动窗口进行数据转发和利用的方案,解决了单个领航节点能力与群内节点分布广、通信量大的问题;提出了分组蚁群算法,使同组节点尽可能选择相同或相近的同行道路或区域,以解决移动节点数量多与可通行路径少的矛盾;提出了群组内共享信息的方案,解决了导航过程中重复计算的问题。
     4.在GVDN和GFTN算法的验证和仿真试验中,采用反应式Agent体系结构进行仿真,避免了复杂的逻辑推理验证,规定了Agent模型的属性、处理和行动规则,经过测试,Agent模型仿真粒度小,可用性高,可模型大规模虚拟场景,容纳更多的导航对象,在系统性能方面具有稳定和低耗的优势。
It is necessary to improve the disaster recovery and fault tolerance of the distributednavigation system in order to continue to complete the navigation task and the operations planof the distributed navigation system when the CPS failure or signal interruption happens. Thatis to study the key aspects of fault tolerant which has four aspects: the simulation platform ofdistributed fault tolerant navigation, the data structure of navigation information storage, thecommunication protocol of navigation node, and the fault-tolerant algorithms of distributednavigation system. Because the nature of the fault tolerance mechanisms is the ability tocontinue to perform the required function when there is failure in system and the ability tonavigate based on positioning data acquired by GPS in distributed navigation system,effective management and rational utilization of the GPS positioning data can immediatelyrestore the communication and navigation function of each node in the distributed navigationsystem when the GPS signal is interrupted.
     This article is center on how to use the existing GPS ‘vestiges’ in the distributednavigation system to communicate information and path finding navigation. The essay mainlygives a deep research and improvement of the simulation platform of distributed fault tolerantnavigation and the fault-tolerant algorithms of the distributed navigation system, in order tomeet the requirements of the fault-tolerant distributed navigation system. The main researchcontent of the paper is as follows:
     1.Using the war-game system to simulate the distributed navigation system fault-tolerantalgorithm. As the traditional war-game system used the artificial driving mode, that is thecommunication interaction of the objects is all realized by the artificial driving mode. Thetraditional war-game system needs to complete a large amount of work which leads to theignorance of the interference factors in the system and a serious distortion when thesimulation verification of the fault-tolerant navigation algorithm is done. So we introduce thismessage-driven mechanism into the war-game system structure and function modules whichcan solve the problem of driving automated and communication between the objects. Also thepaper designs the human-machine interface module, message-driven module and the structureof board and pieces. The unit pawn nodes are introduced in the structure and properties of thenavigation data to adapt to the fault-tolerant algorithm based on the GPS ‘remnants’;
     At the same time large amount of the simulation test interfaces are added in order to testdifferent navigation algorithm. Using the war-game system simulation tests the time of taskcomplement reduced about50%, artificial intervention times is25%compared with thetraditional one and the CPU load is reduced by15%.
     2.Study the node fault-tolerant navigation algorithm in the mobile ad network(GVDN).Eachnode in the system will separate from GPS signal in the event of fault. Trek and otherproblems will appear without the continuing the navigation. And also the mobile and hocnetwork can support the communication of node dynamic without depending on the fixedcommunication facilities. It also can control the flow. So present a fault-tolerant navigationalgorithm based mobile ad hoc networks, peer-to-peer node, in order to solve the problem offault-tolerant distributed navigation system. The algorithm based on the GPS ‘vestiges’ databefore the fault this algorithm designs the data structure of ‘remnants’ storing, systemfault-tolerant communication protocol, the electric map interface, man-machine interfaces,and peer node interaction protocols and give the algorithm procrsses. In’vestiges’ collectionand the processing section this algorithm uses na ve Bayesian classification to classify the‘vestiges’ and the key point and in the road predict ang assess section the algorithm uses theintelligent curve recognition algorithm to judge the similarity of the road or the proper road.Though the war game system simulation test the agreement has a strong anti-deadlock ability,the average communication channel occupancy rate doesn’t reach the peak and the averageamount of memory usage is controlled within10M.And also consumption and CPUutilization rate are decreased.
     3.Study the group distributed fault-tolerant navigation algorithm(GFTN). Because thenode fault-tolerant navigation algorithm is in the large-scale distributed navigation systemwhich has a large number of nodes, the swarm intelligence theory is used to sole the globaloptimization problems of the system in order to adapt group node fault-tolerant navigation ofdistribution group, though the algorithm is higher precision it is easy to run out of systemresources. Based on the design for the architecture, the functional modules and the datastructures, the interaction protocols and the packet structure of the algorithm, this article putsforward the storage of the remnants by the location, improves the sliding window to forwardand use the datas, using the datas and solving the problem of single pilot node capacity,widely distributed notes in the group and the large communication capacity. It puts forwardthe packet ant colony algorithm which makes the nodes of the same set choose the same orsimilar peer-road or regional as much as possible so that the contradiction of more mobilenodes and fewer passable path. It also comes up with the program of sharing information within the group and solves the problems of double counting in the navigation process.
     4.In the simulation of the simulation of the GVDN and GFTN algorithm, the reactiveAgent system structure is used to simulate, which avoids the complex logic verification andsets the attributes of agent model, processing and action rules. The test shows that the agentmodel simulation efforts are small, the availability is high, a large scale virtual scenes can besimulated, more navigation objects can be contained more and in the system performance ithas the advantage of stability and low consumption.
引文
[1] H.G. Zhang, H.Y. Zhang.180Fault Tolerant navigation system for aircraft landing[J].Control Engineering Practice.1994.2(5):833-836P.
    [2] T Xu, J Chudley, R Sutton. A fault tolerant multi-sensor navigation system for anunmanned surface vehicle[J]. Fault Detection, Supervision and Safety of Technical Processes.2007.1(3):1503-1508p.
    [3] H. Y. Zhang, C. W. Chan, K. C. Cheung, Y. J. Ye. Fuzzy artmap neural network and itsapplication to fault diagnosis of navigation systems[J]. Automatica.2001.37(7):1065-1070p.
    [4] Wang Liduan, Zhai Chuanrun, Jin Wenrui, Zhan Xingqun. Enhanced GPS MeasurementsSimulation for Space-oriented Navigation System Design[J]. Chinese Journal of Aeronautics,2010.23(4):438-446p.
    [5] Shesheng Gao, Yongmin Zhong, Xueyuan Zhang, Bijan Shirinzadeh. Multi-sensor optimaldata fusion for INS/GPS/SAR integrated navigation system[J]. Aerospace Science andTechnology,2009.13(4):232-237p.
    [6] Bao Rong Chang, Hsiu Fen Tsai, Chung-Ping Young. Intelligent data fusion system forpredicting vehicle collision warning using vision/GPS sensing[J]. Expert Systems withApplications.2010.37(3):2439-2450p.
    [7] Aboelmagd Noureldin, Ahmed El-Shafie, Mohamed Bayoumi. GPS/INS integrationutilizing dynamic neural networks for vehicular navigation[J]. Information Fusion.2011.12(1):48-57.
    [8] Frederic Lehmann. Deterministic particle filtering for GPS navigation in the presence ofmultipath[J]. AEU-International Journal of Electronics and Communications.2009.63(11):939-949p.
    [9] Wang Liduan, Zhai Chuanrun, Jin Wenrui, Zhan Xingqun. Enhanced GPS MeasurementsSimulation for Space-oriented Navigation System Design[J]. Chinese Journal of Aeronautics.2010.23(4):438-446p.
    [10] Toru Ishikawa, Hiromichi Fujiwara, Osamu Imai, Atsuyuki Okabe. Wayfinding with aGPS-based mobile navigation system: A comparison with maps and direct experience [J].Journal of Environmental Psychology.2008.8(1):74-82p.
    [11] Frank Ekpenyong, Dominic Palmer-Brown, Allan Brimicombe. Extracting roadinformation from recorded GPS data using snap-drift neural network[J]. Neurocomputing.2009.73(1-3):24-36.
    [12] Kai-Wei Chiang, Yun-Wen Huang. An intelligent navigator for seamless INS/GPSintegrated land vehicle navigation applications[J]. Applied Soft Computing.2008.8(1):722-733p.
    [13] Ma Haibo, Zhang Liguo, Chen Yangzhou. Recurrent neural network for vehicledead-reckoning[J]. Journal of Systems Engineering and Electronics.2008.19(2):351-355.
    [14] Shinichi Minamimoto, Sae Fujii, Hirozumi Yamaguchi, Teruo Higashino. Mapestimation using GPS-equipped mobile wireless nodes[J]. Pervasive and Mobile Computing.2010.6(6):623-641.
    [15] Dogan Ibrahim. Design of a GPS data logger device with street-level map interface[J].Advances in Engineering Software.2010.41(6):859-864.
    [16] Ahmet Ibrahim, Dogan Ibrahim. Real-time GPS based outdoor WiFi localization systemwith map display[J]. Advances in Engineering Software.2010.41(9):1080-1086.
    [17] Wang Yaonan, Yang Yimin, Yuan Xiaofang, Zuo Yi, et al. Autonomous mobile robotnavigation system designed in dynamic environment based on transferable belief model[J].Measurement.2011.4(8):1389-1405p.
    [18] Matt Knudson, Kagan Tumer. Adaptive navigation for autonomous robots[J]. Roboticsand Autonomous Systems.2011.59(6):410-420p.
    [19] Huili Yu, Randy Beard, Jeffrey Byrne. Vision-based navigation frame mapping andplanning for collision avoidance for miniature air vehicles[J]. Control Engineering Practice.2010.18(7):824-836.
    [20] Ching-Torng Lin, Hsin-Chieh Wu, Ting-Yen Chien. Effects of e-map format andsub-windows on driving performance and glance behavior when using an in-vehiclenavigation system[J]. International Journal of Industrial Ergonomics.2010.40(3):330-336.
    [21] Hsin-Chang Yang, Han-Wei Hsiao, Chung-Hong Lee. Multilingual document mining andnavigation using self-organizing maps[J]. Information Processing&Management,2010.12(1):433-441.
    [22] Meng Wang, James N.K. Liu. Fuzzy logic-based real-time robot navigation in unknownenvironment with dead ends[J]. Robotics and Autonomous Systems.2008.56(7):625-643.
    [23] Shiaw-Tsyr Uang, Sheue-Ling Hwang. Effects on driving behavior of congestioninformation and of scale of in-vehicle navigation systems[J]. Transportation Research Part C:Emerging Technologies.2003.11(6):423-438.
    [24] Frank Ekpenyong, Dominic Palmer-Brown, Allan Brimicombe. Extracting roadinformation from recorded GPS data using snap-drift neural network [J]. Neurocomputing,2009.73(1):24-36.
    [25] Aboelmagd Noureldin, Ahmed El-Shafie, Mohamed Bayoumi. GPS/INS integrationutilizing dynamic neural networks for vehicular navigation [J]. Information Fusion,2011.12(1):48-57.
    [26] Dogan Ibrahim. Design of a GPS data logger device with street-level map interfaceOriginal Research Article Advances in Engineering Software.2010.41(6):859-864.
    [27] Shesheng Gao, Yongmin Zhong, Xueyuan Zhang, et al. Multi-sensor optimal data fusionfor INS/GPS/SAR integrated navigation system [J]. Aerospace Science and Technology.2009.13(4-5):232-237p.
    [28] Aboelmagd Noureldin, Ahmed El-Shafie, Mahmoud Reda Taha. Optimizing neuro-fuzzymodules for data fusion of vehicular navigation systems using temporal cross-validation [J].Engineering Applications of Artificial Intelligence.2007.20(1):49-61p.
    [29] W. Y. Ochieng, K Sauer. Urban road transport navigation: performance of the globalpositioning system after selective availability[J]. Transportation Research Part C: EmergingTechnologies.2002.10(3):171-187.
    [30]岳亚洲,高关根,党进,等.基于近距无线电导航的容错组合导航系统[J].计算机测量与控制.2009.17(9):1786-1789p.
    [31]李富荣,丁宏升.组合导航系统的容错技术发展综述[J].航空计算技术.2011.41(1):131-134.
    [32]杨静,张洪钺,朱士青.基于伪距、伪距率的GPS/SINS容错组合导航系统[J].航天控制.2003.(3):17-25p.
    [33]刘金鑫,黄德鸣.一种容错的导航计算机系统设计[J].哈尔滨工程大学学报.1999.20(3):33-37.
    [34]刘承香,孙枫,曹洁.SINS/GPS/DVL组合导航系统的容错研究[J].哈尔滨工程大学学报.2003.24(2):157-160p.
    [35]王荣颖,高敬东,卞鸿巍.容错组合导航系统信息补偿研究[J].弹箭与制导学报.2005.25(4):682-685p.
    [36]王其,徐晓苏.系统容错技术在水下航行器组合导航系统中的应用[J].中国惯性技术学报.2008.16(2):167-170p.
    [37]徐景硕,王维江,高扬.容错多传感器组合导航系统发展综述[J].航空电子技术.2006.37(9):25-29p.
    [38]王社伟,张洪钺,陶军.基于半马尔可夫过程的容错导航系统可靠性分析[J].航天控制.2006.24(2):84-87p.
    [39]张强,孙尧,万磊,等.低成本GPS/DR容错组合导航系统设计[J].中国惯性技术学报.2010.18(4):455-461p.
    [40]张亚崇,陆志东,雷宏杰.实时分布式容错综合导航仿真系统技术研究[J].弹箭与制导学报.2009.29(6):25-28.
    [41]陈兵,任建辉,王文辉.基于状态检验的捷联惯性/星光/卫星组合导航容错技术研究[J].战术导弹控制技术.2011.28(1):1-4p.
    [42] Therese Keane. Combat modelling with partial differential equations[J]. AppliedMathematical Modelling.2011.35(6):2723-2735p.
    [43] Alex J. Ryan. Military Applications of Complex Systems[J]. Philosophy of ComplexSystems.2011.37(1):723-780p.
    [44] Dale F. Cooper, Jonathan Klein. Board wargames for decision making research[J].European Journal of Operational Research.1980.5(1):36-41p.
    [45] S. Ramgopal, B.T. Vikram Kumar, N.C. Shivaprakash, R. Vasudevan. Instructional aidfor tactical wargame model[J]. Mathematical and Computer Modelling.1988.11(1):689-692p.
    [46] Ibrahim Cil, Murat Mala. A multi-agent architecture for modelling and simulation ofsmall military unit combat in asymmetric warfare[J]. Expert Systems with Applications.2010.37(2):1331-1343p.
    [47] Reiner K Huber. On current issues in defence systems analysis and combat modelling[J].Omega.1985.13(2):95-106.
    [48]杨俊强,杜佳.支持计划拟制的兵棋系统军事需求分析[J].系统工程与电子技术.2010.32(7):1145-1148.
    [49]谭树人,张茂军,程钢,娄静涛.增强现实电子沙盘及关键技术研究[J].系统仿真学报.2007.19(20):4727-4730.
    [50]杨南征.虚拟演兵:兵棋、作战模拟与仿真[M].北京:解放军出版社,2007.
    [51]岳庆来,张明智.战场通信网络消息处理模型研究[J].指挥控制与仿真.2008.30(4):52-55.
    [52]余小涛,李德华,潘莹.兵棋地图快速数字化算法的研究与实现[J].计算机与数字工程.2010.38(11):52-55.
    [53]韩志军,柳少军,唐宇波等.计算机兵棋推演系统研究[J].计算机仿真.2011.28(4):10-12.
    [54]张柯,邱晓刚,彭春光等.分布仿真实验管理系统的设计与实现[J].系统仿真学报,2008,20(24):6627-6630.
    [55]郭大伟,苏喜生.后勤兵棋推演方法设计初探[J].军事经济学院学报.2010.17(2):31-32.
    [56]彭春,鞠儒生,杨建池等.现代兵棋推演技术分析[J].系统仿真学报.2009.21(11):97-100.
    [57]马亚明,张亚军,张江水.支持HLA的战场态势仿真系统设计与实现[J].计算机工程.2009.35(4):265-270.
    [58]杨克巍,王正元,陈志诚,等.基于半自治Agent的CGF建模及应用研究[J].系统仿真学报.2005.17(4):997-1000.
    [59]赵宏宇,宋华文,李德峰.三维战场环境仿真结构研究[J].指挥技术学院学报.2001.12(2):5-9.
    [60]刘秀罗,邱晓刚,黄柯棣.CGF建模的相关标准研究[J].计算机工程与应用.2001.(11):8-10.
    [61]孙国兵,黄金杰,高雅娟.战场环境元模型层次体系研究[J].计算机科学.2011.38(3):175-178.
    [62]孙国兵,黄金杰,刘飞.基于本体的战场环境仿真概念模型[J].计算机科学.2011.38(2):214-217.
    [63]冯俊杰,孙晓鹏,李翠芳.基于UML的虚拟战场环境的设计与实现[J].计算机工程与设计.2010.31(22):4920-4923.
    [64]李永强,徐克虎,孙成松.基于Agent的坦克分队CGF中的通讯机制研究[J].计算机仿真.2005.22(5):31-34.
    [65]王智杰,邱晓刚,李革.CGF地形数据库格式研究[J].计算机仿真.2004.21(9):4-6.
    [66]韩志军,钱保成,王润岗.分队战术训练仿真系统CGF技术[J].火力与指挥控制.2004.30(S8):194-196.
    [67]董志明,王晖,郭齐胜.适用于CGF的战场环境数据库模型设计[J].计算机工程与应用.2004.(36):186-189p.
    [68]杨伦,彭春光,黄健等.兵棋推演中地形量化算法研究与实现[J].计算机仿真.2008.25(9):96-99.
    [69]马耀飞,龚光红,彭晓源等.计算机生成兵力中的模型管理.系统仿真学报.2005.17(6):1303-1306p.
    [70]张武森,李刚,刘兴堂.地空导弹计算机生成兵力地理环境模型的研究[J].计算机工程与应用.2003.(11):213-216.
    [71]林新,王江云,王行仁等.基于HLA的计算机生成兵力研究[J].系统仿真学报.2000.12(5):478-481.
    [72]郭齐胜,杨立功,徐如燕.基于HLA的聚合级CGF初探[J].计算机工程与应用.2001.(19):41-43.
    [73]干哲,汤晓安,李欢.面向服务的战场环境保障信息集成框架[J].系统仿真学报.2010.22(5):1126-1130.
    [74]赵定海,黄玺瑛.基于造型库的分布式三位虚拟战场环境构建[J].系统仿真学报.2008.20(S8):105-108.
    [75]余月,龚光红,丁莹.分布式虚拟战场环境管理器的设计与实现[J].中国体视学与图像分析.2009.14(2):197-201.
    [76]张喜涛,姜呈明.可漫游的虚拟战场环境建模与实现[J].计算机仿真.2006.23(10):189-194.
    [77]刘涛,李学军.大区域虚拟战场环境研究中的数据源模拟[J].装备指挥技术学院学报.2003.14(2):89-92.
    [78]李宁,彭晓源,马继峰,等.虚拟作战战场环境的研究与实现[J].系统仿真学报.2003.15(7):969-973.
    [79]王建宇,周献中.虚拟战场环境生成及关键技术[J].火力与指挥控制.2003.28(5):67-71.
    [80]董志明,郭齐胜,王晖.适用于CGF的战场环境数据库的设计与实现[J].系统仿真学报.2006.18(2):331-335.
    [81]冯炜,邵佳妮,叶修松.虚拟战场地理信息系统数据模型[J].测绘科学.2009.34(s1):124-126.
    [82] R.J. Mullen, D. Monekosso, S. Barman, P. Remagnino. A review of ant algorithms.Expert Systems with Applications.2009.36(6):9608-9617p.
    [83] Xiaoxia Zhang, Lixin Tang. A new hybrid ant colony optimization algorithm for thevehicle routing problem[J]. Pattern Recognition Letters.2009.30(9):848-855p.
    [84] Nattapat Attiratanasunthron, Jittat Fakcharoenphol. A running time analysis of an AntColony Optimization algorithm for shortest paths in directed acyclic graphs[J]. InformationProcessing Letters.2008.105(3):88-92p.
    [85] Keivan Ghoseiri, Behnam Nadjari. An ant colony optimization algorithm for thebi-objective shortest path problem[J]. Applied Soft Computing,2010.14(9):1237-1246p.
    [86] Guan-Zheng TAN, Huan HE, Aaron SLOMAN. Ant Colony System Algorithm forReal-Time Globally Optimal Path Planning of Mobile Robots[J]. Acta Automatica Sinica.2007.32(3):279-285p.
    [87] Jose A. Mocholi, Javier Jaen, Alejandro Catala, Elena Navarro. An emotionally biasedant colony algorithm for pathfinding in games[J]. Expert Systems with Applications.2010.37(7):4921-4927p.
    [88] Thang N. Bui, ThanhVu H. Nguyen, Chirag M. Patel, Kim-Anh T. Phan. An ant-basedalgorithm for coloring graphs[J]. Discrete Applied Mathematics.2008.156(2):190-200p.
    [89] Soheil Ghafurian, Nikbakhsh Javadian. An ant colony algorithm for solving fixeddestination multi-depot multiple traveling salesmen problems[J]. Applied Soft Computing.2011.11(1):1256-1262p.
    [90] Zhilu Wu, Nan Zhao, Guanghui Ren, Taifan Quan. Population declining ant colonyoptimization algorithm and its applications[J]. Expert Systems with Applications.2009.36(3):6276-6281p.
    [91] M.A. Porta Garcia, Oscar Montiel, Oscar Castillo, et al. Path planning for autonomousmobile robot navigation with ant colony optimization and fuzzy cost function evaluationOriginal Research Article Applied Soft Computing.2009.9(3):1102-1110.
    [92] Guan-Zheng TAN, Huan HE, Aaron SLOMAN. Ant Colony System Algorithm forReal-Time Globally Optimal Path Planning of Mobile Robots[J]. Acta Automatica Sinica.2007.33(3):279-285.
    [93]龙栋材,李斌兵.蚂蚁算法在导航系统中的应用研究[J].陕西师范大学学报(自然科学版).2006.34(6):13-16p.
    [94]温惠英,徐建闽.基于改进型蚁群算法的车辆导航路径规划研究[J].公路交通科技.2009.26(1):125-129p.
    [95]陆骏,王小平,曹立明.一种基于蚁群算法的车辆导航系统模拟模型[J].计算机应用与软件.2005.22(4):17-19p.
    [96] Yu Liu, Zheng Qin, Zhewen Shi, Jiang Lu. Center particle swarm optimization [J].Neurocomputing.2007.70(6):672-679.
    [97] Chenggong Zhang, Zhang Yi. Scale-free fully informed particle swarm optimizationalgorithm [J]. Information Sciences. October2011.81(15):4550-4568.
    [98] Junwei Wang, Dingwei Wang. Particle swarm optimization with a leader and followers[J]. Progress in Natural Science.2008.18(10):1437-1443.
    [99] Yang Shi, Hongcheng Liu, Liang Gao, Guohui Zhang. Cellular particle swarmoptimization [J]. Information Sciences.2011.181(20):4460-4493.
    [100] Chi-Yang Tsai, I-Wei Kao. Particle swarm optimization with selective particleregeneration for data clustering [J]. Expert Systems with Applications.2011.38(6):6565-6576.
    [101] Yannis Marinakis, Magdalene Marinaki, Georgios Dounias. A hybrid particle swarmoptimization algorithm for the vehicle routing problem [J].
    [102] Engineering Applications of Artificial Intelligence.2010.23(4):463-472.
    [103] Serkan Kiranyaz, Jenni Pulkkinen, Moncef Gabbouj. Multi-dimensional particle swarmoptimization in dynamic environments [J]. Expert Systems with Applications.2011.38(3):2212-2223.
    [104] Chia-Feng Juang, Chi-Yen Wang. A self-generating fuzzy system with ant and particleswarm cooperative optimization [J]. Expert Systems with Applications.2009.36(3):5362-5370.
    [105]袁赣南,谭佳琳,尹伟伟.基于混合粒子群优化的海底地形辅助导航算法[J].计算机仿真.2010.27(8):122-126.
    [106]于飞,唐小勇,潘洪悦.改进粒子群算法在三维水下导航规划中的应用[J].北京理工大学学报.2010.30(9):1059-1064.
    [107]李学恩,房建成,申功勋.可视化智能融合导航系统[J].中国惯性技术学报.1998.6(4):7-11p.
    [108]史增勇魏武.智能车辆中的INS/GPS组合导航技术[J].微计算机信息.174-176p.
    [109]余洋.基于动态信息的智能导航系统框架及实现[J].计算机测量与控制.2010.18(5):1158-1160p.
    [110]章登鹏,谭彧.巡线导航智能车的路径优化[J].计算机工程.2011.37(1):184-186p.
    [111]孙兵,武穆清,阎啸天.GPS导航系统中的电子地图处理及匹配算法研究[J].数字通信.2009.(10):51-54p.
    [112]李楷,钟耳顺.面向车载导航地图的动态交通信息存储模型[J].计算机工程.2009.35(7):245-246p.
    [113]刘玉宾,高伟,郑晶晶.基于GPS/GIS的车载导航电子地图的研发[J].微计算机信息.2009.25(3):177-179p.
    [114]李挺,杨殿阁,耿华.车辆导航数字地图的蛛式路网模型[J].武汉理工大学学报(交通科学与工程版).2010.34(3):439-442p.
    [115]许伦辉,武小云.导航电子地图中GPS坐标定位的改进算法[J].交通标准化.2010.(4):6-9p.
    [116]陈红英.基于GPRS和GPS的远程电子地图修复系统[J].计算机系统应用.2006.(6):64-67.
    [117]张振辉,崔铁军,姚慧敏.车辆导航系统中地图匹配新算法[J].海洋测绘.2006.26(2):55-58p.
    [118]方钰,何启海.面向移动导航设备的数字地图分级组织与预取策略[J].小型微型计算机系统.2006.27(7):1339-1342p.
    [119]刘召芹,肖成刚,谢彩香.GPS/DR导航中的智能地图匹配方法研究[J].地理空间信息.2006.4(5):64-66p.
    [120]关懿新,刘江宁,吴泉源.基于主题地图的构件库导航系统[J].计算机工程与科学.2006.28(5):41-44p.
    [121]罗静,李舟军.实时车载导航电子地图研究[J].计算机与现代化.2006.(8):12-15p.
    [122]赵凯,杨育红,曲保章.基于位置点匹配的GPS/DR组合导航系统地图匹配算法[J].制导与引信.2003.24(3):22-27p.
    [123]宫雨生,徐爱功.车载GPS/DR/电子地图组合定位导航研究[J].辽宁工程技术大学学报.2005.(4):80-82p.
    [124]丁捷,杨殿阁,颜波,等.汽车导航用电子地图的高效路网模型[J].汽车工程.2003.25(3):232-235p.
    [125]胡丛玮,陈武,赵志弘,等.基于GPS定位的导航地图的转换与纠正方法[J].同济大学学报.2003.31(1):69-72p.
    [126]徐和平,徐德军,钟美.基于电子地图的GPS车辆导航系统研究[J].地理空间信息.2005.3(4):39-41p.
    [127]李凯锋,吕志平,赵冬青,等.导航移动地图服务终端设计[J].地理空间信息.2007.5(5):72-74pp.
    [128]陈永刚,王更生,陈斌.车载地图匹配技术中GPS定位数据的研究[J].工业控制计算机.2006.19(1):61-62p.
    [129]沈斌,蒋昌俊,章昭辉,等.一种基于海量GPS数据的分布式地图匹配系统的设计与实现[D].小型微型计算机系统.2007.28(3):479-481p.
    [130]刘彦挺,吴建平,张鸽.基于长间隔大规模数据的地图匹配算法研究[J].交通运输工程与信息学报.2007.5(2):69-74p.
    [131]沈雪松,刘建业,孙永荣,等.基于多传感器信息融合城市车辆导航定位[J].传感器与微系统.2006.25(1):85-88.
    [132]孙永荣,胡应东,刘建,等.车载导航系统中航向信息融合技术研究[J].数据采集与处理.2010.25(2):239-234p.
    [133]周健,裴福俊,崔平远.组合导航系统的自适应MCMC信息融合算法[J].系统仿真学报.2009.21(16):5120-5123.
    [134]陈则王,袁信.基于证据理论的车辆组合导航系统的信息融合[J].吉林大学学报(信息科学版).2006.24(1):36-41.
    [135]崔平远,郑黎方,裴福俊,等.车载GPS/DR组合导航系统自适应信息融合算法研究[J].计算机测量与控制.2007.15(12):1807-1809.
    [136]张之瑶.基于地图建立的无人地面车路径规划[J].科技导报.2010.28(21):52-58.
    [137]陈和平,黎小琴,顾进广,等.基于矢量地图数据的路径规划算法研究[J].计算机工程与应用.2010.46(19):238-241.
    [138]李云瑞.嵌入式电子地图的实现及路径查询优化[J].电脑知识与技术.2009.5(26):7511-7512.
    [139]唐进君,刘芳.基于路径预测的不确定性推理组合地图匹配算法[J].测绘学报.2010.39(5):546-550.
    [140]黄亮,左小清,张晓晓,等.面向对象的道路信息识别提取分析[J].昆明理工大学学报(理工版).2010.35(6):6-10.
    [141]李永丰,於新国.利用GPS快速采集道路信息系统的研究[J].地理空间信息.2007.5(5):28-29.
    [142]郭志,胡丛玮,袁兆奎.GPS导航路径的实时表示[J].测绘通报.2010.(6):27-30.
    [143]李楷,钟耳顺.面向车载导航地图的动态交通信息存储模型[J].计算机工程.2009.35(7):245-247.
    [144]杨易,谷正气,胡林,等.基于概率决策的车辆导航系统地图匹配算法[J].计算机工程.2006.28(1):897-801.
    [145]应申,李霖,范春波,等.汽车导航系统的地图数据组织[J].测绘信息与工程.2005.29(2):28-30.
    [146]牛立,王景中.GPS导航数据提取的设计与研究[J].微型机与应用.2010.29(1):1-4.
    [147]郑年波,陆锋.导航路网数据改进模型及其组织方法[J].中国公路学报.2011.24(2):96-102.
    [148]杨宜康,林勇,黄永宣,等.车辆自主导航系统的双滤波器模型及其导航算法[J].系统工程与电子技术.2002.24(6):39=42.
    [149]刘友文.基于道路网络特征的车载导航预测匹配模型[J].江南大学学报(自然科学版).2010.9(6):655-657.
    [150]王忠军.GPS车载导航的交互式多模型算法[J].测绘科学技术学报.2009.26(3):170-173.
    [151]刘妍,韩秀峰.导航电子地图增量更新数据模型研究.吉林建筑工程学院学报.2010.27(4):60-62.
    [152]林志勇,孟令奎,唐健.基于多智能主体的动态导航模型研究[J].测绘科学.2007.32(4):93-96.
    [153]李清泉,徐敬海,郑年波,等.基于功能的导航数据模型[J].武汉大学学报·信息科学版.2007.32(3):266-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700