用户名: 密码: 验证码:
光纤捷联惯导及其卫星深组合导航算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捷联惯性导航系统可全天候自主地实时定位,全球导航卫星系统虽然依赖卫星信号实现定位,但是其精度不随时间发散,所以利用二者优势互补的SINS/GNSS组合导航系统在性能上有很大的提升,尤其是在SINS/GNSS深组合导航系统中,不仅提高了系统的定位精度,长时间工作能力,也使系统在弱信号和高动态的环境下依然能够保持较高精度的工作。本文针对SINS/GPS深组合导航系统中的深组合系统闭环算法和组合导航数据融合算法进行了以下讨论和研究。
     分析了光纤捷联惯导系统的导航方程,并且根据SINS/GPS深组合导航系统的特点,选取地球系导航方程作为系统中实际应用的导航方程。分析了角速度敏感元件即光纤陀螺对SINS导航精度的影响,并对相应结果做了仿真验证。
     详细分析了SINS/GPS深组合系统的组成和结构,对各种不同结构的深组合方式进行了对比,并在此基础上给出了各种深组合结构的数学模型,总结了深组合系统的定义,给出了将联邦式系统列为深组合系统的理由。
     分析了SINS/GPS组合导航系统的可观测性。因为深组合导航系统中的观测模型十分复杂,为了避免在可观测性分析中引入该复杂模型,论证了在观测矩阵非零列构成的矩阵列满秩时系统的可观测性与观测矩阵对应位置为单位阵时相同,如此,就可以将系统的状态矩阵脱离出观测矩阵而进行单独分析。
     研究了SINS辅助GPS接收机在高动态条件下的弱信号捕获的问题。为了有效捕获弱GPS信号,采用了40ms的相干积分。而为了去除导航数据位对长相干时间的影响,采用了循环去除和翻转的方法。为了捕获动态信号,利用SINS短期输出相对精度高的特点,在同一个相干积分时间内采用多个多普勒估计值共同剥除载波,有效降低了因载体动态造成的捕获信号能量损失,缩小了相干积分内平均多普勒误差与搜索范围中心频率的距离,提高了高动态条件下对弱信号的捕获效率。
     研究了SINS/GPS深组合系统中惯性器件噪声统计特性未知的条件下的导航算法。在此情况下,首先利用极大似然准则,构造含有系统噪声统计特性的对数似然函数,进而利用最大期望算法,将噪声估计问题转化为对数似然函数数学期望极大化问题,得到带次优递推噪声估计器的自适应SPKF算法。使导航算法在其为载体提供导航信息的同时,不断的在线估计惯性器件的误差方差,进而对系统进行修正和更新。
     研究了SINS/GPS深组合系统中状态存在突变的情况下的导航算法,利用矩阵对算法的滤波记忆长度进行限制,并且对矩阵进行自适应的调整,得到带自适应渐消矩阵的扩维UKF算法,有效抑制可能发生的系统状态突变对系统带来的不利影响。根据正交性设计自适应渐消矩阵,并根据SINS/GPS组合导航的特点简化计算,再利用渐消矩阵修正算法中的相应变量,使SINS/GPS组合导航能够抵抗系统状态的突变,并且该算法也能在系统噪声统计特性不确定的情况下提高导航精度。
Strapdown inertial navigation system(SINS) which is self-contained can implementreal-time positioning in all weathers while the accuracy of the global navigation satellitesystem(GNSS) is independent of time although it have to rely on satellite signals to achievepositioning. Therefore, by integrating these two systems, the performance can be greatlyimproved. Specifically, the ultra-tight SINS/GPS integration can not only improve positioningaccuracy in the long run but also maintain high precision in situations of weak signals or highdynamic. This dissertation focuses on the closed loop algorithm and data fusion algorithm inultra-tight SINS/GPS integration system conducted the following discussions and researches.
     Firstly, the dissertation analyzes the navigation equations of fiber optical SINS. Thenavigation equations in the earth centered frame are selected based on the features of theultra-tight SINS/GPS integration system. The influences of fiber optical gyroscope on theaccuracy of SINS are also analyzed. Related simulation results are given in detail.
     Secondly, the dissertation elaborately explores the composition and structure of theultra-tight SINS/GPS integration system and compares systems in different deep integrations.Based on that, the mathematical models of different deep integrations are illustrated.Definition of deep integration system is concluded, and the reasons of Federal system areincluded in deep integration are provided.
     Thirdly, the observability of the SINS/GPS integrated navigation system has beenstudied. Due to the complexity of observability model in deep integration system, it ispreferred that the model is not involved in observability analysis. The dissertationdemonstrates the effects of observability matrix on observation matrix. Therefore, the systemobservability when the corresponding position of observation matrix is unit matrix areanalyzed and the system abservability when transform the observation matrix to the unitmatrix are analyzed, separately.
     Fourthly, the weak signal acquisition issue when SINS aids GPS receiver in highdynamic situations is studied. In order to efficiently capture GPS signal, the40ms coherentintegration is adopted. In order to break through the navigation data to the long coherent time,loop remove and flip method are adopted. The data synchronous issues in SINS/GPS deepintegrated system are studied by providing the same frenquency data to receiver channels, andforcing the outputs of each channel and the represent system state are strictly the same in time.Moreover, In order to finish the relative of signals, stripped the C/A code in receiver by adopting changed C/A code phrase in the internal of each channels.
     Fifthly, the navigation algorithm for ultra-tight SINS/GPS integrated system withunknown inertial sensors noise statistical properties is researched. First of all, the logarithmiclikelihood function containing systematic noise statistical properties is designed based on themaximum Likelihood criteria. Then by applying maximum expectations algorithm, the noiseestimation issue is turned into problem of maximizing the expectation of logarithmiclikelihood function. This leads to the adaptive sigma-points Kalman filter(SPKF) algorithm,which provides navigation information and estimates inertial sensor error variance on-line atthe same time. This further corrects and updates the integrated navigation system.
     Lastly, the dissertation studies the situation when sudden changes exist in ultra-tightSINS/GPS integrated system. Based on the restrain of matrix on the memory length offiltering algorithm and adjusting matrix adaptively, the augmented UKF with adaptive fadingmatrix can be obtained. This algorithm can effectively inhibit the adverse effects of systemstates mutation. The adaptive fading matrix is designed according to the orthogonality. Thecalculation is simplified based on the features of SINS/GPS integrated navigation system. Thefading matrix is applied to correct the corresponding variables, which makes the SINS/GPSintegrated navigation system immune to system states mutation. This algorithm can alsoimprove navigation accuracy when systematic noises statistical characteristics are uncertain.
引文
[1]以光衢,等.惯性导航原理.北京:航空工业出版社,1987.
    [2]武元新.对偶四元数导航算法与非线性高斯滤波研究.国防科学技术大学博士学位论文,2005.
    [3]秦永元.惯性导航.科学出版社.北京.2006.
    [4]刘洁瑜,余志勇,汪立新,等.导弹惯性制导技术.西北工业大学出版社.西安.2010.
    [5]张天光,王秀萍,王丽霞等译.捷联惯性导航技术.国防工业出版社.北京:2007.
    [6]陈哲.捷联惯导系统原理.宇航出版社.北京:1986.
    [7] Paturel, Y., Rumoroso, V., Chapelon, A., Honthaas, J. MARINS, the First FOGNavigation System for Submarines. Symposium Gyro Technology2006.Stuttgart,Germany,2006.17.0-17.11.
    [8] Bortz, J.E. A New Mathematical Formulation for Strapdown Inertial Navigation[J].Aerospace and Electronic Systems, IEEE Transactions on.1971. AES-7, Issue:1:61-66.
    [9] Miller, R.B. A New Strandown Attitude Algorithms. Journal of Guidance, Control andDynamies,1983.6(4):287-291.
    [10] Lee, J.G., Yoon, Y.J. Extension of Strapdown Attitude Algorithm for High-FrequeneyBase Motion. Journal of Guidance, Control and Dynamies,1990.13(4):738-743.
    [11] Ignagni,M.B. Efficient Class of Optimized Coning Compensation Algoritllms. Journalof Guidance, Control and Dynamies,1996.19(2):424-429.
    [12] Ignagni, M.B. Optimal Strapdown Attitude Integration Algorithlns. Journal of Guidance,Control and Dynamies,1990.13(2):363-369.
    [13] Jiang, Y.F., Lin, Y.P. Improved Strapdown Coning Algrithms. IEEE Transactions onAerospace and Electronies System,1992.28(2):484-490.
    [14] Musoff, H., Murphy, J.H. Study of Strapdown Navigation Attitude Algorithms. Journalof Guidance, Control and Dynamies,1995.18(2):287-290.
    [15] Park, C.G., Kim, K.J. Formalized Approach to Obtaining Optimal Coefficients forConing Algorithms. Journal of Guidance, Control and Dynamies,1999.22(l):165-168.
    [16] Savage, P.G. Analytical modeling of sensor quantization in strapdown inertial navigationerror equation. Journal of Guidance, Control and Dynamies,2002.25(5):833-842.
    [17] Savage, P.G. Aunified Mathematieal Frame work for strapdown algorithm designJournal of Guidance, Control and Dynamies,2006.29(3):237-249.
    [18]潘献飞.基于机抖激光陀螺信号频域特性的SINS动态误差分析与补偿算法研究.国防科学技术大学博士学位论文.2008.
    [19]周泓.光纤陀螺的应用与发展.国防技术基础.2010.3:41-42,50.
    [20] Xiyuan Chen.Modeling random gyro drift by time series neural networks and bytraditional method.Neural Networks and Signal Processing,2003. Proceedings of the2003International Conference on,Vol.811,2003:810-813.
    [21] R. Sharaf,A. Noureldin.A neural network model of optical gyros drift errors withapplication to vehicular navigation. Applications of Digital Image Processing,2004:13-20.
    [22] F. Chunling,J. Zhihua,T. Weifeng,et al.Grey Markov chain and its application in driftprediction model of FOGS. JOURNAL OF SYSTEMS ENGINEERING ANDELECTRONICS.2005,16(2):388-393.
    [23]张庆,谈振藩,柳贵福,许德新,梁莹.一种光纤陀螺随机漂移的非平稳时序建模法.传感器与微系统,2010,(7):43-46.
    [24]宋凝芳,陈婧,金靖.光纤陀螺随机误差特性的小波方差分析.红外与激光工程.2010,39(05):924-928.
    [25] LEVINSON E, WILLCOCKS M. The next generation marine inertial navigation is herenow. IEEE Position Location and Navigation Symposium,1994:121-127.
    [26]谢钢. GPS原理与接收机设计.北京,电子工业出版社:2009.
    [27]白鸥,汪凌.俄罗斯全球导航卫星系统(GLONASS)现状与展望.测绘技术装备,2002(1):30-32.
    [28]动态新闻.俄GLONASS导航系统工作卫星达19颗.航天器工程.2009(02):54.
    [29]周世波.伽利略卫星导航系统概述.航海技术.2006(3):37-38.
    [30] Han, S., Wang, W., Chen, X., Meng, W., Design and Capability Analyze of HighDynamic Carrier Tracking Loop Based on UKF. Proceedings of the23rd InternationalTechnical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS2010), Portland, OR, September2010,1960-1966.
    [31] Kwang-Hoon Kim, Gyu-In Jee and Jong-Hwa Song. Carrier Tracking Loop using theAdaptive Two-Stage Kalman Filter for High Dynamic Situations. International Journalof Control, Automation, and Systems, December2008, vol.6, no.6, pp.948-953.
    [32] NI Ziedan, JL Garrison. Extended Kalman Filter-Based Tracking of Weak GPS signalsunder High Dynamic Conditions. Proceedings of ION GNSS,2004, Long Beach, CA,USA,2004:20-31.
    [33] P. Lian. Improving Tracking Performance of PLL in High Dynamics Applications. THEUNIVERSITY OF CALGARY, DEGREE OF MASTER,2004.
    [34] JF Miao, W Chen, YR Sun, JY Liu. Adaptively Robust Phase Lock Loop for Low C/NCarrier Tracking in a GPS Software Receiver. Acta Automatica Sinica,2011,37(1):52-60.
    [35] Ping Ye, Xingqun Zhan, Chunming Fan. Novel optimal bandwidth design inINS-assisted GNSS Phase Lock Loop. IEICE Electronics Express,2011,8:650-656.
    [36] Miller, I., Campbell, M.. Sensitivity Analysis of a Tightly-Coupled GPS/INS System forAutonomous Navigation. Aerospace and Electronic Systems, IEEE Transactions on.2012,48(2):1115-1135.
    [37] Matthew Lashley, David M. Bevly, John Y. Hung. Performance Analysis of VectorTracking Algorithms for Weak GPS Signals in High Dynamics. IEEE Journal ofSelected Topics in Signal Processing,2009, Vol.3, No.4:661-673.
    [38] T. M. Buck, J. Wilmot, and M. J. Cook. A high G, MEMS based deeply integratedINS/GPS, guidance, navigation and control flight management unit. Proceedings ofIEEE/ION Position Location and Navigation Symposium Conference. San Diego, CA,2006:772-794.
    [39] Rongbing Li, Fei Xie, Junyi Huang, Jianye Liu. Performance Analysis of a DeepIntegration with Controllable Tracking Loops in High Dynamic Environments.25thinternational technical meeting of satellite division of the institute of navigation.Nashvill TN, September,2012:1651-1657.
    [40] Matthew Lashley, David M. Bevly, John Y. Hung. Analysis of Deeply Integrated andTightly Coupled Architectures. Position Location and Navigation Symposium (PLANS),2010IEEE/ION. Indian Wells, CA, USA:382-396.
    [41] D. Gebre-Egziabher. What is the difference between’loose’,’tight’,’ultra-tight’,and’deep’ integration strategies for INS and GNSS. Inside GNSS, January/February2007:28-33.
    [42] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated NavigationSystems[M]. Artech House,2008.
    [43]何晓峰.北斗/微惯导组合导航方法研究.国防科学技术大学博士学位论文,长沙:2009.
    [44] Weiss, J. David, Kee, D. Scott. A Direct Performance Comparison Between LooselyCoupled and Tightly Coupled GPS/INS Integration Techniques. Proceedings of the51stAnnual Meeting of The Institute of Navigation, Colorado Springs, CO, June1995:537-544.
    [45] E. M. Copps, G. J. Geier, W. C. Fidler, and P. A. Grundy. Optimal processing of GPSsignals. Navigation, vol.27, no.3,1980:171-182.
    [46] J. W. Sennott. A flexible GPS software development system and timing analyzer forpresent and future microprocessors. Navigation, vol.31, no.2,1984:84-95.
    [47] J. J. Spilker. Vector delay lock loop processing of radiolocation transmitte. US. Patent:5398034,1993.
    [48] J. J. Spilker Jr. Fundamentals of Signal Tracking Theory.Global Positioning System:Theory and Applications. AIAA Inc,1996.
    [49] Pany, Thomas, Kaniuth, Roland, Eissfeller, Bernd. Deep Integration of NavigationSolution and Signal Processing. Proceedings of the18th International Technical Meetingof the Satellite Division of The Institute of Navigation (ION GNSS2005), Long Beach,CA, September2005:1095-1102.
    [50] D. Gustafson, J. Dowdle, and K. Flueckiger. A high anti-jam GPS based navigator.Proceedings of the Institute of Navigation National Technical Meeting. Anaheim, CA:Institute of Navigation, January2000:495-503.
    [51] J. M. Horslund and J. R. Hooker. Increase jamming immunity by optimizing processinggain for GPS/INS systems. Raytheon Company, Lexington, MA, U. S. Patent5983160,November1999.
    [52] A. S. Abbott and W. E. Lillo. Global positioning systems and inertial measuring unitultratight coupling method. The Aerospace Corporation, Segundo, CA, U. S. Patent6516021, Feburary2003.
    [53] E. J. Ohlmeyer. Analysis of an ultra-tightly coupled GPS/INS system in jamming.Proceedings of IEEE/ION Position Location and Navigation Symposium Conference.San Diego,2006:44-53.
    [54] J. Besser, S. Alexander, R. Crane, S. Rounds, J. Wyman, and B. Baeder. TRUNAV: Alow-cost guidance/navigation unit integrating a SAASM based GPS and MEMS IMU ina deeply coupled mechanization. Proceedings of the Institute of Navigation GPSConference, Institute of Navigation. Institute of Navigation3975University Drive Suite390Fairfax, VA22030, September2002:545-555.
    [55] A. Soloviev, S. Gunawardena, and F. van Graas. Deeply integrated GPS/low-cost IMUfor low CNR signal processing: Concept description and in-flight demonstra-tion.Navigation,2008,55(1):1-13.
    [56] Matthew Lashley. Modeling and Performance Analysis of GPS Vector TrackingAlgorithms. Auburn University.2009.
    [57]高帅和,赵琳.不同GPS/SINS超紧组合框架的分析与等价性推导.中国惯性技术学报,2011,19(5),211-214.
    [58] Groves, Paul D., Mather, Christopher J., Macaulay, Alex A., Demonstration ofNon-coherent Deep INS/GPS Integration for Optimised Signal-to-noise Performance,Proceedings of the20th International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GNSS2007), Fort Worth, TX, September2007, pp:2627-2638.
    [59] D. Gebre-Egziabher, A. Razavi, P. K. Enge, J. Gautier, S. Pullen, B. S. Pervan, and D. M.Akos. Sensitivity and performance analysis of doppler-aided GPS carrier-tracking loops.Navigation,2005, vol.52, no.2:49-60.
    [60] S. Alban, D. M. Akos, S. M. Rock, and D. Gebre-Egziabher. Performance analysis andarchitectures for INS-aided GPS tracking loops. Proceedings of the Institute ofNavigation National Technical Meeting. Anaheim, CA: Institute of Navigation, January2003:611-622.
    [61] Crane, Robert N..A Simplified Method for Deep Coupling of GPS and Inertial Data.Proceedings of the2007National Technical Meeting of The Institute of Navigation, SanDiego, CA, January2007:311-319.
    [62] SF Schmidt. Kalman filter: Its recognition and development for aerospace applications.Journal of Guidance, Control and Dynamies.1981,4(1):4-7.
    [63] Maybeck P S. Stochastic models estimation and control[M]. New York: Academic,1970.
    [64] Caballero-Gil P, Fuster-Sabater A. A wide family of nonlinear filter functions with alarge linear span[J]. Information Science,2003,164(1-4):197-207.
    [65] Jazwinski A H. Stochastic processes and filtering theory. New York: Academic,1970.
    [66] S Julier, J Uhlmann. A new method for the nonlinear transformation of means andcovariances in filters and estimators. Automatic Control, IEEE.2000,45(3):477-482.
    [67] S Julier, J Uhlmann. A New extension of the Kalman filter to nonlinear systems. Proc.SPIE3068, Signal Processing, Sensor Fusion, and Target Recognition VI,1997:182-193.
    [68] Julier, S.J. Unscented filtering and nonlinear estimation. Proceedings of the IEEE2004,Jefferson USA,2004:401-422.
    [69] Wan, E.A. van der Merwe, R. The unscented Kalman filter for nonlinear estimation.Adaptive Systems for Signal Processing, Communications, and Control SymposiumIEEE, Lake Louise, Alta.2000:153-158.
    [70] R. v. d. Merwe. Sigma-point Kalman filters for probabilistic inference in dynamicstate-space models. Oregon Health&Science University, Phd theis.2004.
    [71] Schei T S. A finite-difference method for linearization in nonlinear estimationalgorithms. Automatic,1997,33(11):2053-2058.
    [72] Froberg CE. Introduction to Numerical Analysis. Addison-Wesley, Reading, Secondedition.1972.
    [73] N rgarrd M, Poulsen N K, Ravn O. New developments in state estimation for nonlinearsystems. Automatica,2000,36(11):1627-1638.
    [74] Ienkaran Arasaratnam and Simon Haykin. Cubature Kalman Filters. IEEE transactionon automatic control.2009,54(6):1254-1269.
    [75] Rudolph van der Merwe and Eric A. Wan.THE Square-Root Unscented Kalman Filterfor state and parameter-estimation. IEEE International Conference on Acoustics, Speech,and Signal Processing,2001(5):3461-3464.
    [76]王小旭.非线性SPKF滤波算法研究及其在组合导航中的应用.哈尔滨工程大学,博士学位论文,2010.
    [77] Doucet A, Godsill S, Chistophe A. On sequential Monte Carlo sampling methods forBayesian filtering[J]. Statistics and Computing,2000,10(3):197-208.
    [78] Handschin J E. Monte Carlo techniques for prediction and filtering of nonlinearstochastic processes. Automatica,1970,6(3):555-563.
    [79] Hammersley J M, Morton K W. Poor man’s Monte Carlo. Journal of the RoyalStatistical Society B,1954,16(1):23-38.
    [80] Gordon N, Salmond D. Novel approach to non--linear and non--Gaussian Bayesian stateestimation. Proceedings of Institute Electric Engineering,1993,140(2):107-113.
    [81] A. Doucet, J. Gordon and V. Krishnamurthy. Particle filters for state estimation of jumpmarkov linear systems. IEEE trasaction on signal processing.2001,49(3):613-624.
    [82] A. Doucet, S. Godsill and C. Andrieu. On sequential Monte Carlo sampling methods forBayesian filtering. Statistics and computing.2000,10:197-208.
    [83] Kong A., Liu J. S and Wong W.H. sequential imputations and Bayesian missing dataproblems. Journal of the American Statitical Association.1994,89(26):278-288.
    [84] Herman S.M. A particle filtering approach to joint passive radar tracking and targetclassification. University of Illinois, PhD thesis,2002.
    [85] Simon Godsill and Tim Clapp. Improvement strategies for Monte Carlo Particle filter.Signal Processing Group,University of Cambridge.1998,2(1):17-23.
    [86] Isard M, Blake A. Condensation-conditional density propagation for visual tracking.International Journal of Computer Vision,1998,29(1):5-28.
    [87] Cho J U, Jin S H, Pham X D, et al. A real-time object tracking system using a particlefilter. Proceedings of IEEE/RSJ International Conference on Intelligent Robots andSystems.2006:2822-2827.
    [88] Haykin S, Huber K, Chen Z. Bayesian sequential state estimation for MIMO wirelesscommunications. Proceedings of the IEEE,2004,92(3):439-454.
    [89] T. Higuchi. Monte Carlo filtering using the genetic algorithm operators. Journal ofStatistical computing and simulation.1997,59:1-23.
    [90] M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Journalof the American Statitical Association.1999,94:590-599.
    [91] G. Kitagawa and G. Gersch. Monte Carlo filter and smoother for non-Gaussiannonlinear stste space models. Journal of computational and graphicalStatistics.1996,1:1-35.
    [92] Chien-Hao Tseng and Chih-Wen Chang. A New Optimized Algorithm with NonlinearFilter for Ultra-Tightly Coupled Integrated Navigation System of Land Vehicle. CMC,2012,27(1):23-53.
    [93] DahJing Jwo, ChiFan Yang, ChihHsun Chuang and KunChieh Lin. A Novel Design forthe Ultral Tightly Coupled GPS/INS Navigation System. Journal of Navigation.2012,65(4):717-747.
    [94] L. Akulenko, S. Kumakshev, Y. Markov. Motion of the Earth’s Pole. Doklady Physics.2002,47(1):78-84.
    [95] E. M. Copps, G. J. Geier, W. C. Fidler, and P. A. Grundy. Optimal processing of GPSsignals. Navigation.1980,27(3):171-182.
    [96] J. Zhu. Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates.IEEE transaction on Aerospace and Electronic system.1994.30(3):957-961.
    [97] YunaxinWu,Ping Wang,Xiaoping Hu. Algorithm of Earth-centered Earth-fixedcoordinates to geodetic coordinate. IEEE transaction on Aerospace and Electronicsystem.2003.39(4):1457-1461.
    [98] JORDAN SK, CENTER J L. Establishing Requirements for Gravity Surveys for VeryAccurate Inertial Navigation. Navigation.1986,33(2):90-108.
    [99] M. Wei, K. P. Schwarz. A strapdown inertial algorithm using an earth-fixed Cartesianframe. Journal of the institute of Navigation,1990,37(2):153-167.
    [100]张桂才.光纤陀螺原理与技术.北京:国防工业出版社,2008.
    [101]祝曙光,莫倩,樊卫兵,等.2010International Conference on Semiconductor Laserand Photonics中国四川成都.2010:173-176.
    [102]姚琼,胡永明,宋章启,谢元平.谐振型光纤陀螺克尔效应误差消除方法研究.光子学报.2005,34(9):1320-1323.
    [103] Koichi Takiguchi, Kazuo Hotate. Method to reduce the optical Kerr-efffect-induced biasin an optical passive ring-resonator gyro. Photonics Technology Letters,1992,4(2):203~206.
    [104]李绪友,何周,张勇,洪伟.受激布里渊光纤陀螺拍频稳定性.中国惯性技术学报.2010,18(3):338-342.
    [105] F Zarinetchi, SP Smith, S Ezekiel. Stimulated Brillouin fiber-optic laser gyroscope.Optics letters.1991,16(4):229-231.
    [106]张维叙.光纤陀螺及其应用.北京:国防工业出版社,2008.
    [107] Ravindra Babu, Wang Jinling. Ultra-tight GPS/INS/PL integration: a system conceptand performance analysis. GPS solutions,2009(13):75-82.
    [108]程向红,万德钧,仲巡.捷联惯导系统的可观测性和可观测度研究.东南大学学报.1997,27(6):6-11.
    [109]万德钧,房建成.惯性导航初始对准.东南大学出版社,南京,1998.
    [110]戴洪德,陈明,周绍磊,李娟.一种新的快速传递对准方法及其可观测度分析.宇航学报,2009,30(4):1449-1454.
    [111]张勤拓.机载导弹SINS动基座传递对准技术研究.哈尔滨工程大学博士学位论文.2010.
    [112] Ham F M, Brown T G. Observability, eigenvalues, and Kalman filtering. IEEETransactions on Aerospace and Electronic Systems,1983,19(2):269-273.
    [113]吴俊伟,孙国伟,张如,等.基于SVD方法的INS传递对准的可观测性能分析.中国惯性技术学报,2005,13(6):26-30.
    [114]吴海仙,俞文伯,房建成.高空长航时无人机SINS/CNS组合导航系统仿真研究.航空学报,2006,27(2):299-304.
    [115] LIU Yu-fei, CUI Ping-yuan. Observability analysis of deep-space autonomousnavigation system. Proceedings of the25th Chinese Control Conference, Harbin, China,2006:279-282.
    [116] Yim J R, Crassidis J L, Junkins J L. Autonomous orbit navigation of interplanetaryspacecraft. AIAA/AAS Astrodynamics Specialist Conference. Reston, VA: AIAA Paper,2000:53-61.
    [117] Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wise constantsystems-Part1: Theory. IEEE TRANSACTIONS ON Aerospace and Electronic systems.1992,28(4):1056-1067.
    [118] Goshen-Meskin D,Bar-Itzhaek I Y. Observability analysis of Piece-wise constantsystem partII:Application to inertial navigation in flight alignment.IEEE TransaetionsonAerospace and Electronic System,1992,28(4):1068-1075.
    [119]李涛,练军想,曹聚亮等. GNSS与惯性及多传感器组合导航系统原理.北京:国防工业出版社,2011.
    [120] Pany, Thomas, Kaniuth, Roland, Eissfeller, Bernd. Deep Integration of NavigationSolution and Signal Processing. Proceedings of the18th International Technical Meetingof the Satellite Division of The Institute of Navigation (ION GNSS2005), Long Beach,CA, September2005:1095-1102.
    [121] Matthew Lashley, David M. Bevly. A Comparison of the Performance of a Non-coherentDeeply Integrated Navigation Algorithm and a Tightly Coupled Navigation Algorithm.ION GNSS21st. International Technical Meeting of the Satellit Division, Savannah, GA,September2008:2123-2129.
    [122]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,2010.
    [123] ROBERT HERMANN, ARTHUR J. KRENER. Nonlinear Controllability andObservability. IEEE TRANSACTIONS ON AUTOMATIC RTOIACN CONTROL.1977, AC-22(5):728-740.
    [124] S. J. Julier. The Scsled Unscented Transformation. Proceeding of the American ControlConference, Anchorage AK,2002. Anchorage, AACC,2002:4555-4559.
    [125] Sanjeev Gunawardena, Andrey Soloviev, Frank van Graas. Real time implementation ofdeeply integrated software GPS receiver and low cost IMU for processing low-SNRGPS signals. ION60th annual meeting. Dayton USA,2004.
    [126]丁继成.弱信号条件下GPS接收机关键技术研究.哈尔滨工程大学博士学位论文,2009.
    [127] Nesreen I. Ziedan. GNSS Receivers for Weak Signals (II). Boston: artech house, inc,2006.
    [128]张敏虎,任章,华春红.惯性信息辅助的高动态弱GPS信号快速捕获.系统工程与电子技术.2011,33(2):366-369.
    [129]张伯川,张其善,常青.高动态GPS模拟器信号产生模型研究.电子学报.2008,36(6):1084-1087.
    [130] Kai Borre, Dennis M. Akos, etc.. A Software-Defined GPS and Galileo Receiver. Boston:Birkhauser,2007.
    [131]耿延睿,崔中兴,张洪钺,等.衰减因子自适应滤波及在组合导航中的应用.北京航空航天大学学报.2004,30(5):434-437
    [132]高青伟,赵国荣,吴芳,等.衰减记忆自适应滤波在惯导系统传递对准中的应用.系统工程与电子技术,2010,32(12):2648-2651.
    [133]王小旭,赵琳,夏全喜,等.基于Unscented变换的强跟踪滤波器.控制与决策,2010,24(07):1063-1068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700