用户名: 密码: 验证码:
过度训练及补充谷氨酰胺对大鼠腹膜巨噬细胞功能的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     (1)研究过度训练对大鼠腹膜巨噬细胞吞噬功能、胞内活性氧(ROS)生成能力及炎性因子应答能力的影响,并对相关机制展开研究,为加深对过度训练的认识提供实验依据。
     (2)研究外源性补充谷氨酰胺对过度训练大鼠腹膜巨噬细胞吞噬功能、活性氧生成能力及炎性因子应答能力的影响,探索改善过度训练效应的可行途径。
     (3)离体状态下研究胰岛素样生长因子1(IGF-1)和机械生长因子(MGF)对腹膜巨噬细胞吞噬功能、胞内活性氧生成能力及炎性因子应答能力的影响,试图从IGF-1和MGF角度揭示过度训练影响巨噬细胞功能的可能机制。研究方法:
     (1)在体实验:8周龄健康雄性wistar大鼠40只,随机分为安静对照组(control,C)、过度训练组(E组)和过度训练补充谷氨酰胺组(EG组)。根据取材时间不同,E组分为训练后36小时取材组(E1)和训练后7天取材组(E2);EG组分为训练后36小时取材组(EG1)和训练后7天取材组(EG2);每组8只。除C组外,其他组进行11周递增负荷跑台训练。观察大鼠体重、精神状态及运动能力的变化,并于训练后上述时间点眼眶取血,分析血红蛋白(Hb)和血睾酮(T)含量。分离纯化腹膜巨噬细胞,中性红法测定巨噬细胞吞噬功能;流式细胞术测定巨噬细胞胞内ROS生成;ELISA技术测定巨噬细胞肿瘤坏死因子α(TNF-α)和白介素1β(IL-1β)生成量;比色法测定NADPH氧化酶活性;荧光定量PCR技术测定巨噬细胞如下基因表达:NADPH氧化酶亚基(gp91phox、p22phox、p47phox、p40phox、p67phox)、蛋白激酶C δ(PKC-δ)、葡萄糖6磷酸脱氢酶(G6PD)、诱导型一氧化氮合酶(iNOS)、胰岛素样生长因子1(IGF-1)和机械生长因子(MGF)。
     (2)离体实验:离体状态下用不同浓度的IGF-1或MGF(1、10、50、100、200ng/ml)与巨噬细胞孵育,观察IGF-1和MGF对巨噬细胞吞噬功能、胞内活性氧生成能力及炎性因子应答能力的影响。研究结果:
     (1)过度训练指标:训练后期,大鼠精神状态及运动能力下降;与安静对照组相比,过度训练组体重,血红蛋白含量及睾酮含量均显著降低(P<0.01),分别下降了约19.3%、13.5%和55.3%。
     (2)吞噬功能:与C组相比,E1组大鼠腹膜巨噬细胞吞噬中性红的能力显著降低,下降约27%(P<0.05);E2组巨噬细胞吞噬功能恢复至安静对照组水平。EG1组巨噬细胞吞噬功能虽低于C组,但无显著差异;EG2组与E2组和C组无显著差异。
     (3)ROS生成:与C组相比,E1组大鼠腹膜巨噬细胞ROS生成量显著降低,下降约35%(P<0.01);E2组巨噬细胞ROS生成量显著高于E1组(P<0.01),恢复至安静对照组水平。EG1组巨噬细胞ROS生成量与E1组相比无显著差异,仍显著低于C组(P<0.01);EG2组巨噬细胞ROS生成量显著高于EG1组(P<0.01),与E2组和C组无显著差异。
     (4)炎性因子应答能力:与C组相比,E1组大鼠腹膜巨噬细胞TNF-α和IL-1β对LPS的应答能力显著降低;E2组显著高于E1组(P<0.05),与C组相比无显著差异。EG1组巨噬细胞TNF-α和IL-1β对LPS的应答能力显著高于E1组,与C组相比无显著差异;EG2组与E2组和C组相比无显著差异。
     (5)NADPH氧化酶活性:与C组相比,E1组大鼠腹膜巨噬细胞NADPH氧化酶活性降低,E2组巨噬细胞NADPH氧化酶活性显著高于E1组(P<0.05),与C组相比无显著差异。EG1组和EG2组分别与E1组和E2组相比无显著性差异。相关分析显示(5个组数据),NADPH氧化酶活性与ROS生成量呈线性正相关,相关系数为0.62(P<0.01)。
     (6)NADPH氧化酶亚基:与C组相比,E1组大鼠腹膜巨噬细胞NADPH氧化酶亚基gp91phox、p22phox、p40phox、p67phox表达量无显著差异,但胞质亚基p47phox表达量显著升高(P<0.05);E2组大鼠腹膜巨噬细胞gp91phox、p22phox、p47phox、p40phox、p67phox表达量与E1组和C组相比均无显著差异。EG1组巨噬细胞gp91phox、p22phox、p40phox、p67phox表达量与E1组无显著差异,p47phox表达量显著低于E1组(P<0.05);EG2组巨噬细胞中各亚基表达量与E2组、C组和EG1组相比均无显著差异。
     (7)PKC-δ:与C组相比,E1组大鼠腹膜巨噬细胞PKC-δ基因表达量显著降低(P<0.05);E2组PKC-δ表达量显著高于E1组(P<0.05),与C组相比无统计学差异。EG1组和EG2组分别与E1组和E2组相比无显著性差异。相关分析显示(5个组数据),PKC-δ表达量与NADPH氧化酶活性呈线性正相关,相关系数为0.51(P<0.01),PKC-δ表达量与ROS生成量相关系数为0.69(P<0.01)。
     (8)G6PD:C组、E1组、E2组、EG1组、EG2组五组间比较,腹膜巨噬细胞G6PD基因表达量无显著差异。
     (9)iNOS:C组、E1组、E2组、EG1组、EG2组五组间比较,腹膜巨噬细胞iNOS基因表达量无显著差异。
     (10)IGF-1和MGF:与C组相比,E1组大鼠腹膜巨噬细胞IGF-1和MGF表达量分别增加了21倍和92倍(P<0.01);E2组显著低于E1组(P<0.01),与C组相比无统计学差异。EG1组巨噬细胞IGF-1和MGF表达量显著低于E1组(P<0.01),仍显著高于C组(P<0.01);EG2组显著低于EG1组(P<0.01),与C组和E2组相比无显著差异。
     (11)IGF-1对巨噬细胞功能影响:与不加药组相比,不同终浓度的IGF-1(1、10、50、100、200ng/ml)对巨噬细胞吞噬功能和胞内ROS生成均无显著影响(P>0.05);100ng/ml IGF-1可显著增加巨噬细胞TNF-α对LPS的应答;100、200ng/ml IGF-1可显著增加巨噬细胞IL-1β对LPS的应答。
     (12)MGF对巨噬细胞功能影响:与不加药组相比,MGF可呈浓度依赖性的抑制巨噬细胞吞噬功能;1、10、50、100ng/ml MGF可显著抑制巨噬细胞胞内ROS生成;不同浓度的MGF对巨噬细胞炎性因子应答能力无显著影响。研究结论:
     (1)过度训练可抑制巨噬细胞吞噬功能,胞内活性氧生成及炎性因子应答能力,这可能是过度训练增加感染风险的原因之一。
     (2)补充谷氨酰胺对过度训练诱导的巨噬细胞吞噬功能降低和炎性因子应答能力降低有一定的改善作用,但对过度训练诱导的巨噬细胞胞内ROS生成降低无明显改善效应。
     (3)过度训练抑制腹膜巨噬细胞胞内活性氧生成的机制:不通过抑制NADPH氧化酶亚基表达及抑制NADPH氧化酶生成途径发挥作用;PKC-δ介导NADPH氧化酶活性降低在过度训练抑制巨噬细胞ROS生成中发挥重要作用;过度训练诱导产生的MGF可能在过度训练抑制巨噬细胞ROS生成中发挥重要作用。
     (4)过度训练抑制腹膜巨噬细胞吞噬功能的机制:过度训练诱导产生的MGF可能通过自分泌或旁分泌形式对巨噬细胞吞噬功能发挥关键调控作用。
     (5)过度训练抑制腹膜巨噬细胞炎性因子应答能力的机制:IGF-1和MGF没有参与这一过程,而是有别的机制参与。
Objective
     (1) To evaluate the effects of overtraining on phagocytosis, reactive oxygenspecies (ROS) generation and inflammatory cytokines production of peritonealmacrophages (MФs), especially the mechanisms involved. It will provide experimentevidence for strengthen our understanding of overtraining.
     (2) To determine the effects of supplement with glutamine on the function ofMФs (i.e., phagocytosis, ROS generation and inflammatory cytokines production)from the overtraining group, and to explore a way to ameliorate the situation inducedby overtraining.
     (3) To investigate the effects of IGF-1and MGF peptide on phagocytosis, ROSgeneration and inflammatory cytokines production of MФs in vitro, and attempt todiscover the mechanisms of the inhibiton of MФs induced by overtraining from theview of IGF-1and MGF.
     Methods
     (1) In vivo.40male wistar rats (8-wk-old) were randomly divided into5groups:sedentary group(C, n=8), overtraining group (E), overtraining supplement with Glngroup (EG). E and EG group were respectively divided into two groups whichsacrificed at36h (E1, EG1, n=8) and7days (E2, EG2, n=8) after the last training. Allgroups except C were training in standard treadmill with an increasing load for11weeks. The criteria to evaluate the condition of the rats and judge whether theprotocol was successful were as follows: locomotory capacity, mental state, weightchange, and concentrations of hemoglobin and testosterone in blood. Peritonealmacrophages were isolated and purified after all rats were sacrificed by decapitation.The phagocytosis and the ROS generation of MФs were measured by the uptake ofneutral red and the flow cytometry respectively; The producitin of TNF-α and IL-1βwere tested by ELISA; The NADPH-oxidase activity was tested by colorimetry;Real-time PCR was used to test the expression of the following genes:NADPH-oxidase subunits (gp91phox, p22phox, p47phox, p40phox, p67phox), PKC-δ,G6PD, iNOS, IGF-1and MGF.
     (2) In vitro. MФs were exposed to diffrent concentrations (1,10,50,100,200ng/ml) of IGF-1or MGF peptide for2h. The phagocytosis, the ROS generationand the inflammatory cytokines production of MФs were measured by the uptake ofneutral red, the flow cytometry and ELISA respectively.
     Results
     (1) Index of overtraining. The rats had to be assisted by hand to complete thejob and their mental state worsened in the later stage of exercise. Overtrainingsignificantly decreased the body weight (19.3%, P<0.01), the hemoglobin (13.5%,P<0.01) and the testosterone (55.3%, P<0.01) in blood.
     (2) Phagocytosis. The phagocytosis of MФs from group E1was significantlylower than group C (decreased by27%, P<0.05). There was no significant differencein the phagocytosis of MФs between group E2and group C. Although thephagocytosis of MФs from group EG1was still lower than group C, no differencewas observed between them. There was no significant difference in the phagocytosisof MФs between group EG2, group E2and group C.
     (3) ROS. The ROS generation of MФs from group E1was significantly lowerthan group C (decreased by35%, P<0.01). The ROS generation of MФs from groupE2was significantly higher than group E1(P<0.01), and no difference was observedbetween group E2and group C. The ROS generation of MФs from group EG1did notchange as compared with group E1, it still significantly lower than group C (P<0.01).The ROS generation of MФs from group EG2was significantly higher than groupEG1(P<0.01), and there was no difference as compared with group E2or group C.
     (4) Response ability of inflammatory cytokines. The production of TNF-α andIL-1β of MФs from group E1was significantly lower than group C as LPSstimulation. The response ability of inflammatory cytokines of MФs from group E2was significantly higher than group E1(P<0.05), and no difference was observedbetween group E2and group C. The response ability of inflammatory cytokines ofMФs from group EG1was significantly higher than group E1, and no difference wasobserved between group EG1and group C. There was no difference between groupEG2, group E2and group C.
     (5) NADPH-oxidase activity. The NADPH-oxidase activity of MФs from groupE1was significantly lower than group C. The NADPH-oxidase activity of MФs fromgroup E2was significantly higher than group E1(P<0.05), and no difference wasobserved between group E2and group C. The NADPH-oxidase activity of MФs fromgroup EG1and EG2did not change as compared with group E1and E2, respectively.The correlation analysis showed that NADPH-oxidase activity and ROS generationwere positive correlation and the pearson correlation was0.62(P<0.01)(data from5groups).
     (6) NADPH-oxidase subunits. The NADPH-oxidase subunits (gp91phox,p22phox, p40phox, p67phox) mRNA levels of MФs from group E1did not change ascompared with group C, however, the expression of p47phox of MФs from group E1was significantly higher than group C (P<0.05). No difference was observed betweengroup E2, group E1and group C in all subunits of NADPH-oxidase. There was no significant difference in the NADPH-oxidase subunits (gp91phox, p22phox, p40phox,p67phox) mRNA levels of MФs between group EG1and group E1, however, theexpression of p47phox of MФs from group EG1was significantly lower than groupE1(P<0.05). All subunits of NADPH-oxidase of MФs from group EG2did not changeas compared with group E2, group C and group EG1.
     (7) PKC-δ. The PKC-δ mRNA level of MФs from group E1was significantlylower than group C (P<0.05). The expression of PKC-δ of MФs from group E2wassignificantly higher than group E1(P<0.05), and no difference was observed betweengroup E2and group C. The PKC-δ mRNA level of MФs from group EG1and EG2did not change as compared with group E1and E2, respectively. The correlationanalysis showed that PKC-δ mRNA and NADPH-oxidase activity were positivecorrelation and the pearson correlation was0.51(P<0.01), PKC-δ mRNA and ROSgeneration were positive correlation and the pearson correlation was0.69(P<0.01)(data from5groups).
     (8) There was no difference between group C, group E1, group E2, group EG1and group EG2in the expression of G6PD of MФs.
     (9) There was no difference between group C, group E1, group E2, group EG1and group EG2in the expression of iNOS of MФs.
     (10) IGF-1anf MGF. IGF-1and MGF mRNA levels in MФs from E1groupincreased significantly compared with the control group (21-fold and92-fold,respectively; p<0.01). IGF-1and MGF mRNA levels in MФs from E2group wassignificantly lower than group E1(p<0.01), and no difference was observed betweengroup E2and group C. IGF-1and MGF mRNA levels in MФs from EG1group wassignificantly lower than group E1(p<0.01), however, they were still higher thangroup C (p<0.01). IGF-1and MGF mRNA levels in MФs from EG2group wassignificantly lower than group EG1(p<0.01), and no difference was observed ascompared with group C and group E2.
     (11) In vitro experiments showed that different concentrations of IGF-1(1,10,50,100,200ng/ml) had no significant effect on the phagocytosis and the ROSgeneration of MФs. IGF-1(100ng/ml) significantly increased the secretion of TNF-αof MФs as LPS stimulation. IGF-1(100,200ng/ml) significantly increased theproduction of IL-1β of MФs as LPS stimulation.
     (12) In vitro experiments showed that MGF peptide impaired the phagocytosis ofMФs in dose-independent manner. Additonally, MGF peptide of some concentrations(i.e.,1,10,50,100ng/ml) significantly inhibited the ROS generation of MФs.However, different concentrations of MGF (1,10,50,100,200ng/ml) had nosignificant effect on the production of TNF-α and IL-1β of MФs as LPS stimulation.
     Conclusion
     (1) Overtraining inhibits the phagocytosis, the ROS generation and theinflammatory cytokines production of MФs, it may be a mechanism of whyovertraining cause immunesuppression.
     (2) Supplement with glutamine ameliorates the decline of the phagocytosis andthe inflammatory cytokines production of MФs induced by overtraining, however, ithas no significant effect on the ROS generation of MФs.
     (3) The mechanisms of overtraining inhibit ROS production of MФs: Thedecline of ROS production in overtraining group did not cause by suppressing theNADPH-oxidase subunits or the pathway of NADPH-oxidase production; The declineof NADPH-oxidase activity mediated by PKC-δ may play important roles in theinhibiton of ROS production; MGF produced by macrophages may play a key role inovertraining inhibit ROS production.
     (4) The mechanisms of overtraining inhibit phagocytosis of MФs: MGFproduced by macrophages may play a key role in overtraining inhibit phagocytosis ofMФs.
     (5) The mechanisms of overtraining inhibit inflammatory cytokines productionof MФs: IGF-1and MGF produced by macrophages do not involved, there must beother mechanisms involved in this process.
引文
[1] Unanue ER, Allen PM. The basis for the immunoregulatory role of macrophagesand other accessory cells[J]. Science,1987,236:551–557.
    [2] Chelen CJ, Fang Y, Freeman GJ, et al. Human alveolar macrophages presentantigen ineffectively due to defective expression of B7costimulatory cell surfacemolecules[J]. J Clin Invest,1995,95:1415–1421.
    [3] Nicod LP, Cochard L, Dreher D. Antigen presentation in the lung: dendritic cellsand macrophages[J]. Sarcoidosis Vasc Diffuse Lung Dis,2000,17:246–255.
    [4] Daniels HM, Meager A, Eddleston AL, et al. Spontaneous production of tumornecrosis factor α and interleukin-1β during interferon-a treatment of chronic HBVinfection[J]. Lancet,1990,335:875–877.
    [5] Belardelli F. Role of interferons and other cytokines in the regulation of theimmune response[J]. APMIS,1995,103:161–179.
    [6] Wu L, Morahan PS. Macrophages and other non-specific defenses: role ofmodulating resistance against herpes simplex virus[J]. Curr Top Microbiol Immunol,1992,179:89–110.
    [7] Widmer U, Manogue KR, Cerami A, et al. Genomic cloning and promoteranalysis of macrophage inflammatory (MIP)-2, MIP-1alpha, and MIP-1betamembers of the chemokine superfamily of proinflammatory cytokines[J]. J Immunol,1993,150:4996–5012.
    [8] Sloan RP, Shapiro PA, Demeersman RE, et al. Aerobic exercise attenuatesinducible TNF production in humans[J]. J Appl Physiol,2007,103:1007–1011.
    [9] Kawanishi N, Yano H, Yokogawa Y, et al. Exercise training inhibits inflammationin adipose tissue via both suppression of macrophage infiltration and acceleration ofphenotypic switching from M1to M2macrophages in high-fat-diet-induced obesemice[J]. Exerc Immunol Rev,2010,16:105–118.
    [10] Tsivitse SK, McLoughlin TJ, Peterson JM, et al. Downhill running in rats:influence on neutrophils, macrophages, and MyoD+cells in skeletal muscle[J]. Eur JAppl Physiol,2003,90:633–638.
    [11] Sonnet C, Lafuste P, Arnold L, et al. Human macrophages rescue myoblasts andmyotubes from apoptosis through a set of adhesion molecular systems[J]. J Cell Sci,2006,119:2497–2507.
    [12] Nieman DC. Exercise immunology: practical applications[J]. Int J Sports Med,1997,18:S91–S100.
    [13] Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation,integration, and adaptation[J]. Physiol Rev,2000,80:1055–1081.
    [14] Shephard RJ. Physical Activity, Training and the Immune Response[J]. Carmel(IN): Cooper Publications,1997.
    [15] Yakeu G, Butcher L, Isa S, et al. Low-intensity exercise enhances expression ofmarkers of alternative activation in circulating leukocytes: Roles of PPARgamma andTh2cytokines[J]. Atherosclerosis,2010,212:668–673.
    [16] Batista ML, Santos RVT, Oliveira EM, et al. Endurance training restoresperitoneal macrophage function in post-MI congestive heart failure rats[J]. J ApplPhysiol,2007,102:2033–2039.
    [17] Ferreira CKO, Prestes J, Donatto FF, et al. Acute effects of short-durationexercise on the phagocytic capacity of peritoneal macrophages in sedentary rats[J].Rev bras Fisioter,2007,11:191–197.
    [18] Guereschi MG, Prestes J, Donatto FF, et al. Exercise induced alterations in ratmonocyte number, morphology, and function[J]. Int J Exerc Sci,2008,1:71–78.
    [19] Pellegrin M, Miguet-Alfonsi C, Bouzourene K, et al. Long-term ExerciseStabilizes Atherosclerotic Plaque in ApoE Knockout Mice[J].Medicine and Science inSports and Exercise,2009,41:2128–2135.
    [20] Matsumoto Y, Adams V, Jacob S, et al. Regular Exercise Training Prevents AorticValve Disease in Low-Density Lipoprotein-Receptor-Deficient Mice[J]. Circulation,2010,121:759–767.
    [21] Keylock KT, Vieira VJ, Wallig MA, et al. Exercise accelerates cutaneous woundhealing and decreases wound inflammation in aged mice[J]. Am J Physiol RegulIntegr Comp Physiol,2008,294: R179–R184.
    [22] Almeida PW, Gomes-Filho A, Ferreira AJ, et al. Swim training suppresses tumorgrowth in mice[J]. J Appl Physiol,2009,107:261–265.
    [23] Baltgalvis KA, Berger FG, Pe a MM, et al. The interaction of a high-fat diet andregular moderate intensity exercise on intestinal polyp development in Apc Min/+mice [J]. Cancer Prev Res,2009,2:641–649.
    [24] Zielinski MR, Muenchow M, Wallig MA, et al. Exercise delays allogeneic tumorgrowth and reduces intratumoral inflammation and vascularization[J]. J Appl Physiol,2004,96:2249–2256.
    [25] Tidball JG, Wehling-Henricks M. Macrophages promote muscle membranerepair and muscle fibre growth and regeneration during modified muscle loading inmice in vivo[J]. J Physiol,2007,578:327–336.
    [26] Frenette J, St-Pierre M, Cote C, et al. Muscle impairment occurs rapidly andprecedes inflammatory cell accumulation after mechanical loading[J]. Am J Physiol,2002,282:R351–R357.
    [27] Tidball J, Berchenko E, Frenette J. Macrophage invasion does not contribute tomuscle membrane injury during inflammation[J]. J Leukoc Biol,1999,65:492–498.
    [28] Thompson J, Balog E, Fitts R, et al. Five myofibrillar lesion types ineccentrically challenged, unloaded rat adductor longus muscle-a test model[J]. AnatRec,1999,254:39–52。
    [29] McLennan I. Degenerating and regenerating skeletal muscle contain severalpopulations of macrophages with distinct spatial and temporal distributions[J]. J Anat,1996,188:17–28.
    [30] Massimino M, Rapizzi E, Cantini M, et al. ED2+macrophages increaseselectively myoblast proliferation in muscle cultures[J]. Biochem Biophys ResCommun,1997,235:754–759.
    [31] Lapointe B, Frenette J, Cote C. Lengthening contractioninduced inflammation islinked to secondary damage but devoid of neutrophil invasion[J]. J Appl Physiol,2002,92:1995–2004.
    [32] Kuschel R, Deininger M, Meyermann R, et al. Allograft inflammatory factor-1isexpressed by macrophages in injured skeletal muscle and abrogates proliferation anddifferentiation of satellite cells[J]. J Neuropathol Exp Neurol,2000,59:323–332.
    [33] Przybyla B, Gurley C, Harvey JF, et al. Aging alters macrophage properties inhuman skeletal muscle both at rest and in response to acute resistance exercise[J]. ExpGerontol,2006,41:320–327.
    [34] Peake J, Della Gatta P, Cameron-Smith D. Aging and its effects on inflammationin skeletal muscle at rest and following exercise-induced muscle injury[J]. Am JPhysiol Regul Integr Comp Physiol,2010,298: R1485–R1495.
    [35] De la Fuente M, Martín I, Ortega E. Effect of physical exercise on the phagocyticfunction of peritoneal macrophages from Swiss mice[J]. Comp Immunol MicrobiolInfect Dis,1993,16:29–37.
    [36] Forner MA, Barriga C, Ortega E. Exercise-induced stimulation of murinemacrophage phagocytosis may be mediated by thyroxine[J].J Appl Physiol,1996,80:899–903.
    [37] Wolach B, Gavrieli R, Ben-Dror SG, et al. Transient decrease of neutrophilchemotaxis following aerobic exercise[J]. Med Sci Sports Exer,2005,37:949–954.
    [38] Sugiura H, Nishida H, Inaba R, et al. Immunomodulation by8-week voluntaryexercise in mice[J]. Acta Physiol Scand,2000,168:413–420.
    [39] Sugiura H, Nishida H, Mirbod SM. Immunomodulatory action of chronicexercise on macrophage and lymphocyte cytokine production in mice[J]. Acta PhysiolScand,2002,174:247–256.
    [40] Ferrandez MD, De la Fuente M. Effects of age, sex and physical exercise on thephagocytic process of murine peritoneal macrophages[J]. Acta Physiol Scand,1999,166:47–53.
    [41] Ortega E, Forner MA, Barriga C. Exercise-induced stimulation of murinemacrophage chemotaxis: role of corticosterone and prolactin as mediators[J]. JPhysiol,1997,498:729–734.
    [42] Ortega E, Forner MA, Garcia JJ, et al. Enhanced chemotaxis of macrophages bystrenuous exercise in trained mice: thyroid hormones as possible mediators[J].MolCell Biochem,1999,201:41–47.
    [43] Woods JA, Davis JM, Smith JA, et al. Exercise and cellular innate immunefunction[J]. Med Sci Sports Exerc,1999,31:57–66.
    [44] Abbas AK, Lichtman AH, Pober JS. Cellular and Molecular Immunology[J]. WBSaunders, Philadelphia,1994,240–260.
    [45] Polyak S, Chen H, Hirsch D, et al. Impaired class II expression and antigenuptake in monocytic cells after HIV-1infection[J]. J Immunol,1997,159:2177–2188.
    [46] Woods JA, Ceddia MA, Kozak C, et al. Effects of exercise on the macrophageMHC II response to inflammation[J]. Int J Sports Med,1997,18:483–488.
    [47] Ceddia MA, Woods JA. Exercise suppresses macrophage antigen presentation[J].J Appl Physiol,1999,87:2253–2258.
    [48] Ceddia MA, Voss EW, Woods JA. Intracellular mechanisms responsible forexercise-induced suppression of macrophage antigen presentation[J]. J Appl Physiol,2000,88:804–810.
    [49] Sugiura H, Nishida H, Inaba R, et al. Effects of different durations of exercise onmacrophage function in mice[J].J Appl Physiol,2001,90:789–794.
    [50] dos Santos RV, Caperuto EC, de Mello MT, et al. Effect of exercise onglutamine metabolism in macrophages of trained rats[J]. Eur J Appl Physiol,2009,107:309–315.
    [51] Lee W, Park H, Jeong J, et al. Exercise and Low Fat Diet Improve PeritonealMacrophage Immunocompetence In Obese Mice [J]. Medicine&Science in Sports&Exercise,2010,42:177.
    [52] Leandro CG, de Lima TM, Alba-Loureiro TC, et al. Stress-induceddownregulation of macrophage phagocytic function is attenuated by exercise trainingin rats[J]. Neuroimmunomodulation,2007,14:4–7.
    [53] Su SH, Chen HI, Jen CJ. Severe exercise enhances phagocytosis by murinebronchoalveolar macrophages[J]. J Leukoc Biol,2001,69:75–80.
    [54] Ortega E, Rodriguez MJ, Barriga C, et al. Corticosterone, prolactin and thyroidhormones as hormonal mediators of the stimulated phagocytic capacity of peritonealmacrophages after high-intensity exercise [J]. Int J Sports Med,1996,17:149–155.
    [55] Silveira EM, Rodrigues MF, Krause MS, et al. Acute exercise stimulatesmacrophage function: possible role of NF-κB pathways [J]. Cell Biochem Funct,2007,25:63–73.
    [56] Raidal SL, Love DN, Bailey GD, et al. The effect of high intensity exercise onthe functional capacity of equine pulmonary alveolar macrophages and BAL-derivedlymphocytes[J]. Res Vet Sci,2000,68:249–253.
    [57] Su SH, Chen HI, Jen CJ. C57BL/6and BALB/c Bronchoalveolar MacrophagesRespond Differently to Exercise[J]. J Immunol,2001,167:5084–5091.
    [58] Su SH, Chen HI, Jen CJ. Exercise enhances surfactant-mediated phagocytosis inbronchoalveolar macrophages[J].Chin J Physiol,2005,48:210–216.
    [59] Anker SD, Egerer KR, Volk HD, et al. Elevated soluble CD14receptors andaltered cytokines in chronic heart failure[J]. Am J Cardiol,1997,79:1426–1430.
    [60] Costa Rosa LF, Cury Y, Curi R. Hormonal control of macrophage function andglutamine metabolism[J]. Biochem Cell Biol,1991,69:309–312.
    [61] Costa Rosa LF, Safi DA, Cury Y, et al. Effect of epinephrine on glucosemetabolism and hydrogen peroxide content in incubated rat macrophages[J]. BiochemPharmacol,1992,44:2235–2241.
    [62] Laskin DL, Pendino KJ. Macrophages and inflammatory mediators in tissueinjury[J]. Annu Rev Pharmacol Toxicol,1995,35:655–677.
    [63] Bruun JM, Helge JW, Richelsen B, et al. Diet and exercise reduce low-gradeinflammation and macrophage infiltration in adipose tissue but not in skeletal musclein severely obese subjects[J]. Am J Physiol Endocrinol Metab,2006,290: E961–E967.
    [64] Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adiposetissue-derived cytokines: in vivo and in vitro investigations in humans[J]. Am JPhysiol Endocrinol Metab,2003,285: E527–E533.
    [65] Martin-Cordero L, Garcia JJ, Giraldo E, et al. Influence of exercise on thecirculating levels and macrophage production of IL-1beta and IFNgamma affected bymetabolic syndrome: an obese Zucker rat experimental animal model [J]. Eur J ApplPhysiol,2009,107:535–543.
    [66] Carmichael MD, Davis JM, Murphy EA, et al. Role of brain macrophages onIL-1beta and fatigue following eccentric exercise-induced muscle damage[J].BrainBehav Immun,2010,24(4):564–568.
    [67] Chen MF, Chen HI, Jen CJ. Exercise Training Upregulates Macrophage MKP-1and Impacts Immune Responses in Mice[J]. Med Sci Sports Exerc,2010,42:2173–2179.
    [68] Davis JM, Murphy EA, Brown AS, et al. Effects of moderate exercise and oatbeta-glucan on innate immune function and susceptibility to respiratory infection[J].Am J Physiol Regul Integr Comp Physiol,2004,286:R366–R372.
    [69] Kohut ML, Boehm GW, Moynihan JA. Moderate exercise is associated withenhanced antigen-specific cytokine, but not IgM antibody production in aged mice[J].Mech Ageing Dev,2001,122:1135–1150.
    [70] Bauer D, Mrzyk S, van Rooijen N, et al. Macrophage-depletion influences thecourse of murine HSV-1keratitis[J]. Curr Eye Res,2000,20:45–53.
    [71] Cheng H, Tumpey TM, Staats HF, et al. Role of macrophages in restrictingherpes simplex virus type1growth after ocular infection[J]. Invest Ophthalmol VisSci,2000,41:1402–1409.
    [72] Murphy EA, Davis JM, Brown AS, et al. Role of lung macrophages onsusceptibility to respiratory infection following short-term moderate exercisetraining[J]. Am J Physiol Regul Integr Comp Physiol,2004,287:R1354–R1358.
    [73] Leemans JC, Juffermans NP, Florquin S, et al. Depletion of alveolarmacrophages exerts protective effects in pulmonary tuberculosis in mice[J]. JImmunol,2001,166:4604–4611.
    [74] Davis JM, Kohut ML, Colbert LH, et al. Exercise, alveolar macrophage function,and susceptibility to respiratory infection[J]. J Appl Physiol,1997,83:1461-1466.
    [75] Kohut ML, Davis JM, Jackson DA, et al. The role of stress hormones inexercise-induced suppression of alveolar macrophage antiviral function[J]. JNeuroimmunol,1998,81:193–200.
    [76] Kohut ML, Davis JM, Jackson DA, et al. Exercise effects on IFN-β expressionand viral replication in lung macrophages after HSV-1infection[J]. Am J Physiol,1998,275:1089–1094.
    [77] Brown AS, Davis JM, Murphy EA, et al. Gender differences in macrophageantiviral function following exercise stress[J]. Med Sci Sports Exerc,2006,38:859–863.
    [78] Brown AS, Davis JM, Murphy EA, et al. Susceptibility to HSV-1infection andexercise stress in female mice: role of estrogen[J]. J Appl Physiol,2007,103:1592–1597.
    [79] Kohut ML, Senchina DS, Madden KS, et al. Age effects on macrophage functionvary by tissue site, nature of stimulant, and exercise behavior[J]. Exp Gerontol,2004,39:1347–1360.
    [80] Singh A, Feilla ML, Deuster PA. Exercise-induced changes in immune function:effects of zinc supplementation[J]. J Appl Physiol,1994,76:2298–2303.
    [81] Castell LM, Newsholme EA. The effects of oral glutamine supplementation onathletes after prolonged, exhaustive exercise[J]. Nutrition,1997,13:738–742.
    [82] Henson DA, Nieman DC, Blodgett AD, et al. Influence of exercise mode andcarbohydrate on the immune response to prolonged exercise[J]. Int J Sport Nutr,1999,9:213–228.
    [83] Peters EM, Goetzsche JM, Grobbelarr B, et al. Vitamin C supplementationreduces the incidence of post-race symptoms of upper respiratory tract inultramarathon runners[J]. Am J Clin Nutr,1993,57:170–174.
    [84] Vetivicka V, Thornton BP, Ross GD. Soluble beta-glucan polysaccharidebinding to the lectin site of neutrophil or natural killer cell complement receptor type3(CD11b/CD18) generates a primed state of the receptor capable of mediatingcytotoxicity of iC3b-opsonized target cells[J]. J Clin Invest,1996,98:50–61.
    [85] Murphy EA, Davis JM, Brown AS, et al. Benefits of oat β-glucan on respiratoryinfection following exercise tress: role of lung macrophages[J]. Am J Physiol RegulIntegr Comp Physiol,2008,294: R1593–R1599.
    [86] Murphy EA, Davis JM, Carmichael MD, et al. Benefits of oat β-glucan andsucrose feedings on infection and macrophage antiviral resistance following exercisestress[J]. Am J Physiol Regul Integr Comp Physiol,2009,297: R1188–R1194.
    [87] Kohut ML, Davis JM, Jackson DA, et al. The role of stress hormones inexercise-induced suppression of alveolar macrophage antiviral function[J]. JNeuroimmunol,1998,81:193–200.
    [88] Itoh CE, Kizaki T, Hitomi Y, et al. Down-regulation of beta2-adrenergic receptorexpression by exercise training increases IL-12production by macrophages followingLPS stimulation[J]. Biochem Biophys Res Commun,2004,322:979–984.
    [89] Kizaki T, Takemasa T, Sakurai T, et al. Adaptation of macrophages to exercisetraining improves innate immunity[J]. Biochem Biophys Res Commun,2008,372:152–156.
    [90] Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell,2000,100:57–70.
    [91] Jackson L, Evers BM. Chronic inflammation and pathogenesis of GI andpancreatic cancers[J]. Cancer Treat Res,2006,130:39–65.
    [92] Adams DO, Hamilton TA. The cell biology of macrophage activation[J]. AnnuRev Immunol,1984,2:283–318.
    [93] Hamilton TA, Adams DO. Mechanisms of macrophage mediated tumor injury[J].In: Tumor Immunology—Mechanisms, Diagnosis, Therapy,1987,89–107.
    [94] Hull MA, Booth JK, Tisbury A, et al. Cyclooxygenase2is up-regulated andlocalized to macrophages in the intestine of Min mice[J]. Br J Cancer,1999,79:1399–1405.
    [95] Konur A, Kreutz M, Knuchel R, et al. Threedimensional co-culture of humanmonocytes and macrophages with tumor cells: analysis of macrophage differentiationand activation[J]. Int J Cancer,1996,66:645–652.
    [96] Sinicrope FA. Targeting cyclooxygenase-2for prevention and therapy ofcolorectal cancer[J]. Mol Carcinog,2006,45:447–454.
    [97] Swamy MV, Patlolla JM, Steele VE, et al. Chemoprevention of familialadenomatous polyposis by low doses of atorvastatin and celecoxib given individuallyand in combination to APCMin mice[J]. Cancer Res,2006,66:7370–7377.
    [98] Woods JA, Davis JM, Mayer EP, et al. Exercise increases inflammatorymacrophage antitumor cytotoxicity[J]. J Appl Physiol,1993,75:879–886.
    [99] Davis JM, Kohut ML, Jackson DA, et al. Exercise effects on lung tumormetastases and in vitro alveolar macrophage antitumor cytotoxicity[J]. Am J Physiol,1998,274:1454–1459.
    [100] Woods JA, Davis JM, Mayer EP, et al. Effects of exercise on macrophageactivation for antitumor cytotoxicity[J]. J Appl Physiol,1994,76:2177–2185.
    [101] de Lima C, Alves LE, Iagher F, et al. Anaerobic exercise reduces tumor growth,cancer cachexia and increases macrophage and lymphocyte response in Walker256tumor-bearing rats[J]. Eur J Appl Physiol,2008,104:957–964.
    [102] Murphy EA, Davis JM, Brown AS, et al. Effects of moderate exercise and oatβ-glucan on lung tumor metastases and macrophage antitumor cytotoxicity[J]. J ApplPhysiol,2004,97:955–959.
    [103] Wustrow TP, Denny TN, Fernandes G, et al. Changes in macrophages and theirfunctions with aging in C57BL/6J, AKR/J, and SJL/J mice[J]. Cell Immunol,1986,69:227–231.
    [104] Alvarez E, Machado A, Sobrino F, et al. Nitric oxide and superoxide anionproduction decreases with age in resident and activated rat peritoneal macrophages[J].Cell Immunol,1996,169:152–155.
    [105] Lu Q, Ceddia MA, Price EA, et al. Chronic exercise increases macrophage-mediated tumor cytolysis in young and old mice[J]. Am J Physiol,1999,276:482–489.
    [106] Costa Rosa LF, Curi R, Murphy C, et al. Effect of adrenaline and phorbolmyristate acetate or bacterial lipopolysaccharide on stimulation of pathways ofmacrophage glucose, glutamine and O2metabolism. Evidence for cyclicAMP-dependent protein kinase mediated inhibition of glucose-6-phosphatedehydrogenase and activation of NADP+-dependent ‘malic’ enzyme[J]. Biochem J,1995,310:709–714.
    [107] Newsholme EA. Biochemical mechanisms to explain immunosuppression inwell-trained and overtrained athletes[J]. Int J Sports Med,1994,15: S142–S147.
    [108] Lehmann M, Huonker M, Dimeo F, et al. Serum amino acid concentrations innine athletes before and after the1993Colmar ultra triathlon[J]. Int J Sports Med,1995,16:155–159.
    [109] Rowbottom DG, Keast D, Garcia-webb P, et al. Training adaptation andbiological changes among well-trained male triathletes[J]. Med Sci Sports Exercise,1997,29:1233–1239.
    [110] Rohde T, Maclean D, Pedersen BK. Effect of glutamine on changes in theimmune system induced by repeated exercise[J]. Med Sci Sports Exercise,1998,30:856–862.
    [111] Bacurau RF, Bassit RA, Sawada L, et al. Carbohydrate supplementation duringintense exercise and the immune response of cyclists[J]. Clin Nutr,2002,21:423–429.
    [112] Bassit RA, Sawada LA, Bacurau RF, et al. Branched-chain amino acidsupplementation and the immune response of long-distance athletes[J]. Nutrition,2002,18:376–379.
    [113] Sugiura H, Sugiura H, Inaba R, et al. Effects of Different Frequency Exerciseon Macrophage Functions and Lymphocyte proliferetion in Mice[J].Adv Exerc SportsPhysiol,1998,4:93–102.
    [114] De la Fuente M, Hernanz A, Collazos ME, et al. Effects of physical exerciseand aging on ascorbic acid and superoxide anion levels in peritoneal macrophagesfrom mice and guinea pigs[J]. J Comp Physiol B,1995,165:315–319.
    [115] Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinicalrelevance[J]. Am J Clin Nutr,2006,83:735–743.
    [116] Parry-Billings M, Leighton B, Dimitriadis GD, et al. The effect of tumourbearing on skeletal muscle glutamine metabolism[J]. Int J Biochem,1991,23:933–937.
    [117] Bacurau RF, Belmonte MA, Seelaender MC, et al. Effect of a moderateintensity exercise training protocol on the metabolism of macrophages andlymphocytes of tumour-bearing rats[J]. Cell Biochem Funct,2000,18:249–258.
    [118] Bacurau AV, Belmonte MA, Navarro F, et al. Effect of a High-IntensityExercise Training on the Metabolism and Function of Macrophages and Lymphocytesof Walker256Tumor–Bearing Rats[J]. Exp Biol Med,2007,232:1289–1299.
    [1] Meyer T, Gabriel HH, R tz M, et al. Anaerobic exercise induces moderate acutephase response[J]. Med Sci Sports Exerc,2001,33:549–555.
    [2] Nieman DC. Exercise, infection, and immunity[J]. Int J Sports Med,1994,15:S131–S141.
    [3] Nieman DC. Exercise, upper respiratory tract infection, and the immune system[J].Med Sci Sports Exerc,1994,26:128–139.
    [4] Ceddia MA, Voss EW, Woods JA. Intracellular mechanisms responsible forexercise-induced suppression of macrophage antigen presentation[J]. J Appl Physiol,2000,88:804–810.
    [5] Ceddia MA, Woods JA. Exercise suppresses macrophage antigen presentation[J].J Appl Physiol,1999,87:2253–2258.
    [6] Davis JM, Kohut ML, Colbert LH, et al. Exercise, alveolar macrophage function,and susceptibility to respiratory infection[J]. J Appl Physiol,1997,83:1461–1466.
    [7] Kohut ML, Davis JM, Jackson DA, et al. Exercise effects on IFN-β expressionand viral replication in lung macrophages after HSV-1infection[J]. Am J Physiol,1998,275:L1089–1094.
    [8] Raidal SL, Love DN, Bailey GD, et al. The effect of high intensity exercise on thefunctional capacity of equine pulmonary alveolar macrophages and BAL-derivedlymphocytes[J]. Res Vet Sci,2000,68:249–253.
    [9] Murphy EA, Davis JM, Brown AS, et al. Role of lung macrophages onsusceptibility to respiratory infection following short-term moderate exercisetraining[J]. Am J Physiol Regul Integr Comp Physiol,2004,287: R1354–R1358.
    [10] Minakami R, Sumimotoa H. Phagocytosis-coupled activation of thesuperoxide-producing phagocyte oxidase, a member of the NADPH oxidase (Nox)family [J]. Int J Hematol,2006,84:193–198.
    [11] Wang Y, Zeigler MM, Lam GK, et al. The Role of the NADPH OxidaseComplex, p38MAPK, and Akt in Regulating Human Monocyte/MacrophageSurvival[J]. Am J Respir Cell Mol Biol,2007,36:68–77.
    [12] Lee NK, Choi YG, Baik JY, et al. A crucial role for reactive oxygen species inRANKL-induced osteoclast differentiation [J]. Blood,2005,106:852–859.
    [13] Brown DM, Donaldson K, Borm PJ, et al. Calcium and ROS-mediated activationof transcription factors and TNF-α cytokine gene expression in macrophages exposedto ultrafine particles[J]. Am J Physiol Lung Cell Mol Physiol,2004,286: L344–L353.
    [14] De la Fuente M, Martín MI, Ortega E. Changes in the phagocytic function ofperitoneal macrophages from old mice after strenuous physical exercise[J]. MicrobiolInfect Dis,1990,13:189–198.
    [15] Fehr HG, L tzerich H, Michna H. The influence of physical exercise onperitoneal macrophage functions: histochemical and phagocytic studies[J]. Int JSports Med,1988,9:77–81.
    [16] Ortega E, Forner MA, Barriga C. Exercise-induced stimulation of murinemacrophage chemotaxis: role of corticosterone and prolactin as mediators[J]. JPhysiol,1997,498:729–734.
    [17] Ferrandez MD, De la Fuente M. Effects of age, sex and physical exercise on thephagocytic process of murine peritoneal macrophages[J]. Acta Physiol Scand,1999,166:47–53.
    [18] Hohl R, Ferraresso RL, De Oliveira RB, et al. Development and Characterizationof an Overtraining Animal Model[J]. Med Sci Sports Exerc,2009,41:1155–1163.
    [19]肖卫华,陈佩杰.过度训练对大鼠腹膜巨噬细胞活性氧生成能力的影响及其相关机制研究[J].中国运动医学杂志,2011,30:736–739.
    [20] Long F, Wang YX, Liu L, et al. Rapid nongenomic inhibitory effects ofglucocorticoids on phagocytosis and superoxide anion production by macrophages[J].Steroids,2005,70:55–61.
    [21]肖卫华,陆耀飞.机械生长因子实时荧光定量RT-PCR检测方法研究[J].上海体育学院学报,2010,34:43–45.
    [22] Wang R, Chen P. Modulation of NKT cells and Th1/Th2imbalance afterα-GalCer treatment in progressive load-trained rats[J]. Int J Biol Sci,2009,5:338–343.
    [23] Dong J, Chen P, Wang R, et al. NADPH oxidase: a target for the modulation ofthe excessive oxidase damage induced by overtraining in rat neutrophils[J]. Int J BiolSci,2011,7:881–891.
    [24] Chen MF, Chen HI, Jen CJ. Exercise Training Upregulates Macrophage MKP-1and Impacts Immune Responses in Mice[J]. Med Sci Sports Exerc,2010,42:2173–2179.
    [25] Sugiura H, Nishida H, Mirbod SM. Immunomodulatory action of chronicexercise on macrophage and lymphocyte cytokine production in mice[J]. Acta PhysiolScand,2002,174:247–256.
    [26] Sugiura H, Sugiura H, Inaba R, et al. Effects of Different Frequency Exercise onMacrophage Functions and Lymphocyte proliferetion in Mice[J]. Adv Exerc SportsPhysiol,1998,4:93–102.
    [27] Papparella I, Ceolotto G, Berto L, et al.Vitamin C prevents zidovudine-inducedNAD(P)H oxidase activation and hypertension in the rat[J]. Cardiovasc Res,2007,73:432–438.
    [28] Fan CY, Katsuyama M, Yabe-Nishimura C. PKCdelta mediates up-regulation ofNOX1, a catalytic subunit of NADPH oxidase, via transactivation of the EGF receptor:possible involvement of PKCdelta in vascular hypertrophy[J]. Biochem J,2005,390:761–767.
    [29] Serezani CH, Aronoff DM, Jancar S, et al. Leukotrienes enhance the bactericidalactivity of alveolar macrophages against Klebsiella pneumoniae through theactivation of NADPH oxidase[J]. Blood,2005,106:1067–1075.
    [30] Wei H, Mi X, Ji L, et al. Protein kinase C-delta is involved in induction of NOX1gene expression by aldosterone in rat vascular smooth muscle cells[J]. Biochemistry(Mosc),2010,75:304–309.
    [31] Polimeni M, Gazzano E, Ghiazza M, et al. Quartz inhibits glucose6-phosphatedehydrogenase in murine alveolar macrophages[J]. Chem Res Toxicol,2008,21:888–894.
    [32] Olker C, Siese A, Stumpf S, et al. Impaired superoxide radical production bybronchoalveolar lavage cells from NO(2)-exposed rats[J]. Free Radic Biol Med,2004,37:977–987.
    [33]肖卫华,陈佩杰,王茹等.过度训练及补充二联甲苯或谷氨酰胺对大鼠腹膜巨噬细胞活性氧和诱导型一氧化氮合酶的影响[J].体育科学,2011,31:49–54.
    [34] Renier G, Clément I, Desfaits AC, et al. Direct stimulatory effect of insulin-likegrowth factor-I on monocyte and macrophage tumor necrosis factor-alpha production[J]. Endocrinology,1996,137:4611–4618.
    [35] Ueland T, Fougner SL, Godang K, Lekva T et al. Associations between BodyComposition, Circulating Interleukin-1Receptor Antagonist, Osteocalcin, and InsulinMetabolism in Active Acromegaly[J]. J Clin Endocrinol Metab,2010,95:361–368.
    [36] Furundzija V, Fritzsche J, Kaufmann J, et al. IGF-1increases macrophagemotility via PKC/p38-dependent αvβ3-integrin inside-out signaling[J]. BiochemBiophys Res Commun,2010,394:786–791.
    [37] Oberlin D, Fellbaum C, Eppler E. Insulin-like growth factor I messenger RNAand protein are expressed in the human lymph node and distinctly confined tosubtypes of macrophages, antigen-presenting cells, lymphocytes and endothelialcells[J]. Immunology,2009,128:342–350.
    [38] Hameed M, Orrell RW, Cobbold M, et al. Expression of IGF-I splice variants inyoung and old human skeletal muscle after high resistance exercise[J]. J Physiol,2003,547:247–254.
    [39] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) andmature IGF-I in myoblast proliferation and differentiation[J]. FEBS Lett,2002,522:156–160.
    [1] Flaring UB, Rooyackers OE, Wernerman J, et al. Glutamine attenuates post-traumatic glutathione depletion in human muscle[J]. Clin Sci,2003,104:275–282.
    [2] Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid?[J].Nutr Rev,1990,48:297–309.
    [3] Ardawi MS, Newsholme EA. Glutamine metabolism in lymphocytes of the rat[J].Biochem J,1983,212:835–842.
    [4] PhilipN. Why is L-Glutamine Metabolism Important to Cells of the ImmuneSystem in Health, Post injury, Surgery or Infection?[J]. Journal of Nutrition,2001,131:2515–2522.
    [5] Wallace C, Keast D. Glutamine and macrophages function[J]. Metabolism,1992,41:1016–1020.
    [6] Bellows CF, Jaffe BM. Glutamine is essential for nitric oxide synthesis by murinemacrophages[J]. J Surg Res,1999,86:213–219.
    [7] Yassad A, Husson A, Bion A, et al. Synthesis of interleukin1beta and interleukin6by stimulated rat peritoneal macrophages: modulation by glutamine[J]. Cytokine,2000,12:1288–1291.
    [8] Yassad A, Lavoinne A, Bion A, et al. Glutamine accelerates IL-6production byrat peritoneal macrophages in culture[J]. FEBS Lett,1997,413:81–84.
    [9] Murphy C, Newsholme P. Macrophage-mediated lysis of a β-cell line, TNF-αrelease from BCG-actived murine macrophages and IL-8release from humanmonocytes are dependent on extracelular glutamine concentration and glutaminemetabolism[J]. Clin Sci,1999,96:89–97.
    [10] Costa Rosa LF, Curi R, Murphy C, et al. Effect of adrenaline and phorbolmyristate acetate or bacterial lipopolysaccharide on stimulation of pathways ofmacrophage glucose, glutamine and O2metabolism. Evidence for cyclicAMP-dependent protein kinase mediated inhibition of glucose-6-phosphatedehydrogenase and activation of NADP+-dependent ‘malic’ enzyme[J]. Biochem J,1995,310:709–714.
    [11] Newsholme P. Why is L-glutamine metabolism important to cells of the immunesystem in health, postinjury, surgery or infection?[J]. J Nutr,2001,131:S2515–S2522.
    [12] Ardawi SM. Glutamine and glucose metabolism in human peripherallymphocytes[J]. Metabolism,1988,37:99–103.
    [13] Wilmore DW, Shabert JK. The role of glutamine in immunologic responses[J].Nutrition,1998,14:618-626.
    [14]董静梅.过度训练引起大鼠中性粒细胞过氧化损伤的机制与防护研究[D].上海:上海体育学院,2011.
    [15] Rogero MM, Borelli P, Fock RA, et al. Glutamine in vitro supplementationpartly reverses impaired macrophage function resulting from early weaning in mice[J].Nutrition,2008,24:589–598.
    [16] Parry BM, Evans J, Calder PC. Does glutamine contribute to immunologicsuppression after major burns?[J]. Lancet,1990,336:523–525.
    [17] Wells SM, Kew S, Yaqoob P, et al. Dietary glutamine enhances cytokineproduction by murine macrophages[J]. Nutrition,1999,15:881–884.
    [18] Yassad A, Husson A, Bion A, et al. Synthesis of interleukin1beta and interleukin6by stimulated rat peritoneal macrophages: modulation by glutamine[J]. Cytokine,2000,12:1288–1291.
    [19] Lagranha CJ, de Lima TM, Senna SM, et al. The effect of glutaminesupplementation on the function of neutrophils from exercised rats[J]. Cell BiochemFunct,2005,23:101–107.
    [1] Renier G, Clément I, Desfaits AC, et al. Direct stimulatory effect of insulin-likegrowth factor-I on monocyte and macrophage tumor necrosis factor-alpha production[J]. Endocrinology,1996,137:4611–4618.
    [2] Ueland T, Fougner SL, Godang K, et al. Associations between Body Composition,Circulating Interleukin-1Receptor Antagonist, Osteocalcin, and Insulin Metabolismin Active Acromegaly[J]. J Clin Endocrinol Metab,2010,95:361–368.
    [3] Hochberg Z, Hertz P, Maor G, et al. Growth hormone and insulin-like growthfactor I increase macrophage uptake and degradation of low-density lipoprotein[J].Endocrinology,1992,131:430–435.
    [4] Furundzija V, Fritzsche J, Kaufmann J,et al. IGF-1increases macrophage motilityvia PKC/p38-dependent αvβ3-integrin inside-out signaling[J]. Biochem Biophys ResCommun,2010,394:786–791.
    [5] Oberlin D, Fellbaum C, Eppler E. Insulin-like growth factor I messenger RNA andprotein are expressed in the human lymph node and distinctly confined to subtypes ofmacrophages, antigen-presenting cells, lymphocytes and endothelial cells[J].Immunology,2009,128:342–350.
    [6] Yang SY, Goldspink G. Diffrent roles of the IGF-I Ec peptide (MGF) and matureIGF-I in myoblast proliferation and differentiation[J]. FEBS Letters,2002,522:156–160.
    [7] Iida K, Itoh E, Kim DS, et al. Muscle mechano growth factor is preferentiallyinduced by growth hormone in growth hormone-deficient lit/lit mice[J]. J Physiol,2004,560:341–349.
    [8] Barton-Davies ER, Shortuma DI, Musaro A, et al. Viral mediated expression ofinsulin-like growth factor I blocks the aging-related loss of skeletal muscle function[J]. Proc Natl Acad Sci USA,1998,95:15603–15607.
    [9]肖卫华,陆耀飞.骨骼肌损伤后修复过程中机械生长因子作用研究[J].体育科学,2008,28:34–38.
    [10]肖卫华,陆耀飞.机械生长因子实时荧光定量RT-PCR检测方法研究[J].上海体育学院学报,2010,34:43–45.
    [11]肖卫华,陈佩杰. IGF-1和MGF在过度训练抑制大鼠腹膜巨噬细胞吞噬功能中的作用研究[J].体育科学,2011,31:67–71.
    [12]肖卫华,陈佩杰.补充谷氨酰胺对过度训练大鼠腹膜巨噬细胞IGF-1和MGF基因表达的影响[J].中国运动医学杂志,2011,30:634–638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700