用户名: 密码: 验证码:
Aβ诱导AD大鼠的炎症机制及乙酰葛根素和壳聚糖磷脂酰胆碱的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和意义
     阿尔茨海默病(Alzheimer disease, AD)是一种起病隐匿的进行性发展的中枢神经系统退行性疾病,临床上主要表现为进行性记忆减退和认知障碍。AD可能是一组异质性疾病,病因尚未十分明确,存在多种因素,包括生物因素和社会心理因素。近年来大量研究证实,AD脑(尤其在海马)内持续存在着慢性进展性的炎性反应,认为小胶质细胞活化及炎症介导的神经毒性在神经退行性疾病的发病机制中起了决定性作用,炎性反应是AD出现认知和记忆障碍的重要机制。其中,有证据表明,p淀粉样蛋白(amyloid-beta, Aβ)沉积激活小胶质细胞引起的炎症反应是AD的发病核心,Aβ诱导引起的神经炎症是AD进展的关键事件之一,其中小胶质细胞是主要涉及的细胞,因此对小胶质细胞的激活进行干预可能会减缓疾病的进程,从而对中枢神经系统起保护作用,因而,以小胶质细胞为靶目标的研究有望成为新型抗AD药物研发的新方向。另外,目前公认的是胆碱能假说,认为老年认知障碍的临床症状是由于患者脑内胆碱酯能神经元损伤引起乙酰胆碱生成、释放减少所致。AD患者乙酰胆碱递质减少,因此,可通过增加乙酰胆碱的含量来治疗AD。
     目前有关AD抗炎方面药物的研究主要集中在诸如非类固醇抗炎药(NSAIDS)、雌激素等,其防治AD的共同通路可能都是通过抑制AD的始动环节,即抑制患者脑内Ap沉积和老年斑的形成以及由此而引发的脑内炎症反应。但NSAIDs的长期应用可导致严重的胃粘膜损伤和肾功能障碍等,长期使用雌激素可能诱发乳腺或子宫内膜的癌变;NSAIDs和雌激素的毒副作用,限制了它们在临床上的使用。
     葛根素(Puerarin)是从中药葛根中提取的异黄酮类化合物,具有阻断p受体、增加脑血流和脑代谢、清除氧自由基、促进免疫、改善学习记忆、抑制Ap激发的大鼠海马炎性反应等功效,是临床上治疗冠心病、脑血栓的常用和有效药物,但由于其脂溶性差,血脑屏障透过率低,因此在治疗脑部疾病时不能充分发挥其药理活性,很大程度上限制了其临床疗效的发挥。乙酰葛根素(六乙酰葛根素,化学名8-C-β-D-2",3”,4”,6”-四乙酰基吡喃葡萄糖-7,4’-二乙酰基异黄酮)是由葛根素经用醋酐溶解并酰化得到的葛根素衍生物,在大鼠体内代谢为葛根素,口服后在大鼠体内的暴露水平得到显著提高,更容易通过血脑屏障发挥作用,有更大的临床应用价值和前景。以往研究显示乙酰葛根素对脑缺血再灌注的保护作用,其机制可能通过作用于NMDA受体、抗氧自由基、抗脂质过氧化、抑制C-fos和ICAM-1、诱导VEGF等。但关于乙酰葛根素用于AD抗炎作用的研究文献报道较少。
     壳聚糖(Chitosan)是甲壳素脱乙酰化的产物,为天然阳离子聚合物,无毒,安全可靠,呈碱性,且具有很好的生物相容性。国外研究表明,壳聚糖能调节细胞分化、增殖及细胞因子的产生,清除自由基,中和体内毒素,保护脑神经细胞和神经胶质细胞膜。有研究发现,高分子量水溶性壳聚糖能预防神经细胞凋亡。Mi-Sun Kim等体外研究显示水溶性壳聚糖的抗炎作用,可降低并延迟AD病理改变。卵磷脂是生物细胞膜的主要构成成份,且具有抗炎、增强免疫作用,所含胆碱可作为神经递质乙酰胆碱的前体物质,是神经元之间依靠化学物质传递信息的一种最主要的“神经递质”,一旦与壳聚糖形成复合物,可作为载体携带壳聚糖通过血脑屏障。本课题组前期应用溶剂分散法和湿态研磨法制备壳聚糖磷脂复合物,并进行了其防治老年性痴呆的基础和临床研究,从组织形态学角度研究发现壳聚糖磷脂胆碱的抗氧化、保护神经细胞作用,显示壳聚糖磷脂胆碱可提高痴呆大鼠和老年性痴呆病人的记忆能力,修复痴呆大鼠的神经细胞膜损伤,增加脑乙酰胆碱含量,清除自由基,改善脑功能。但壳聚糖磷脂胆碱用于对AD的抗炎作用及机制研究,文献中尚未见报道。
     本研究分两部分:
     第一部分Aβ诱导AD大鼠的炎症机制及乙酰葛根素的干预作用
     第二部分壳聚糖磷脂酰胆碱对Aβ诱导AD大鼠的学习记忆作用及抗炎机制
     第一部分Ap诱导AD大鼠的炎症机制及乙酰葛根素的干预作用
     目的
     本研究采用体内实验,从整体、组织、细胞、分子水平,利用双侧海马注射Aβ1-42所致AD模型大鼠为研究对象,利用行为学、免疫组织化学、分子生物学等技术方法,观察乙酰葛根素对Aβ诱导大鼠学习记忆的作用及抗炎机制,为AD治疗提供有效的策略方法和理论依据。
     方法
     采用双侧海马注射Aβl-42法所致AD模型大鼠为研究对象。实验动物分组:将40只wistar大鼠随机分为空白对照组、Aβ模型组、乙酰葛根素低剂量组和高剂量组,每组各10只。术后14天,药物低剂量组和高剂量组分别腹腔注射给予乙酰葛根素100mg/kg和200mg/kg,共12天。对照组和模型组给予腹腔注射相同容量生理盐水,共12天。应用Morris水迷宫试验观察乙酰葛根素对Aβ1-42诱导模型大鼠的学习记忆功能,包括观察记录大鼠的逃逸时间及在原平台象限停留时间。应用免疫组织化学法、透射电镜技术,观察乙酰葛根素对Ap1.-42模型大鼠大脑皮层及海马小胶质细胞的影响。并应用免疫组织化学法检测海马PKC-δ、IKK-β、iNOS阳性表达及定位。应用Western-blot法检测Aβ1-42大鼠海马PKC-δ、IKK-β及IL-1β的蛋白质表达水平。应用ELISA法检测大鼠血清中IL-6含量的变化。
     全部数据分析均采用SPSS17.0软件进行。实验数据以均数±标准差表示,组间比较采用方差分析及t检验,P<0.05为具有统计学意义。
     结果
     1.Aβ1-42诱导对大鼠学习记忆能力的影响及乙酰葛根素的作用
     Morris水迷宫定位航行实验显示,模型制备前,4组大鼠到达平台的逃避潜伏期大致相同(P>0.05);术后14天,模型组、药物低剂量组、高剂量组大鼠到达平台的潜伏期明显长于空白对照组(P<0.01);术后26天,即乙酰葛根素治疗12天后,空白组、药物低剂量、高剂量组大鼠到达平台的潜伏期明显短于模型组(乙酰葛根素低剂量组,P<0.05;乙酰葛根素高剂量组,P<0.01)。空间探索实验显示:模型制备前,4组大鼠在原平台象限停留时间大致相同(P>0.05);术后14天,模型组、药物低剂量组、高剂量组大鼠在原平台象限停留时间减少,明显少于空白对照组(P<0.01);乙酰葛根素治疗12天后,空白对照组、药物低剂量组、高剂量组大鼠在原平台象限停留时间明显高于模型组(乙酰葛根素低剂量组,P<0.05;乙酰葛根素高剂量组,P<0.01)。
     2.Aβ1-42诱导对大鼠大脑皮层及海马小胶质细胞的影响及乙酰葛根素的作用
     大脑皮层Ibal免疫组织化学染色结果:模型组小胶质细胞(Microglia,MG)数目最多,胞体增大增粗,黄染,着色深;乙酰葛根素低剂量组、高剂量组MG数目较少,胞体变小,淡染,着色浅;对照组MG数目最少,淡染。Ibal阳性细胞计数结果显示,模型组与对照组比较,MG数目明显增多(P<0.05),而乙酰葛根素低剂量组和高剂量组与模型组比较,前额皮层小胶质细胞数目明显减少(乙酰葛根素低剂量组,P<0.05;乙酰葛根素高剂量组,P<0.01)。
     透射电镜结果显示:对照组MG较小,可见清晰的粗面内质网和线粒体,核仁清楚,异染色质明显,电子密度高。模型组MG有较多突起,异染色质减少和松散,胞浆丰富,核糖体数量增加,并可见溶酶体颗粒。乙酰葛根素低剂量组:胞浆电子密度低,可见破碎的线粒体嵴。乙酰葛根素高剂量组:细胞核形状规则,可见高尔基复合体。
     3.Aβ1-42诱导对大鼠海马组织中PKC-δ及IKK-β的影响及乙酰葛根素的作用
     PKC-δ、IKK-β被选为本研究与NF-κB通路相关的指标。免疫组织化学法检测了每组大鼠海马组织PKC-δ和IKK-β的免疫染色反应。PKC-δ染色结果:其免疫反应阳性物质呈棕黄色,定位于胞膜和胞浆。AD模型组PKC-δ的免疫反应阳性细胞最多,着色最深,细胞内的阳性颗粒最多,主要位于胞浆内;对照组和药物组阳性细胞较少,神经元胞浆着色浅。定量分析结果显示:模型PKC-δ海马阳性细胞的数量高于对照组、乙酰葛根素低剂量组和乙酰葛根素高剂量组,差异有统计学意义(P<0.05),并呈剂量依赖性。
     在IKK-β免疫反应染色也观察到了类似的结果:模型组海马区IKK-β阳性细胞最多并成深棕色;对照组IKK-β阳性细胞较少,基本没有棕黄色颗粒表达的IKK-β,偶见神经元胞浆浅着色;乙酰葛根素组可见到少量IKK-β免疫反应阳性细胞且着色浅。定量分析结果显示:模型IKK-β海马阳性细胞的数量高于对照组、乙酰葛根素低剂量组和乙酰葛根素高剂量组,差异有统计学意义,(P<0.05),并呈剂量依赖性。
     Western blot法观测了大鼠海马组织PKC-δ和IKK-β的表达,结果显示:双侧海马注射Aβ1-42能显著增加PKC-δ和IKK-β的表达,模型组约为正常对照组的2倍。乙酰葛根素治疗能显著减低Aβ1-42引起PKC-δ和IKK-β的表达,并呈剂量依赖性。
     4.Ap1-42诱导对大鼠海马组织中iNOS、IL-1β及血清IL-6的影响及乙酰葛根素的作用
     iNOS、IL-1β及IL-6被选为本研究炎症反应的标志物。免疫组织化学法检测了海马组织iNOS的表达。iNOS染色结果:其免疫反应阳性物质呈棕黄色,定位于细胞的胞膜和胞浆。其中,AD模型组iNOS的免疫反应阳性细胞最多,着色最深,细胞内的阳性颗粒最多,主要位于胞浆内;对照组和药物组阳性细胞较少,神经元胞浆着色浅。定量分析结果显示:模型iNOS海马阳性细胞的数量高于对照组、乙酰葛根素低剂量组和乙酰葛根素高剂量组,差异有统计学意义(乙酰葛根素低剂量组P<0.05;乙酰葛根素高剂量组P<0.01),并呈剂量依赖性。
     Western blot分析表明,双侧海马注射Aβ1-42能显著增加IL-1p的表达,模型组约为正常对照组的2倍。
     Elisa实验结果显示,治疗后模型组血清中IL-6的含量显著高于空白对照组、乙酰葛根素低剂量组、高剂量组,差异具有统计学意义(P<0.05)。
     结论
     1.Ap1-42双侧海马注射能明显降低大鼠学习记忆能力,成功模拟炎性AD模型,可以用于检测药物的抗炎作用。
     2.乙酰葛根素对Aβ1-42所致AD模型大鼠学习记忆障碍具有明显的改善作用;由此推断出,乙酰葛根素能够成为防治AD发生发展的新型药物。
     3.乙酰葛根素的作用机制可能是抑制了Ap沉积所引起的小胶质细胞激活,下调脑组织PKC-δ和IKK-β的表达,从而抑制NF-κB信号通路的激活,减少了炎性因子iNOS、IL-1β、 IL-6的分泌,减轻大脑皮层、海马神经元及小胶质细胞的炎性反应,从而发挥其神经保护作用。
     第二部分壳聚糖磷脂酰胆碱对Aβ诱导AD大鼠的学习记忆作用及抗炎机制
     目的
     本研究采用体内实验,从整体、组织水平,利用双侧海马注射Aβ25-35所致AD模型大鼠为研究对象,应用行为学、免疫组织化学技术观察壳聚糖磷脂酰胆碱对Ap诱导大鼠的作用及抗炎机制,为AD治疗提供有效的策略方法。
     方法
     采用喷雾干燥器制备壳聚糖磷脂酰胆碱复合物微球,用分光光度法分别测定壳聚糖、卵磷脂的含量。采用双侧海马注射Aβ25-35法所致AD模型大鼠为研究对象。实验动物分组:将50只Wistar大鼠随机分为对照组、Aβ模型组、壳聚糖磷脂酰胆碱低剂量组、中剂量组和高剂量组,每组各10只。术后第7天开始,壳聚糖磷脂酰胆碱低剂量组、中剂量组、高剂量组分别给予0.2/(k·d)、0.4/(kg·d)和1.0/(kg·d)灌胃,共30天。对照组和模型组给予相当剂量生理盐水灌胃,共30天。应用Morris水迷宫试验,观察壳聚糖磷脂酰胆碱对Aβ25-35诱导模型大鼠的学习记忆功能,包括观察记录大鼠的逃逸时间、穿越平台次数及在原平台象限停留时间。应用免疫组织化学技术,观察壳聚糖磷脂酰胆碱对Aβ25-35AD模型大鼠大脑皮层小胶质细胞的影响,并应用免疫组织化学法检测海马PKC-δ、iNOS及IL-1β的阳性表达及定位。
     全部数据分析均采用SPSS17.0软件进行。实验数据以均数±标准差表示,组间比较采用方差分析及t检验,P<0.05为具有统计学意义。
     结果
     1.壳聚糖磷脂酰胆碱对AD模型大鼠学习记忆能力的影响
     AD动物模型制备前,各组大鼠学习记忆水平比较,差异没有统计学意义(P>0.05)。造模14d后,模型组和壳聚糖磷脂酰胆碱组大鼠的学习记忆水平明显低于对照组(P<0.01)。药物干预30d后,各壳聚糖磷脂酰胆碱组及对照组大鼠平均潜伏期(average escape latency, AEL)明显缩短,且单位时间内跨越原平台次数及在原平台象限停留时间增加,与模型组比较差异有统计学意义(P<0.01)。
     2.A β25-35诱导对大鼠大脑皮层MC的影响及壳聚糖磷脂酰胆碱的作用
     大脑皮层Ibal免疫组织化学染色结果:模型组MG数目多,胞体增大增粗,黄染,着色深;壳聚糖磷脂酰胆碱低剂量组、中剂量组、高剂量组MG数目减少,胞体变小,淡染,着色浅;对照组MG数目最少,淡染。定量分析结果显示:模型组Ibal反应强度明显高于正常组(P<0.05),壳聚糖磷脂酰胆碱低剂量组、中剂量组、高剂量组阳性表达依然强于正常组,但明显弱于模型组P<0.05)。
     3.壳聚糖磷脂酰胆碱对Aβ25-35诱导Wistar大鼠海马PKC-δ的影响
     PKC-δ在大鼠海马区的免疫反应程度,依次为模型组、壳聚糖磷脂酰胆碱低剂量组、中剂量组、高剂量组、对照组。PKC-δ免疫反应阳性物质呈棕黄色,定位于细胞的胞膜和胞浆。其中,模型组PKC-δ阳性细胞最多并着色深,细胞内的阳性颗粒最多,主要位于胞浆内;对照组PKC-δ阳性细胞最少,偶见神经元胞浆浅着色。定量分析结果显示:模型PKC-δ海马阳性细胞的数量高于对照组、壳聚糖磷脂酰胆碱低剂量组、中剂量组、高剂量组,差异有统计学意义(P<0.05),并呈剂量依赖性。
     4.壳聚糖磷脂酰胆碱对Aβ25-35诱导Wistar大鼠海马iNOS、IL-1β的影响
     Ap模型组iNOS和IL-1β阳性细胞表达明显高于对照组,壳聚糖磷脂酰胆碱低剂量组、中剂量组、高剂量组。壳聚糖磷脂酰胆碱药物组和模型组相比,炎性因子iNOS和IL-1p的阳性细胞数显著下降,差异有统计学意义(P<0.01),壳聚糖磷脂酰胆碱药物组和对照组相比,阳性细胞表达数差异无统计学意义(P>0.05)。提示Aβ25-35诱导可激发大鼠海马组织iNOS和IL-1p的表达,而壳聚糖磷脂酰胆碱可降低iNOS和IL-1β的表达。
     结论
     1.以壳聚糖和大豆卵磷脂为原料经喷雾干燥法可以合成壳聚糖磷脂酰胆碱复合物微球。这一方面提高壳聚糖的脂溶性,使壳聚糖更有效地发挥作用;另一方面可以更好地发挥卵磷脂供给胆碱及保护神经元细胞膜的作用。
     2.壳聚糖磷脂酰胆碱对Aβ25-35所致AD模型大鼠的学习记忆障碍有明显的改善作用;
     3.壳聚糖磷脂酰胆碱可能是通过抑制小胶质细胞增生及激活,进而减少细胞因子iNOS、IL-1β的产生,从而发挥其神经保护作用。
     4.壳聚糖磷脂酰胆碱可能是通过下调脑组织PKC-δ的表达,进而抑制NF-kB通路激活,从而降低炎性因子的分泌。
Background and significance
     Alzheimer disease (AD) is one of neuro-degenerative diseases of central nervous system, with the main clinical manifestations of memory and cognitive impairment. In recent years, a large number of studies have confirmed that there continuously exists chronic progressive inflammatory reaction in the brain of AD, especially in the hippocampus, and microglia activation and inflammation mediated neurotoxicity played a decisive role in the pathogenesis of neurodegenerative diseases, inflammatory reaction is an important mechanism of AD cognition and memory impairment. In which, more and more evidence shows that inflammatory reaction of activated microglia induced by amyloid beta (Aβ) deposition is the core reason of AD, and the role of neural inflammation and microglia activation in the pathogenesis of AD can not be ignored. The intervention to the activation of microglia may slow the disease process, so as to protect the central nervous system, therefore, research targeting on microglial cells is expected to become the new direction of anti AD drugs. In addition, the currently accepted is the cholinergic hypothesis, that clinical symptoms of senile cognitive impairment is due to the reduction of acetylcholine formation and release caused by cholinergic neurons damage. Acetylcholine neurotransmitter reduction plays an important role in the disease, increase the content of acetylcholine can be used to treatment AD.
     At present, drug studies related to AD anti-inflammatory aspects mainly focused on non-steroidal anti-inflammatory drugs (NSAIDS), estrogen, etc, the common pathway of prevention and control of AD may inhibit the initial step of AD, and inhibition of Aβ deposition and formation of senile plaques and the inflammatory reaction in the brain. But the long-term application of NSAIDs can lead to severe gastric mucosal injury and renal dysfunction, long-term use of estrogen may induce breast or endometrial cancer. The side effects of NSAIDs and estrogen limit their use in the clinic. Therefore, to find a new anti-inflammatory drugs to reduce inflammation in the brain of AD, so to delay the progression of the disease will become a new starting point in the AD treatment.
     Puerarin is isoflavone compounds extracted from Radix Puerariae, with the effects of blocking β receptor, increase cerebral blood flow and cerebral metabolism, scavenging oxygen free radicals, promoting immunity, and improving the learning and memory function. Wang Wensheng's study reported that puerarin could inhibit amyloid β-stimulated inflammatory reaction of rat hippocampi, but puerarin is not easy to pass through blood-brain barrier(BBB), its application is limited in the diseases of central nervous system. Acetylpuerarin is a modified form of puerarin. It is more lipid-soluble than puerarin and can successfully cross the blood-brain barrier, with great clinical application value. Previous research has shown that acetylpuerarin's protective effect on cerebral ischemia reperfusion, its mechanism may be mediated by NMDA receptors, anti oxygen free radical, lipid peroxidation, inhibition of C-fos and ICAM-1, Induction of VEGF. But the study regarding whether acetylpuerarin can reduce the inflammatory effects of AD is few.
     Chitosan is a deacetylated product of chitin, a kind of cationic polymer, natural alkaline, non-toxic, safe and reliable, and has good biocompatibility. Foreign studies showed that chitosan can regulate cell differentiation, proliferation and cytokine production, scavenging free radicals, and the toxin in the body, protecting the brain nerve cells and glial cell membrane. A study found that high molecular weight water-soluble chitosan can prevent nerve cell apoptosis. Another study on anti-inflammatory effects of water-soluble chitosan suggested that it can reduce and delay the pathological changes of AD. Lecithin is the main component of membrane of cells and has the effect of anti-inflammation and enhances immune function, the choline in it can be used as the precursor of acetylcholine. Once the complex of lecithin with chitosan is formed, it can be used as carrier and carry chitosan through BBB. We used the method of solvent dispersion and wet grinding for the preparation of chitosan phospholipid complex before, and undertook the basic and clinical research on the treatment of senile dementia, and found that chitosan phospholipid choline can repair nerve cell membrane damage of dementia rats, improve memory capacity of dementia rats and patients with senile dementia, increase the brain acetylcholine content, scavenge free radicals, improve brain function. But the antiinflammatory effect and mechanism of the chitosan phospholipid choline on AD has not been eported in the literature.
     This study inclueds the following two parts:
     1. Mechanisms of inflammation in AD rats induced by Aβ and the intervention effect of Acetylpuerarin.
     2. Effects and its mechanisms of Chitosan Phosphatidylcholine on learning and memory and inflammation in AD rats induced by Aβ.
     Part I Mechanisms of Inflammation in AD Rats Induced by Aβ and the Intervention Effect of Acetylpuerarin
     Objective
     This study used in vivo experiments, from the whole, tissue, cell, molecular levels to observe the learning and memory function and the antiinflammatory mechanism of acetylpuerarin on AD model rats. The bilateral hippocampal injection of Aβ1-42induced AD model Wistar rats was used as subjects, and behavior, immunohistochemistry and molecular biology techniques were used to explore the effect and mechanism of acetylpuerarin on AD rat model, aimed to explain the effect of acetylpuerarin on AD and antiinflammatory mechanisms, so to provide strategy and theory basis for AD treatment.
     Methods
     The bilateral intrahippocampal Aβ1-42injection induced AD model rats were used as the research subjects.40Wistar rats were randomly divided into blank control group, model group (Aβ only group), acetylpuerarinin low dose group and acetylpuerarinin high dose group, with10rats in each group. After14days, rats of acetylpuerarin low dose group and high dose group were given intraperitoneal injection of acetylpuerarin100mg/kg and200mg/kg respectively, a total of12days. The control group and model group were given intraperitoneal injection of normal saline, a total of12days. Morris water maze test was used to observe the learning and memory function of acetylpuerarin on Aβ1-42induced rats from the overall level, including the escape time(average escape latency, AEL), and time in the original platform quadrant explorating the platform. Immunohistochemistry and Transmission Electron Microscopic examination methods were used to observe the effects of acetylpuerarin on microglia of cortex and hippocampus. And immunohistochemical staining method was applied to observe the expression of PKC-δ, IKK-β, iNOS in hippocampus. Western-blot method was used to observe the protein expression of PKC-δ, IKK-β and IL-1β in rat hippocampus. Elisa method was applied to detect the changes of IL-6in serum of rats.Values are given as mean±standard deviation, and analysis of variance and t-tests were performed with SPSS17.0software. P<0.05was considered to be statistically significant.
     Results
     1. Influence of Aβ1-42to learning and memory of Rats and the effects of Acetylpuerarin
     We tested escape latency and exploring time in target area in the Morris water maze (MWM) before surgery,2weeks after surgery, and26days after surgery (after treatment). We found that the Aβ1-42treated rats were significantly impaired2weeks after surgery, compared with the control group, their mean escape latency was significantly increased in the place navigation test (P<0.01), and mean exploring time in the target area was significantly decreased in the spatial probe test (P<0.05for Acetylpuerarin low dose group; P<0.01for Acetylpuerarin high dose group). After12days of acetylpuerarin treatment, we found that both doses significantly attenuated Aβ1-42induced learning and memory deficits, as evidenced by the decreased escape latency in the place navigation test (P<0.01), and longer mean exploring time in the target area in the spatial probe test (P<0.05for Acetylpuerarin low dose group;P<0.01for Acetylpuerarin high dose group).
     We did not observe any changes in locomotion during the MWM, suggesting that the increased time was due to impaired learning rather than difficulty swimming.
     2. Influence of Aβ1-42to Microglial of rats and the effects of Acetylpuerarin
     Cerebral cortex Ibal immunohistochemical staining results:in the model group, there were more MG cells, with thick body, yellow dye, color depth; in Acetylpuerarin low dose group and high dose group, there were less number of MG, with smaller size, light color; in control group, theere were the least MG cells, with pale staining. Ibal positive cell counting analysis showed that microglial cell number increased significantly (P<0.05) in model group compared with the control group, while compared with the model group, the number of microglial cells in Acetylpuerarin low dose group and high dose group was significantly reduced (Acetylpuerarin low dose group, P<0.05; acetyl puerarin in high dose group, P<0.01).
     Transmission electron microscope showed:microglia of the control group is small, with clear rough endoplasmic reticulum and mitochondria, clear nucleolus, obvious heterochromatin, high electron density. The model group microglial cell has many neurites, less heterochromatin and loose, rich cytoplasm, and the number of ribosomes increased, with visible lysosomal granules. Low doses Acetylpuerarin group:low cytoplasmic electron density, with visible broken mitochondrial crista. High doses Acetylpuerarin group:big nuclear chromatin, with visible Golgi complex.
     3. Influence of Aβ1-42to PKC-δ and IKK-β in hippocampal tissue and the effects of Acetylpuerarin
     PKC-δ and IKK-β were selected as markers related to NF-κB pathway in this study. Immunohistochemistry method was used to detect the PKC-δ and IKK-β staining reaction of hippocampal tissue. PKC-δ staining results:the immunoreactive positive substance was brown, localized in cell membrane and cytoplasmic. PKC-8immunoreactive cells was the most in AD model group, with the deepest coloring, most positive granular cells, mainly located in the cytoplasm; there were less positive cells in control group and drug groups, and the cytoplasm of neurons was light coloured. Quantitative analysis showed:the number of PKC-8positive cells in model group was higher than that of control group, Acetylpuerarin low dose group and Acetylpuerarin high dose group, with significant statistical difference (P<0.05), and in a dose-dependent manner.
     Similar result was also observed in IKK-β immunoreactive staining:in model group, with the most IKK-P positive cells and a dark brown color. There were Less IKK-β positive cells in the control group,basically no expression of brown granules of IKK-β, occasionally the cytoplasm of neurons light colored. There was a small amount of IKK-P immune immunoreactive cells in Acetylpuerarin groups, with shallow coloring. Quantitative analysis showed:the number of IKK-P hippocampal positive cells in model group was more than that in the control group, Acetylpuerarin low dose group and Acetylpuerarin high dose group, with significant statistical difference (P<0.05), and in a dose-dependent manner.
     Western blot method was used to observe the expression of PKC-δ and IKK-β in the hippocampus of rats, and the results showed:bilateral hippocampal injection of Aβ1-42can significantly increase the expression of PKC-δ and IKK-β, approximately2times as much as normal control group. Acetylpuerarin therapy can significantly reduce the expression of PKC-δ and IKK-β induced by Aβ1-42,with significant statistical difference(P<0.05), and in a dose-dependent manner.
     4. Influence of Aβ1-42to the expression of hippocampal iNOS、IL-1β and serum IL-6and the effects of Acetylpuerarin
     iNOS, IL-1β and IL-6were chosen as the markers of inflammation for this study. Immunohistochemistry method was used to detect the iNOS expression in hippocampal tissue. The staining result of iNOS showed:the positive material of immunoreactivity was brown, localized in cell membrane and cytoplasm. Among them, there were the most immunoreactive iNOS positive cells in model group, with the deepest coloring, and the most positive granular. The immunoreaction positive cells in control group and drug groups were less, with lightly coloured cytoplasm of neurons. Quantitative analysis showed:the number of iNOS hippocampal positive cells in model group was more than that in the control group, Acetylpuerarin low dose group and Acetylpuerarin high dose group, with significant statistical difference (P<0.05), and in a dose-dependent manner.
     Western blot method was used to detect the quantitative expression of IL-1β in hippocampal tissue. The results showed that bilateral hippocampal injection of Aβ1-42can significantly increase the expression of IL-1β, about3times as much as normal control group. Acetylpuerarin therapy can significantly reduce the expression of IL-1β induced by Aβ1-42, with significant statistical difference (P<0.05), and in a dose-dependent manner.
     Elisa method was used to detect the serum IL-6level of rats.Results showed after Acetylpuerarin treatment, the level of serum IL-6of control group, Acetylpuerarin low dose group and Acetylpuerarin high dose group was significantly lower than that in the model group respectively, with significant statistical difference (P<0.05).
     Conclusions
     1. Aβ1-42bilateral intrahippocampal injection method can successfully simulate the inflammatory AD model rats, which can be used to test the effects of drugs.
     2. Acetylpuerarin has obvious effect on learning and memory disorder in AD model rats induced by Aβ1-42.Thus infer, acetylpuerarin can become a new drug for prevention of the occurrence and development of AD.
     3.The mechanism of Acetylpuerarin may possibly through inhibit microglia proliferation and activation, down-regulate the expression of brain PKC-δ, IKK-β, thus inhibit the activation of NF-κB signal channel, down-regulate the secretion of iNOS, IL-1β and IL-6,decrease the inflammatory reaction of brain cortex and hippocampus neurons, which play a role in brain protection and anti dementia.
     Part Ⅱ Effects and its Mechanisms of Chitosan Phosphatidylcholine on Learning and Memory and Inflammation in AD Rats Induced by Aβ
     Objective
     This study used in vivo experiments, from the whole and tissue levels to observe the learning and memory function and the anti-inflammatory mechanism of Chitosan Phosphatidylcholine on AD rats. The bilateral hippocampal injection of Aβ25-35induced AD model Wistar rats were used as subjects. We used behaviorial and immunohistochemistry techniques to observe the effect and anti inflammation mechanism of chitosan phosphatidyl choline induced by Aβ in rats, aims to explain the effect of Chitosan Phosphatidylcholine on AD and anti-inflammatory mechanisms, so to provide strategy and theory basis for AD treatment.
     Methods
     The bilateral intrahippocampal Aβ25-35injection induced AD model rats were used as the research subjects.50rats were randomly divided into5groups:blank control group, model group (AP only group), Chitosan Phosphatidylcholine low dose group, midian dose group and high dose group, with10rats in each group. After7days, rats of Chitosan Phosphatidylcholine low dose group, midian dose group and high dose group were given Chitosan Phosphatidylcholine of0.2、0.6and1.0g/(kg·d) respectively by the way of intragastrition, a total of30days. Rats of the control group and model group were given equal dose of normal saline intragastrically, a total of30days. Morris water maze test was used to observe the learning and memory function of Chitosan Phosphatidylcholine on Aβ25-35induced rats, including the escape time(average escape latency, AEL), times crossing the postion of platform, and time staying in the original platform quadrant spending in explorating the platform. Immunohistochemical method was used to detect the expression of Ibal in cerebral cortex, and PKC-8, IL-1β, iNOS expression in hippocampus. Values are given as mean±standard deviation, and analysis of variance and t-tests were performed with SPSS13.0software. P<0.05was considered to be statistically significant.
     Results
     1. Chitosan Phosphatidylcholine Improved Learning and Memory
     We tested escape latency, times crossing the position of platform, and target area exploring time in the Morris water maze (MWM) before surgery,14days after surgery, and30days after surgery. We found that the learning and memory ability of Aβ25-35treated rats was significantly impaired2weeks after surgery, compared with the control group, their mean escape latency was significantly increased in the place navigation test (P<0.01), with fewer times crossing the postion of platform (P<0.01), and mean exploring time in the target area was significantly decreased in the spatial probe test (P<0.01). After30days of Chitosan Phosphatidylcholine treatment, we found that Chitosan Phosphatidylcholine significantly attenuated Aβ25-35induced learning and memory deficits, as evidenced by the decreased escape latency in the place navigation test (P<0.01), more times crossing the postion of platform, and longer mean exploring time in the target area in the spatial probe test (P<001).
     2. Chitosan Phosphatidylcholine Reduced Aβ25-35induced Microglial Activation
     Cerebral cortex Ibal immunohistochemical staining results:in the model group, there was more MG cells, with thick cell body, yellow and deep color; in the chitosan phosphatidylcholine low dose group, midian dose group and high dose group, the number of MG cells decreased, the cell body became small, light color; in the control group, there was the least MG cells, with pale staining. Quantitative analysis showed: the number of Ibal positives cells in model group was significantly higher than that in normal group (P<0.05), the Number of Ibal positives cells in chitosan phosphatidylcholine low dose group, midian dose group and high dose group was significantly higher than that in normal group, but was lower than that in the model group P<05).
     3. Chitosan Phosphatidylcholine Reduced Aβ25-35induced PKC-δ expression in rat hippocampus
     The immune response level of PKC-δ in the rat hippocampus in model group was significantly higher than the control group, the chitosan phosphatidylcholine low dose group, median dose group, high dose group. The PKC-δ immunoreactive material was brown, localized in cell membrane and cytoplasm. PKC-δ immunoreactive cells was the most in AD model group, with the deepest coloring, most positive granular cells, mainly located in the cytoplasm; there were the least positive cells in control group and drug group, and the cytoplasm of neurons was light coloured. Quantitative analysis showed: the number of PKC-δ positive cells in model group was higher than that of control group, chitosan phosphatidylcholine low dose group, median dose group, high dose group, with significant statistical difference (P<005), and in a dose-dependent manner.
     4. Chitosan Phosphatidylcholine reduced Aβ25-35induced iNOS and IL-1β expression in rat hippocampus
     The immune response level of iNOS and IL-1β in the rat hippocampus in model group was significantly higher than the control group, the chitosan phosphatidylcholine low dose group, median dose group, and high dose group. The number of iNOS and IL-1β positive cells in chitosan phosphatidylcholine groups was lower than that in Aβ model group respectively, and the difference was statistically significant (P<0.05).Compared with the control group, the number of iNOS and IL-1β positive cells in Chitosan phosphatidylcholine low dose group, median dose group and high dose group had no significant statistical difference (P>0.05). Indicating that Aβ25-35could stimulate the expression of iNOS and IL-1β in rat hippocampuss, and chitosan phosphatidylcholine can reduce the expression of iNOS and IL-1β.
     Conclusions
     1.Using chitosan and soy lecithin can synthesize chitosan phosphatidylcholine compound microspheres by the method of spray drying.On one hand, it can improve chitosan's lipid solubility, be more effective for chitosan's action; on the other hand,it can play a better role for the supply of choline and protect neuron membrane for lecithin.
     2. Chitosan phosphatidylcholine has obvious effect on Aβ25-35induced learning and memory impairment in AD rat model.
     3. Chitosan phosphatidylcholine may be through the suppression of microglia in brain cortex and hippocampus, thereby reducing the expression of inflammation factors, such as iNOS and IL-1β, which exerts its neuroprotective effect.
     4. Chitosan phosphatidylcholine may be through the downregulation of PKC-8in brain tissue, and inhibit the NF-kB pathway, thereby reducing the expression of inflammation factors.
引文
[1]Nady B, Pablo M, Adrian GP, et al. Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm,2012,119:173-195.
    [2]Neher JJ, Neniskyte U, Brown GC. Primary phagocytosis of neurons by inflamed microglia:potential roles in neurodegeneration. Front Pharmacol,2012,3:27.
    [3]Guy C Brown, Jonas J Neher. Inflammatory Neurodegeneration and Mechanisms of Microglial Killing of Neurons. Mol Neurobiol,2010,41:242-247.
    [4]Brent Cameron, Gary E. Landreth. Inflammation, microglia, and alzheimer's disease. Neurobiology of Disease,2010,37(3):503-509.
    [5]Weisman D, Hakimian E, Ho G J. Interleukins, inflammation, and mechanisms of Alzheimer's disease [J]. Vitam Horm,2006,74:505-530.
    [6]Capiralla H, Vingtdeux V, Zhao H, et al..Resveratrol mitigates lipopolysaccharide and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem,2012,120 (3):461-72.
    [7]Newman M, Musgrave FI, Lardelli M. Alzheimer disease:amyloidogenesis, the presenilins and animal models [J].Biochim. Biophys. Acta,2007,1772:285-297.
    [8]Vehmas A, Kawas C, Stewart W, et al. Immune reactive cells in senile plaques and cognitive decline in Alzheimer's disease[J]. Neurobiol Aging,2003,24:321-331.
    [9]Tan J, Town T, Mullan M. CD40-CD40L interaction in Alzheimer's disease [J].Curr Opin Pharmacol,2002,2(4):445-451.
    [10]Casal C, Serratosa J, Tusell JM. Effects of beta-AP peptides on activation of the transcription factor NF-kappaB and in cell pro-liferation in glial cell cultures[J].Neurosci Res,2004,48(3):315-323.
    [11]Bradt BM, Kolb WP, Cooper NR. Complement-dependent Proinflam-mation properties of the Alzheimer's disease β-amyloid [J].J Exp Med,1998,188:431-438.
    [12]聂永慧,王鲁宁,贾建军,等.淀粉样p蛋白对小胶质细胞活化作用的体外观察.中国临床康复,2005,9(29):70-72.
    [13]李晓青,张俊武.炎性因子遗传多态性与Alzhermer病[J].基础医学与临床,2004,24(1):7-11.
    [14]Hull M, Strauss S, Berger M, et al. The Participation of interleukin-6, a stress-indueible cytokine,in the pathogenesis of Alzheimer's disease[J].Behav Brain Res,1996,78:37-41.
    [15]Miehie HR, Manogne KB, Springgs DR, et al. Detection of circulating tulmor necrosis factor after endotoxin administration.N Eng J Med 1988,318:1481-6.
    [16]LioD, Annoni G, Licastro F, et al. Tumor necrosis factor-a-308A/G polymorphism is associated with age at on set of Alzheimer's disease [J]. Mech Ageing Dev,2006, 127:567-571.
    [17]Leroueta D,Jafarian-Tehrani M,Louin G,et al. Lack of iNOS induction in a severe model of transient focal cerebral ischemia in rats EJ7 [J].Exp Neurol,2005,195(1):218-228.
    [18]Zhao X, Rossl ME, Iadecola C. L-Arginine inereases isehemic injury in wild-type mice but not in iNOS- deficient mice[J].Brain Res,2003,966:308-311.
    [19]Pasinetti GM. From epidemiology to therapeutic trials with anti-inflammatory drugs in Alzheimer's disease:the role of NSAIDs and cyclooxygenase in beta-amyloidosis and clinical dementia [J].J Alzheimers Dis,2002,4:435-445.
    [20]Rudolph ET. Novel Therapeutics for Alzheimer's Disease. Neurotherapeutics, 2008,5(3):377-380.
    [21]Colm C, Donal TS. Non-Steroidal Anti-Inflammatory Drugs and Cognitive Function:Are Prostaglandins at the Heart of Cognitive Impairment in Dementia and Delirium? J Neuroimmune Pharmacol,2012,7:60-73.
    [22]Breitner JC. NSAIDs and Alzheimer's disease:how far to generalise from trials? [J].Lancet Neurol,2003,2(9):527-534.
    [23]Pasinetti GM. From epidemiology to therapeutic trials with anti-inflammatory drugs in Alzheimer's disease:the role of NSAIDs and cyclooxygenase in beta-amyloidosis and clinical dementia[J].J Alzheimers Dis,2002,4:435-445.
    [24]Hoozemans JJ, O'Banion MK. The role of COX-1 and COX-2 in Alzheimer's disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs[J].Curr. Drug Targets CNS Neurol.Disord,2005, (4):307-315.
    [25]王文胜,柴锡庆,王英杰.p-淀粉样蛋白激发大鼠海马炎性反应及葛根素对其抑制作用.中国全科医学,2009,12(38B):461-464.
    [26]吴景东,王培,李东子.葛根及葛根素对自然衰老小鼠mtDNA片段缺失的实验研究.辽宁中医杂志,2011,38(11):2119-2120.
    [27]Yao XJ, Yin JA, Xia YF, et al. Puerarin exerts antipyretic effect on lipopolysaccharide-induced fever in rats involving inhibition of pyrogen production from macrophages. J Ethnopharmacol,2012,141(1):322-30.
    [28]Huang F, Liu K, Du H, et al. Puerarin attenuates endothelial insulin resistance through inhibition of inflammatory response in an IKK-β/IRS-1-dependent manner. Biochimie,2012,94(5):1143-50.
    [29]Liu R, Wei XB, Zhang XM. Effects of acetylpuerarin on hippocampal neurons and intracellular free calcium subjected to oxygen-glucose deprivation/reperfusion in primary culture. Brain Research,2007,1147:95-104.
    [30]刘睿,魏欣冰,张岫美.乙酰葛根素对缺糖缺氧小鼠海马神经元NMDA受体的影响.中国药理通讯,2006,23(4):42
    [31]侯丽,魏欣冰,李雪梅,仲英,左春旭,张岫美.乙酰葛根素对小鼠局灶性脑缺血再灌注损伤的抗脂质过氧化作用.中国药学杂志,2007,42(19):1469-1472.
    [32]彭红华,祝美珍,肖健,王琳,齐玉洁,苏春寿,曾石森.乙酰葛根素对大鼠脑缺血再灌注后C-fos和ICAM-1表达水平的影响.广西中医药大学学报,2012,5(3):44-46.
    [33]刘必旺,王坤芳,刘亚明,侯栋宇,梁志刚.乙酰葛根素对脑缺血再灌注后神经细胞凋亡的影响及机制研究.中国实验方剂学杂志,2011,17(11):213-215.
    [34]Nady B, Pablo M, Adrian GP, et al. Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm,2012,119:173-195.
    [35]赵波,张新宇,付学锋.阿尔兹海默病动物模型的研究进展.神经解剖学杂志,2012,28(1):102-104.
    [36]顾彬,张文生.阿尔采默氏病动物模型的研究进展.中国实验动物学报,2008,16(2):154-156.
    [37]Yu L,Edalji R,Harlan JE,et al. Struetural characterization of a soluble amyloid β-peptide oligomer. Bioehemistry,2009,48(9):1870-1877.
    [38]Powers ET, Powers DL. The kineties of nueleated polymerizations at high concentrations:amyloid fibril formation near and above the "supereritieal concentration".BioPhys J.2006:91(1):122-132.
    [39]Neeula M,Kayed R,Milton S,et al. Small molecule inhibitors of agregation indieate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem,2007,282(14):10311-10324.
    [40]White J A, Manelli A M, Hohnberg K H, et al. Differential effects of oligomeric and fibrillar amyloid-betal-42 on astrocyte-mediated inflammation [J].Neurobiol Dis,2005,18(3):459-465.
    [41]Tamagno E,Bardini P,Guglielmorto M,et al. The various aggregation states of beta-amyloid 1-42 mediate different effeets on oxidative stress neurodegeneration, and BACE-1 expression. Free Radie Biol Med,2006,41(2):202-212.
    [42]Sondag CM, Dhawan G, Combs CK. Beta amyloid oligomers and fibrils stimulate differential activation of Primary microglia. J Neuroinflammation,2009,6:1.
    [43]Izumi Maezawa,Pavel I.Zimin,Heike Wulff,et al. Amyloid-β Protein Oligomer at Low Nanomolar Concentrations Activates Microglia and Induces Microglial Neurotoxieity. The Journal of Biological Chemistry,2011,286:3693-3706.
    [44]Pigino G, Morfini G,Atagi Y,et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci USA, 2009,106(14):5907-5912.
    [45]偷剑非,陈红,任常,等.淀粉蛋白脑室内注射建立阿尔茨海默病大鼠模型.中国神经精神疾病杂志,2005,31(2):145-147.
    [46]Whitehead SN, Hachinski VC, Cechetto DF. Interaction between a rat model of cerebral ischemia and beta-amyloid toxicity:inflammatory responses [J]. Stroke,2005,36:107-112.
    [47]James GM, Jae KR. Relevance of Aβ1-42 Intrahippocampal Injection as An Animal Model of Inflamed Alzheimer's Disease Brain. Current Alzheimer Research,2008, 5,475-480.
    [48]Pooler AM, Arjona AA, Lee RK, et al. Prostaglandin E2 regulates amyloid precursor protein expression via the EP2 receptor in cultured rat microglia[J]. Neurosci Lett,2004,362:127-130.
    [49]Bitting L, Naidu A, Cordell B, et al. Beta-amyloid peptide secretion by a microglial cell line is induced by beta-amyloid-(25-35) and lipopoly- saccharide [J]. J. Biol. Chem,1996,271:16084-16089.
    [50]Recuero M, Serrano E, Bullido MJ, et al. Abeta production as consequence of cellular death of a human neuroblastoma overexpressing APP[J].FEBS Lett,2004,570:114-118.
    [51]Holcomb L, Gordon MN, McGowan E, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes[J]. Nat. Med,1998,4:97-100.
    [52]Barnes CA, Markowska AL, Ingram DK, et al. Acetyl-1-carnitine:2.Effects on learning and memory performance of aged rats in simple and complex mazes[J]. Neurobiol. Aging,1990,11:499-506.
    [53]Wang YL, Liu J, Zhang ZM, Bi PX, Qi ZG, Zhang CD (2011) Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease.Neurosci Lett,487:70-72.
    [54]叶兰,李玲玲,刘蓉,等.干预Ap代谢及其毒性治疗阿尔茨海默病的研究现状及展望.国际神经病学神经外科学杂志,2009,36(4):333-337.
    [55]Lambert MP,Barlow AK,Chromy BA,et al. Diffusible,nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proe Natl Aead Sci USA.1998,95(11):6448-6453.
    [56]高曲文,陈俊抛.β淀粉样蛋白诱导脑内神经元凋亡及褪黑素的保护作用[J].中华神经科杂志,2000,33(1):7-9.
    [57]Soriano S, Lu DC, Chandra S, et al. The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by easases [J]. J Biol Chem,2001,276:29045-29050.
    [58]马艳.海风藤提取物对Aβ寡聚体诱导小胶质细胞释放IL-1β、IL-6影响的研究[D].山东:山东大学,2011.
    [59]Akiyama H., Barger S., Bamum S, et al.Inflammation and Alzheimer's disease.Neurobiol Aging.2000,21:383-421.
    [60]Wolfgang J.Streit. Microglia and Alzheimer's Disease Pathogenesis[J]. Neuroscience Research,2004,77:1-8.
    [61]Kalaria RN,Kroon SN.Complement inhibitor C4-blinding protein in amyloiddeposits containing serum amylioid P in Alzheimer's disease.Biochem Biophys Res Commun,1992,186:461.
    [62]Walker DG, Yasuhara O,Patston PA,et al.Complement C1 inhibitor is produced by brain tissue and is cleaved in Alzheimer's disease.Brain Res,1995;675:75.
    [63]McGeer PL, Kawamata T, Walker DGDistribution of clusterin in Alzheimer's brain tissue.Brain Res,1992,579:337.
    [64]Schultz J,Schaller J,McKinley M,et al.Enhanced cytotoxicity of amyloid β-peptide by a complement dependent mechanism.Neurosci Lett,1994; 1775:99.
    [65]Paloma B, Sagrario MA, Juana B, et al. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease [J]. Immunology Letters,2008,115(4):56-62
    [66]Rossi F, Bianchini E. Synerg istic induction of nitric oxide by beta-amyloid and cytokines in astrocyte. Biochem Biophy[J]. Res Commun,1996,225(2) B474-478
    [67]李晓青,张俊武.炎性因子遗传多态性与Alzhermer病[J].基础医学与临床,2004,24(1):7-11.
    [68]O. NeillLA, Dinarello CA. The IL-1 recePtor/toll-like receptor super family: Crucial receptors for inflammation and host defens [J]. Immunol Today,2000, 21(5):206-209.
    [69]Griffin WS, Stanley LC, LingC, et al. Brain interleukinl,and S-100 immunoreactivity are elevated in Down syndrome, and Alzheimer disease[J].Proc Natl Acad Sci USA,1989,86(19):7611-7615
    [70]Hunot.S, Hirseh.E.C.Neuroinflammatory Processes in Parkinson's disease. Ann Neurol,2003,53(Suppl 3):S49-58.
    [71]Loddick SA,Tumbull AV,Rothwell NS.Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat[J].JCereb Blood Flow Metab,1988,18(2):176-179.
    [72]Campbell IL. Transgenic mice and cytokine actions in the brain:bridging the gap between structural and functional neuropathology[J].Brain Res Rev,1998,26(23): 327-336.
    [73]Weisman D,Hakimian E,HoGJ,et al.Interieukins,Inflammation and Mechanisms of Alzheimer's disease[J].VitamHorm,2006,74:505-530.
    [74]James B, Lutterman D, Haroutunian V, et al.Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia[J]. Arch Neurol,2000,57:1153-1165.
    [75]Rosler N, Wiehart I, Jellinger KA. Intra vitam lumbar and past mortem ventricular cerebrospinal fluid immunoreactive interleukin-6 in Alzheimer's disease patients acta[J]. Neurol Scand,2001,103(2):126-130.
    [76]Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination:The control of NF-κB activity [J]. Annu Rev Immunol,2000,18:621-663.
    [77]Zandi E, Rothwarf DM, Delhase M, et al. The I kappaB kinase complex(IKK) contains two kinase subunits. IKKa and IKK-β, necessary for I kappaB phosphorylation and NF kappaB activation[J]. Cell,1997,91(2):2432-2502.
    [78]Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle[J].Cell,2002,109 (2):81-96.
    [79]Ajaikumar B, Kunnumakkara HI, Preetha A, et al. inhibits both constitutive and inducible nuclear factor-KB pathway activation, leading to potentiation of apoptosis, inhibition of invasion, and suppression of osteoclastogenesis[J].Mol Cancer Ther,2008,7(10):3306-3314.
    [80]Fan J, Marshall JC, Jimenez M, et al. Hemorrhagic shock primes for increased expression of cytokine-induced neutrophil chemoattractant in the lung:role in pulmonary inflammation following lipopolysaccharide [J]. J Immunol,1998, 161(1):440-447.
    [81]Haddad JJ, garabedian BS, Sande NE, et al. Inhibition of glutathione-related enzymes augments LPS-mediated cytokine biosynthesis:involvement of an IκB/NF-κB-sensitive pathway in the alveolar epithelium [J]. Int Immunopharmacol,2002,2:1567-1583.
    [82]Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling [J].J Biol Chem,2005,280 (48):40364-40374.
    [83]Yamamoto Y, Gaynor RB. IκB kinases:key regulators of the NF-κB pathway[J].Trends in Biochemical Sciences,2004,29(2):72-79.
    [84]Daniel P, Nikunj P, Amita Q, et al. Inhibition of AP production by NF-κB inhibitors[J].Neuroscience Letters,2007,415(1):11-16.
    [85]Yamamoto Y, Gaynor RB. Role of the nf-kappab pathway in zhe pathogenesis of human disease states.Curr Mol Med,2001,1(3):287-296.
    [86]Zingarelli B, Sheehan M, Wong HR. Nuclear factor-κB as a therapeutic target in critical care medicine[J]. Crit CareMed,2003,31(1):105-111.
    [87]Arenzana F, Turpin P, Rodriguez M, et al. Nuclear localization of I kappaB alpha promotes active transport of NF-kappaB from the nucle-us to the cytoplasm [J]. J Cell Sci,1997,110(3):369-378.
    [88]Kim SJ, Jeong HJ, Lee KM. Epigallocatechin-3-gallate suppresses NF-κB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells [J]. The Journal of Nutritional Biochemistry,2007,18(9):587-596.
    [89]Castro P, Legora MA, Cardilo RL, et al. Inhibition of interleukin-1 beta reduces mouse lung inflammation induced by exposure to cigarette smoke [J]. Eur J Pharmacol,2004,498(1-3):279-286.
    [90]Xie YP, Wang JC. Nuclear factor-κB and acute lung injury [J].Chongqing Medical Journal,2003,32(1):115-117.
    [91]杨怡,章恩明,郑筱祥.β淀粉样蛋白诱导神经元坏死和调亡中的诱导型一氧化氮合酶和NFkB信号通路[J].中华神经医学杂志,2005,4(3):295-302.
    [92]Patel NA, Song SS, Cooper DR et al. PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells[J]. Gene Expr.2006,13(2):73-84.
    [93]Dasu MR, Devaraj S, Zhao L et al. High glucose induces toll-like receptor expression in human monocytes:mechanism of activation[J]. Diabetes.2008, 57(11):3090-3098.
    [94]杨红,董海松,林逸玲,等.蛋白激酶C神经保护作用的研究进展[J].国际病理科学与临床杂志,2009,15(18):2736-2738.
    [95]Miguel A, Burguillos, Tomas Deierborg. Caspase signalling controls microglia activation and neurotoxicity. Nature neuroc,2011,1038:1-10.
    [96]李伟平,张喜平.葛根素制剂的药理和临床应用及存在问题分析[J].医学研究杂志,2012,41(1):16-18.
    [97]Lin F, Xie B, Cai F, et al. Protective Effect of Puerarin on β-Amyloid-Induced Neurotoxicity in Rat Hippocampal Neurons. Arzneimittelforschung.2012,62 (4):187-93.
    [98]Li Y(李颖),Pan WS(潘卫三),et al. Studies on preparation of puerarin phytosomes and their solid dispersions. Chin Pharm J (中国药学杂志),2006,41:1162-1167.
    [99]Li Y(李颖),Yang DJ(杨大坚),Chen SL(陈士林),et al. Comparative physicochemieal characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods.Pharm Res,2008,25: 563-577.
    [100]Li Y(李颖),Chen SL(陈士林),Yang DJ(杨大坚),et al. Pharmcokinetic,tissue distribution and excretion of puerarin and puerarin-phospholipid complex in rats. Drug Development and Industrial Pharm,2006,32:413-422,
    [101]张毅,钟国跃,黄小平,等.葛根素乙酰化衍生物的合成和生物利用度研究[J].天然产物研究与开发,2010,22:73-76.
    [102]相妍笑,刘沙,魏春敏,等.乙酰葛根素在大鼠体内的药动学研究[J].中草药,2012,43(11):2247-2249.
    [103]左春旭,张岫美,仲英,等.全乙酰葛根素在制备治疗缺血性脑血管病新药中的应用[P].中国专利:CN1823801A,2006-08-30.
    [104]蔡雅卫,魏欣冰,张岫美.乙酰葛根素对低糖低氧损伤大鼠皮层神经元的保护作用[D].济南:山东大学,2005.
    [105]刘冬梅,张岫美,娄凤兰.乙酰葛根素对氧糖剥离海马神经元凋亡的影响[J].中国药理学通报,2013,29(7):981-984.
    [1]Alzheimer's disease international, World Alzheimer Report,2009, Executive Summary.
    [2]Matsuoka Y,Picciano M,Malester B,et al. Inflammatory response to amyloidosis in a transgenic mouse model of Alzheimer's disease[J].Am J Pathol,2001,158(4):1345-54.
    [3]代玉桥,金道忠,雷德亮.小胶质细胞与早老性痴呆症脑内炎症[J].生命科学,2007,19(1):47-50.
    [4]丛璐,蒲传强.膜攻击复合物C5b-9的研究现状[J].中华医学杂志,2012,(92):60-61.
    [5]Ratih Pangestuti, Se-Kwon Kim.Neuroprotective properties of chitosan and its derivatives [J]. Marine Drugs,2010,8:2117-2128.
    [6]Xueling Dai, Ping Chang, Qingzhu Zhu, et al. Chitosan oligosaccharides protect rat primary hippocampal neurons from oligomeric β-amyloid 1-42-induced neurotoxicity [J].2013,554:64-69.
    [7]BYUN H G, KIM Y T, PARK P J,et al.Chitooligosaccharides as a novel P-secretase inhibitor[J].Carbohyd Polym,2005,61:198-202.
    [8]Fiala M, Zhang I, Can X.Amyloid-beta induces chemokine secretion and monocyte migration across a human blood-brain barrer mode [J].Mol Med, 1998,4(7):480-489.
    [9]Tan J, Mao G, Cu I MZ, et al. Effects of gamma-secretase cleavage-region mutations on APP processing and Abeta formation:interpre-tation with sequential cleavage and alpha-helical model [J]. Neurochem,2008,107 (3): 722-733.
    [10]Yanker BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid βprotein:reversal by tachykinin neuroprptide [J].Science,1990,250 (4978):297-282.
    [11]Q.S.Chen, B.L.Kagan,Y.Hirakura, et al.Impairment of hippocampal long-term potentiation by Alzheimer amyloid β-peptide[J]. Neurosci Res,2000, 60(1):65-72.
    [12]W.K.Cullen, Y.H.Suh, R. Anwyl, et al.Block of LTP in rat hippocampus in vivo by β-amyloid precursor protein fragments. Neuroreport,1997,20,8 (15): 3213-3217.
    [13]D.B.Freir, C Holseher, C.E Herron, Blockade of potentiation by P-amyloid peptide in the CA1 region long-term of the rat hippocampus in vivo,[J]. Neurophysiol,2001,85:708-713.
    [14]Bellucci A, Luccarini I, Scali C, et al. Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice[J].Neurobiology of Disease,2006,23 (2):260-272.
    [15]Bam Berge ME, Harris ME, Mcdonald DR, et al. A cell surface receptor complex for fibrilar bata-amyloid mediates microglial activation[J].J Nettroscl,2003,23(7):2665.
    [16]林逢春,闫也.阿尔茨海默病发病机制研究的现状与进展[J]辽宁医学院学报,2009(06):558-560.
    [17]Holcomb L,Gordon MN,McGowan E,et al.Accelerated Alaheimer-typehenotype in transgenic mice carrying both mautant amyloid precursor protein and presenilin 1 transgenes[J].Nat.Med,1998,4:97-100.
    [18]Barnes CA, Markowska AL, Ingram DK, et al. Acetyl-1-carnitine:2. Effects on learning and memory performance of aged rats in simple and complex mazes[J]. Neurobiology Aging,1990,11:499-506.
    [19]Moran PM, Higgins LS, Cordell B, et al. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein[J]. Proc. Natl. Acad. Sci. USA,1995,92:5341-5345.
    [20]张晓辉,刘娟芳,邓艳春,等.多烯磷脂酰胆碱对p-淀粉样蛋白(AB1-40)致阿尔茨海默病模型大鼠的治疗作用.现代生物医学进展.2011,11(13):2438-2442.
    [21]Finch CE, Morgan TE. systemic inflammation, infection, ApoE alleles, and Alzheimer's disease a position paper[J].Curr Alzheimer Res,2007,4 (2):185-189.
    [22]G. Joseph Broussard, J ennifer Mytar, Rung-chi Li,Gloria J. Klapstein. The role of inflammatory processes in Alzheimer's disease[J]. Inflammopharmacol, 2012, (20):109-126.
    [23]Town T, Nikolic V, Tan J. The microglial "activation" continuum, from innate to adaptive response [J]. Neuro inflammation,2005,2 (24):1472-1483.
    [24]Nagele RG, D'Andrea MR, Lee H, et al. Astrocytes accumulate Abeta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains [J].Brain Res,2003,971 (2):197-209.
    [25]Jen LS, Hast A J, Jen A, et al. Alzheimer's petide kills of retina in vivo[J]. Nature,1998,392(6672):140-141.
    [26]Savage MJ, Lin YG, Ciallella JR, et al. Activation of c-Jun N-Terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition [J]. Neurosci,2002,22(9):3376-3385.
    [27]Halliday G, Robinson SR, Shepherd C. Alzheimer's disease and inflammation a review of cellular and therapeutic mechanisms[J].Clin Exp Pharmacol Physiol,2000,27(1/2):1-8.
    [28]Minghetti L, Ajmone-Cat MA, DeBerardinis MA, et al.Microglial activation in chronic neurodegenerative diseases:roles of apoptotic neurons and chronic stimulation [J]. Brain Res Rev,2005,48(2):251-256.
    [29]Michael T, Heneka M, Kerry O'BaniDick, et al. Neuroinflammatory processes in Alzheimer's disease [J]. J Neural Transm,2010(117):919-947.
    [30]Paloma B, Sagrario MA, Juana B, et al. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease[J]. Immunology Letters,2008,115 (4):56-62.
    [31]Vincent VA, Selwood SP, Murphy GMJ. Proinflammatory effects of M-CSF and A beta in hippocampal organotypic cultures[J].Neurobiol Aging,2002,23: 349-362.
    [32]Stefan Prokop Kelly R, Miller Frank L.Heppner. Microglia actions in Alzheimer's disease[J]. Acta Neuropathol,2013(126):461-477.
    [33]Ana Maria Martin Moreno, Bgona brera,Carlos Spuch,et al. Prolonged oral cannabinoid administration pevents neuroinflammation, lowers P-amyloid levels and improves cognitive performance in Tg APP 2576 mice [J]. Journal of Neuroinflammation 2012,9:8.
    [34]Wegiel J,Imaki H,et al.Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice[J].Acta neuropathologic,2003,105:393-402.
    [35]V. Hugh Perry, Jessica Teeling. Microglia and macrophages of the central nervous system:the contribution of microglia priming and systemic inflammation to chronic neurodegeneration[J]. Semin Immunopathol,2013(35):601-612.
    [36]Masamichi Yokokura,Norio Mori,Shunsuke Yagi. In vivo changes in microglial activation and amyloid deposits in brain rigions with hypometabolism in Alzheimer's disease [J]. Eur J Nucl Med Mol Imaging,2011,38:343-351.
    [37]尹云霞,张坤西.小胶质细胞在SOD1-G93A转基因小鼠腰髓中的变化[J].脑与神经疾病杂志,2010,18(4):265-268.
    [38]kokura M,Mori N,Yaqi S,et al.In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging,2011,38 (2):343-351.
    [39]Daniel P, Nikunj P, Amita Q,et al.Inhibition of A13 production by NF-κB inhibitors.Neuroscience Letters,2007,3(415):11-16.
    [40]杨怡,章恩明,郑筱祥.p淀粉样蛋白诱导神经元坏死和调亡中的诱导型一氧化氮合酶和NFkB信号通路[J].中华神经医学杂志,2005,4(3):295-302.
    [41]Miguel A, Burguillos, Tomas Deierborg. Caspase signalling controls microglia activation and neurotoxicity[J].Nature,2011,472(7343):319-324.
    [42]Jean de Barry, Corinne Mbebi Liegeois, Agnes Janoshazi. Protein kinase C as a peripheral biomarker for Alzheimer's disease.[J]. Exp Gerontol,2010,(1):64-69.
    [43]杨红,董海松,林逸玲,等.蛋白激酶C神经保护作用的研究进展[J].国际病理科学与临床杂志,2009,15(18):2736-2738.
    [44]Bales KR, Du Y, Dodel RC, et al. The NF-κB/Rel family of proteins mediates A-beta-induced neurotoxicity and glial activation [J]. Mol Brain Res,1998,57(1): 63-72.
    [45]Guy C. Brown, Jonas J. Neher. Inflammatory Neurodegeneration and Mechanisms of Microglial Killing of Neurons [J]. Mol Neurobiol,2010,(41): 242-247.
    [46]Wolk DA, Klunk W. Update on amyloid imaging:from healthy aging to Alzheimer's disease[J]. Curr Neurol Neurosci Rep,2009,9:345-352.
    [47]Akhand AA, Du J, Liu W,et al.Redox-linked cell surface-oriented signaling for T-cell death[J].Antioxid Redox Signal,2002,4:445-454.
    [48]蒋明,陈平,吕军,等.丹参酮ⅡA对阿尔茨海默病模型大鼠海马MMP-2. iNOS表达及自由基释放的影响.第二军医大学学报,2010,31(4):380-384.
    [49]李晓青,张俊武.炎性因子遗传多态性与Alzheimer病[J].基础医学与临床,2004,24(1):7-11.
    [50]Shaftel SS, Kyrkanides S, Olschowka JA, et al. Sustained hippocampal IL-lbeta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology [J]. Clin Invest,2007,117 (6):1595-1604.
    [51]Block ML,Hong JS. Chronic microglia activation and Progressive dopaminergic neurotoxicity [J]. Biochem Soc Trans,2007,35(5):1127-1132.
    [52]Li Y, Liu L, Barger SW, et al. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway[J].Neurosci,2003,23(5):1605-1611.
    [53]聂永慧,王鲁宁.白细胞介素1对淀粉样蛋白胞毒及基因表达的调节作用.[J].中国临床康复,2009,(8):79-81.
    [54]Robbins TW, McAlonan G, Muir JL, et al. Cognitive enhancers in theory and practice studies of the cholinergic hypothesis of cognitive deficits in Alzheimers disease[J]. Behav Brain Res,1997,83:15-23.
    [55]Tohgi H. Remarkable reduction in acetylcholine concentration in the cerebrospinal fluid from patients with Alzheimer type demertia[J].Neurosci Lett,1994,177(1):139-142.
    [56]Mulrhaup G, Ruppert T, Schlicksupp A, et al. Reactive oxygen species and Alzheimer's disease [J]. Bilchm Pharmacol,1997,54(5):533-539.
    [57]Polidori MC. Oxidative sress and risk factors for Alzheimer's discase:clues to prevention and therapy[J]. J Alzheimer Dis,2004,6(2):185-191.
    [58]LaFontaine MA, Mattson MP, Butterfield DA. Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice:implications for familial Alzheimer's disease[J].Neurochem Res,2002,27(5):417-421.
    [59]Bleich S, Romer K, Wiltfang J, et al. Glutamate and the glutamate receptor system:a target for drug action[J]. Int J Geriatr Psychiatry,2003,18:S33-40.
    [60]赵光远,李秀艳,卢国华.等.壳聚糖磷脂复合物对老年性痴呆患者脑功能的影响[J].中国应用生理学杂志,2006,22(1):112-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700